
RefDistiller: A Refactoring Aware Code Review Tool for
Inspecting Manual Refactoring Edits

Everton L. G. Alves†‡ Myoungkyu Song† Miryung Kim§

University of Texas at Austin, USA† University of California, Los Angeles, USA§

Federal University of Campina Grande, Brazil‡

{everton, mksong1117}@utexas.edu, miryung@cs.ucla.edu

ABSTRACT
Manual refactoring edits are error prone, as refactoring re-
quires developers to coordinate related transformations and
understand the complex inter-relationship between affected
types, methods, and variables. We present RefDistiller, a
refactoring-aware code review tool that can help develop-
ers detect potential behavioral changes in manual refactor-
ing edits. It first detects the types and locations of refac-
toring edits by comparing two program versions. Based
on the reconstructed refactoring information, it then de-
tects potential anomalies in refactoring edits using two tech-
niques: (1) a template-based checker for detecting miss-
ing edits and (2) a refactoring separator for detecting ex-
tra edits that may change a program’s behavior. By help-
ing developers be aware of deviations from pure refactor-
ing edits, RefDistiller can help developers have high con-
fidence about the correctness of manual refactoring edits.
RefDistiller is available as an Eclipse plug-in at https:

//sites.google.com/site/refdistiller/ and its demon-
stration video is available at http://youtu.be/0Iseoc5HRpU.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: [Distribution, Maintenance,
and Enhancement]

General Terms
Design, Experimentation

Keywords
Software evolution, refactoring

1. INTRODUCTION
Recent studies show that developers often conduct refac-

torings manually despite their awareness of automated refac-
toring engines [5, 7, 12]. Most expert developers do refac-
toring edits manually instead of using automated refactoring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

Figure 1: Overview of RefDistiller

tools [7]. Developers also underuse and misuse automated
refactoring tools [12].

Manual refactorings are error prone. According to a field
study at Microsoft [5], 77% of developers find it hard to per-
form manual refactorings correctly. Weißgerber and Diehl
find evidence that bugs are caused by incomplete refactor-
ings [13]. Existing approaches for detecting manual refactor-
ing anomalies are limited. Rachatasumrit and Kim find that
regression testing suites in practice are often inadequate for
covering refactored locations and are ineffective in detecting
refactoring errors [10]. SafeRefactor [11] validates refactor-
ing edits by leveraging an existing test generation engine and
by comparing test results between the old and new program
versions. However, it also requires having enough test cov-
erage. GhostFactor [4] detects a limited category of missing
edits in manual refactoring but does not detect extra edits
that may change a program’s behavior.

In this tool demonstration paper, we present RefDistiller,
a refactoring-aware code review Eclipse plug-in. Figure 1
shows the overview of RefDistiller. To detect potential
deviations from pure refactoring edits, RefDistiller incor-
porates two key techniques: (1) RefChecker for detecting
missing edits and (2) RefSeparator for detecting extra ed-
its. It takes an original version and a manual refactored
version as input, and automatically infers the types and lo-
cations of potential refactoring edits using RefFinder [9]. For
each refactoring edit, RefChecker checks a set of required

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2661674

751

code modifications and checks the preservation of method
or field reference bindings using predefined template rules.
If the required changes are not reflected in the actual ed-
its, those missing edits are reported to the user, together
with information on their location, type, and problematic
reference bindings. Similarly, for each refactoring edit, Ref-

Separator automatically applies an equivalent pure refac-
toring using a modified version of the Eclipse refactoring
engine to create a pure refactoring version. This version is
then compared against the manual refactoring version using
ChangeDistiller’s syntactic differencing technique [3]. If the
versions are not identical, RefSeparator reports the loca-
tions of extra edits.

Currently, RefDistiller supports six of most common refac-
toring types for Java programs: move method, extract method,
inline method, rename method, pull up method, and push

down method. This demo paper’s main contribution is to
describe different views of RefDistiller tool and to provide
details on how users can use it in the context of inspecting
manual refactoring edits using a motivating scenario. The
algorithm and evaluation of RefDistiller are detailed in our
technical report [1]. The tool is available at the following
web site https://sites.google.com/site/refdistiller/.

2. MOTIVATING SCENARIO AND
TOOL FEATURES

Suppose Ann performs two refactoring edits manually, a
pull up method refactoring and an extract method refac-
toring. Figure 3 shows the old and new version of manual
refactoring edits.

Ann moves method getPrice from class EBookManager

to its superclass BookManager but she is unaware that she
mistakenly has overridden an existing method SupplyMan-

ager.getPrice (see 1© in Figure 3). Because there are no
compilation errors, Ann does not suspect that she changed
the program behavior accidentally. For example, after the
update, BookManager.rent calls BookManager.getPrice in-
stead of SupplyManager.getPrice (see 3© and 4© in Fig-
ure 3). In this case, RefDistiller detects a missing edit in
line 17 of BookManager.java and reports a warning mes-
sage, ‘Detected a problematic reference binding which may
have affected method rent’. By examining the warning,
Ann recognizes that she should have updated line 17 so
that it calls super.getPrice(book, days) instead of get-
Price(book, days).

Ann performs an extract method refactoring in BookMan-

ager.findBook by creating a new method checkTitle which
encapsulates book.getTitle().equals(title) at line 8 (see
2© in Figure 3). While carrying out this extract method
refactoring, Ann adds a call to setUnavailable(book) at
line 9.

During peer code review, Kate, Ann’s manager, sees this
warning message generated by RefDistiller, ‘Detected ex-
tra edits that may have changed the behavior of method
p1.BookManager.findBook’ at line 9. She then double-checks
with Ann whether this deviation from pure refactoring edits
is a correct edit intended by Ann.
Input Selection. Kate opens the main view by selecting a
menu option of Window→ Show View→Other→RefDistiller.
Kate uses a drop-down menu to specify the original version
before Ann’s manual refactoring edits and the target version
after her edits (see the menu highlighted in blue in Figure 2).

Figure 2: RefDistiller input view.

RefDistiller Results View. When Kate presses the Run
RefDistiller button in Figure 2, it first runs RefFinder [9] to
detect the refactoring edits performed and their locations.
RefFinder uses a logic query based approach for reconstruct-
ing common types of refactoring edits from two program
versions. RefDistiller then runs the RefChecker and Ref-

Separator modules, searching for missing edits and extra
edits that deviate from pure refactoring edits.

The first tab, Potential Problems shows all potential
deviations from pure refactoring edits reported by both Re-

fChecker and RefSeparator. Each line describes the type
of a refactoring anomaly such as BINDING_PROBLEM, the lo-
cation (e.g. method rent from class p1.BookManager), and
a short description of the problem. By clicking each line,
Kate now reviews the corresponding Java files, where the
potential problems are located.
Missing Edits View. By clicking the Missing Edits tab,
Kate sees the problems reported from RefChecker. Re-

fChecker currently uses data flow analysis and type bind-
ing resolution analysis to check required method and field
deletions (or additions), required updates to callers of the
refactored methods, and required updates to type, method,
field, and variable bindings.

RefChecker reports the following 9 types of warning mes-
sages. The details on our rule-based checking algorithm are
described in our technical report [1].
• Missing method: Method X was not found in Class Y.
• Not removed method: Method X should have been

removed from Class Y.
• Missing statement update: There is at least one miss-

ing statement to be updated in the method X’s body.
• Missing statement addition: There is at least one

missing statement to be inserted in the method X’s body.
• Missing statement deletion: There is at least one

missing statement to be deleted in the method X’s body.
• Missing type update: The type associated with field X

needs to be updated.
• Binding problem: Detected problematic reference bind-

ings which may have affected method X.
• Visibility problem: Method X is not visible for one of

its callers.
• Missing renaming: Method X was not renamed.

By clicking each line, the respective Java file is opened
and a warning message is tagged at the exact location of
the warning (see Figure 3). Kate can now see that that Ann
should have updated line 17 by writing super.getPrice(book,

days) instead of getPrice(book, days), because rent used
to call SupplyManager.getPrice in the old version but now
calls BookManager.getPrice in the new version instead.
Extra Edits View. By clicking the Extra Edits tab, Kate
can see the problems reported from RefSeparator. By click-
ing each line, she can open the Eclipse Compare View
and examine the program difference between a manual refac-

752

Figure 3: Ann moved getPrice from EBookManager to BookManager, mistakenly overriding SupplyManager.getPrice.
Thus, BookManager.rent should have been updated to call super.getPrice(book, days) instead to ensure behavior
preservation.

toring version and a pure refactoring version generated by
Eclipse’s automated refactoring API. Figure 4 shows a pure
refactoring version on the left side and Ann’s manual ver-
sion on the right side. When the two versions are differ-
ent, RefSeparator reports that the manual version is not
pure refactoring and pinpoints the location of extra edits,
in this case line 9 calling setUnavailable. When Kate sees
a warning message, ‘Detected extra edits that may change
the behavior of method findBook’, she can check with Ann
whether she intended to introduce this new behavior.

3. RELATED WORK
Formal verification is an alternative for avoiding refactor-

ing anomalies. Cornélio et al. [2] propose rules for guarantee-
ing semantic preservation. Mens et al. [6] use graph rewrit-
ing for specifying refactorings. Overbey et al. [8] present a
collection of refactoring specifications for Fortran 95. How-
ever, these approaches focus on improving the correctness of
automated refactoring through formal specifications, as op-
posed to finding refactoring anomalies during manual edits.

The closest work to ours is GhostFactor [4]. GhostFac-
tor automatically checks correctness of manually performed

refactoring by checking required conditions. The idea of
GhostFactor is similar to RefChecker’s templates; however,
it handles three refactoring types. Currently, RefChecker

reports nine types of warnings for six refactoring types. In
contrast to RefSeparator, GhostFactor cannot detect extra
edits from manual refactorings.

4. SUMMARY
Recent studies show that developers often mix refactoring

with other semantic changes and developers do most refac-
toring manually. We present the features of RefDistiller, a
refactoring-aware code review tool that can help developers
detect potential errors in manual refactoring edits. It points
out the locations where incomplete refactorings are applied
and code elements that diverge from a pure refactoring mod-
ification. While extra edits performed during refactoring are
not always errors and could be intentionally made, we be-
lieve that pinpointing these extra edits could help developers
focus their attention to behavior changes during peer code
reviews. Developers may leverage RefDistiller to gain high
confidence that their refactoring edits preserve the already
established behavior, to localize and fix refactoring bugs, or

753

Figure 4: Ann created a new method checkTitle by extracting a condition (line 8 - Figure 3) but also added
a new method call to setUnavailable.

to check whether extra edits are correct intended edits.
In the evaluation detailed in our separate technical re-

port [1], we evaluate RefDistiller’s effectiveness on a data
set with one hundred manual refactoring bugs. These bugs
are hard to detect because they do not produce any compi-
lation errors nor are caught by the pre- and post-condition
checking of many existing refactoring engines. RefDistiller

can identify 97% of the erroneous edits, of which 24% are not
detected by extensive, automatically generated test suites.

5. ACKNOWLEDGMENT
This work was supported by National Science Foundation

under grants CCF-1149391, CCF-1117902, SHF-0910818, CNS-
1239498, a Google Faculty Award, and by National Institute
of Science and Technology for Software Engineering, funded
by CNPq/Brasil, grant 573964/2008-4.

6. REFERENCES
[1] E. L. Alves, M. Song, M. Kim, P. D. Machado, and

T. Massoni. Refdistiller: Detecting anomalies in
manual refactoring edits. Technical report, University
of Texas at Austin, TR-ECE-2014-3, March, 2014.

[2] M. Cornélio, A. Cavalcanti, and A. Sampaio. Sound
refactorings. Science of Computer Programming,
75(3):106–133, 2010.

[3] B. Fluri, M. Wursch, M. PInzger, and H. C. Gall.
Change distilling: Tree differencing for fine-grained
source code change extraction. Software Engineering,
IEEE Transactions on, 33(11):725–743, 2007.

[4] X. Ge and E. Murphy-Hill. Manual refactoring
changes with automated refactoring validation. In
Proc. of ICSE’14. IEEE, 2014.

[5] M. Kim, T. Zimmermann, and N. Nagappan. A field
study of refactoring challenges and benefits. In Proc.
of FSE’12, page 50. ACM, 2012.

[6] T. Mens, N. Van Eetvelde, S. Demeyer, and
D. Janssens. Formalizing refactorings with graph
transformations. Journal of Software Maintenance and
Evolution: Research and Practice, 17(4):247–276,
2005.

[7] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and
D. Dig. A comparative study of manual and
automated refactorings. In Proc. of ECOOP’13, pages
552–576. Springer, 2013.

[8] J. L. Overbey, M. J. Fotzler, A. J. Kasza, and R. E.
Johnson. A collection of refactoring specifications for
fortran 95. In ACM SIGPLAN Fortran Forum,
volume 29, pages 11–25. ACM, 2010.

[9] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim.
Template-based reconstruction of complex
refactorings. In Proc. of ICSM’10, pages 1–10. IEEE,
2010.

[10] N. Rachatasumrit and M. Kim. An empirical
investigation into the impact of refactoring on
regression testing. In Proc. of ICSM’12, pages
357–366. IEEE, 2012.

[11] G. Soares, R. Gheyi, D. Serey, and T. Massoni.
Making program refactoring safer. Software, IEEE,
27(4):52–57, 2010.

[12] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar,
B. P. Bailey, and R. E. Johnson. Use, disuse, and
misuse of automated refactorings. In Proc. of
ICSE’12, pages 233–243. IEEE, 2012.

[13] P. Weißgerber and S. Diehl. Are refactorings less
error-prone than other changes? In Proc. of MSR’06,
pages 112–118. ACM, 2006.

754

