
REPERTOIRE: A Cross-System Porting Analysis Tool for
Forked Software Projects

Baishakhi Ray, Christopher Wiley, Miryung Kim
The University of Texas at Austin

{rayb, thewiley, miryung@ece}.utexas.edu

ABSTRACT
To create a new variant of an existing project, developers
often copy an existing codebase and modify it. This process
is called software forking. After forking software, develop-
ers often port new features or bug fixes from peer projects.
Repertoire analyzes repeated work of cross-system porting
among forked projects. It takes the version histories as in-
put and identifies ported edits by comparing the content of
individual patches. It also shows users the extent of ported
edits, where and when the ported edits occurred, which de-
velopers ported code from peer projects, and how long it
takes for patches to be ported.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

Keywords
software evolution, forking, porting, repetitive changes, code
clones

1. INTRODUCTION
Software forking occurs when a developer or a group of

developers splits off software into separate conceptual en-
tities by copying and modifying an existing project. Fork-
ing is particularly common in free and open source software
projects, where differing visions and personality clashes oc-
cur without an unifying profit motive. For instance, the split
of FreeBSD and NetBSD from 386BSD, XEmacs from GNU
Emacs, and LibreOffice from OpenOffice are well known
forks. Proprietary software may also be forked to support
the needs of multiple customers with different feature re-
quirements.

Forking is often considered to be counter-productive. As
multiple peer projects evolve in parallel, developers need to
take similar features or bug fixes from one project to an-
other [2]. Such cross-system porting practice often incurs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

duplicate maintenance effort. This paper presents Reper-
toire, a tool that analyzes the extent and characteristics of
cross-system porting. It allows users to analyze the number
of lines of code ported from the patches of peer projects,
the developers responsible for those ported edits, the time
taken to port patches from peer projects, etc. It presents the
temporal and spatial characteristics of cross-system porting
using various graphical views. It also supports interactive
browsing of ported edits. Currently it is fully integrated
with the state of the art version control systems such as
Git and Mercurial. These analyses are designed to aid man-
agers and architects to make informed decisions about the
maintenance of forked software systems.

2. REPERTOIRE FEATURES
Suppose Sheryl is a manager working for the Exemplar

corporation, which writes and sells software to enterprise
customers. Two years ago, a particularly large customer re-
quested a feature that required extensive modifications to
the main product. To accommodate this customer’s needs,
the company forked the main product and made the nec-
essary custom changes. Since then, a considerable amount
of engineering effort has been continually spent to port bug
fixes and security patches from the main product. Sheryl
is contemplating whether it would be worthwhile to merge
the two products back instead of duplicating maintenance
effort.

Sheryl may need to analyze how the products evolve in
parallel and how often cross-system porting occurs. She
needs to know where the porting effort is focused on, who
are the main developers porting code from peer projects,
and how often cross-system porting happens, etc. She needs
to know which directories and files mostly consist of ported
edits. She may also be interested in knowing how long it
takes for bug fixes and security patches to propagate from
the main product to the other. These are the questions
that Repertoire can help Sheryl to answer. For presenta-
tion purposes, we refer to the main project and the forked
project as A and B respectively in the following subsections.

Porting Frequency View. Suppose that Sheryl wants
to know how often cross-system porting occurs. Given the
version histories of A and B, Repertoire visualizes the
extent of code ported from one project to another over time.
In the Porting Frequency View in Figure 1, the x-axis shows
time in months and the y-axis shows the average percentage
of ported edits with respect to total edits in each commit.
Sheryl may select to see only the edits ported from A to
B, only the edits ported from B to A, or both. Sheryl

Figure 1: Repertoire analysis of cross-system porting between two forked projects.

may see that 90% of the commits to B are ported from
the patches of A, whereas 95% of the commits to A are not
ported from B, indicating that most engineers working on B
spend their time porting code and little time writing original
code. On the other hand, if Sheryl notices that most edits
to either system are not ported, then she may conclude that
the systems are diverging further apart.

File Distribution View. To figure out where her or-
ganization is spending time porting code, Sheryl needs to
see which pairs of files share ported edits between A and B.
Repertoire helps Sheryl by presenting the File Distribution
View of the source and target of ported edits. This view is
a scatter plot with files from A making up the x-axis and
files from B making up the y-axis. A point is plotted at
(x,y) if there is a ported edit from file x to file y or vice
versa. Users can also grasp the amount of ported edits by
inspecting the color of the dot. The darker the color is, the
higher the ratio of ported edits to the total lines of code in
the file. This allows the user to answer which files have the
most ported edits and which files have the highest ratio of
ported edits. The File Distribution View in Figure 1 shows an
example of this file distribution view. By selecting any point
on this view, Sheryl can browse all ported lines between the
two files and investigate who ported the corresponding code,
the commit dates, etc.

Developer View. To ask her team about the feasibility
of merging A and B, Sheryl may need to identify the de-
velopers who have a deep understanding of both projects.
A reasonable heuristic for finding such developers is to sim-
ply identify the developers who do a lot of porting work.
Repertoire displays a pie chart showing which developers
are responsible for what fraction of the total ported lines.
See the Developer Distribution View of Figure 1.

Porting Latency View. Repertoire shows a user
how long it takes for individual patches to propagate from
one system to another system by presenting a cumulative
distribution of porting latencies. The Porting Latency View

of Figure 1 shows the number of days between when a patch
is first committed to one system and when a similar patch
is committed to a target system.

3. IMPLEMENTATION & EVALUATION
Repertoire analyzes diff-based program patches of two

forked projects to identify the ported edits. It works in
two phases. In the first phase, Repertoire uses CCFind-
erX [3] to identify similar edit contents (clones) in the in-
put patches. In the second phase, Repertoire determines
if two identified clones represent similar edit operations by
comparing the edit operation types (i.e., addition, deletion,
and modification) using an N-gram matching algorithm [1].
By comparing the commit dates of similarly edited code re-
gions, Repertoire disambiguates the source vs. target of
the ported edit.

This tool demo paper expands on a tool that we developed
to study co-evolution of BSD products and a detailed de-
scription of Repertoire is described in [4]. The input wiz-
ard of Repertoire gathers information about the version
histories of forked projects. The analysis wizard of Reper-
toire then visualizes cross-system porting analysis results
between the input projects using several views: Porting Fre-
quency View, Developer View, Porting Latency View, and File
Distribution View. Using the inputs specified by the user in
the input wizard, Repertoire’s back-end extracts individ-
ual diff-based patches, developers, and commit dates from
the version control repositories and compares the content
and edit operations of the patches using CCFinderX.

Table 1 shows example inputs. After identifying cross-
system ported edits, the back-end stores the results in a
database, which can then be loaded from GUI visualization
components. The internal structure of Repertoire is shown
in Figure 2.

According to our previous study [4], Repertoire detects
ported edits with 94% precision and 84% recall, at a token
threshold 40. This accuracy was determined by comparing

User%Interface%

Input&Wizard%
Projects,%Repository%URLs,%
and%Time%Period%

Analysis&Wizard:%%
Por9ng%Frequency/%File%Distribu9on%
Developer/%Por9ng%Latency%

Data&Extrac5on:&
diff$patches$
Developers%
Commit%dates%

Iden5fica5on&of&
Ported&Edits&
(CCFinderX,%NGgram%
Matching)%

Repertoire&DB&

Back%End%

Figure 2: Repertoire internal components.

Input Types Example Inputs
working directory /var/tmp

CCFinderX path /usr/bin/ccfx

Project 1
version control type Git
repository root /path/to/myrepo

time period 11/2/2010 - 9/31/2011

Project 2
version control type Mercurial
repository root /path/to/anotherrepo

time period 11/2/2010 - 9/31/2011

Table 1: Example inputs to Repertoire.

Repertoire’s result with a manually constructed ground
truth set of ported edits on a sampled evolution period of
OpenBSD releases 4.4 to 4.5.

In 18 years of parallel evolution of the BSD family, on av-
erage, FreeBSD ports 13.77% of edited lines from NetBSD
and OpenBSD, while 15.52% and 10.74% of edited lines in
NetBSD and OpenBSD originate from the other two BSDs
respectively. 26.12%, 58.85%, and 44.85% of active develop-
ers in FreeBSD, NetBSD, and OpenBSD port patches from
the other BSDs. The average time taken to port patches
from peer projects in FreeBSD, NetBSD, and OpenBSD are
734, 725, and 944 days respectively. In all three projects,
porting is mostly localized within 20% of the modified files.

4. SUMMARY
This paper presents Repertoire that analyzes the extent

of cross-system porting among projects forked from a com-
mon ancestor. Using Repertoire, managers and engineers
can measure the frequency of cross-system porting, learn
which developers do how much of the porting work, investi-
gate the trend of cross-system porting work over time, and
the spatial distribution of ported edits with respect to the
file system structure.

5. REFERENCES
[1] G. W. Adamson and J. Boreham. The use of an

association measure based on character structure to
identify semantically related pairs of words and
document titles. Information Storage and Retrieval,
10(7-8):253–260, 1974.

[2] D. M. German, M. Di Penta, Y.-G. Gueheneuc, and
G. Antoniol. Code siblings: Technical and legal
implications of copying code between applications. In
MSR ’09: Proceedings of the 6th IEEE International
Working Conference on Mining Software Repositories,
pages 81–90, 2009.

[3] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system

for large scale source code. IEEE Transactions on
Software Engineering, 28(7):654–670, 2002.

[4] B. Ray and M. Kim. A case study of cross-system
porting in forked projects. In FSE-20: ACM SIGSOFT
the 20th International Symposium on the Foundations
of Software Engineering, 2012, to appear.

APPENDIX
Repertoire is an open source tool and can be downloaded
from http://dolphin.ece.utexas.edu/Repertoire.html. This
section describes the steps required to run Repertoire.

A. INSTALLATION
1. Install required libraries

− Python 2.7

− Qt 4.x: a cross-platform application and UI frame-
work

− pyuic4: a UI compiler for Qt that comes with the
PyQT package.

2. Run ‘make’ from src/

3. Run ‘make’ from src/analysis/

4. Obtain a working copy of CCFinderX for intended plat-
form

− Ensure the execution of CCFinderX by running a
command ‘ccfx d cpp somefile.cpp’

B. POPULATING A DATABASE
Repertoire takes the repository location and time pe-

riod of version histories as input and identifies ported edits
among the input projects. It requires a working directory to
store intermediate files, a path to an executable CCFinderX,
and information about version control repositories. For each
repository, the user is asked to specify the type of version
control system (e.g. Git or Mercurial), the root URL of the
repository, and the time period that the user is interested
in. Table 1 shows example inputs. Repertoire checks the
validity of inputs and then proceeds to populate a database
with the analysis results of ported edits.

1. Run ‘src/run_vcs_flow.py’

− When an input wizard appears, select “Start a new
project”

2. Pick a working directory, e.g. /var/tmp.

− Repertoire creates a sub directory to put its inter-
mediate results.

3. Specify a path to a CCFinder executable.

− Pick a minimum token size (CCFinder’s input pa-
rameter). A minimum token size is the number of
lexical token elements that must be similar between
two code fragments to be identified as code clones.

4. Select a version control system for each project.

− Repertoire currently supports Git or Mercurial
as target version control systems.

5. Select a URL path for each version control repository.

− This is the root directory of the repository for Git
and Mercurial.

6. Select file extensions for C/C++, headers, and Java
files.

http://dolphin.ece.utexas.edu/Repertoire.html
http://www.ccfinder.net/ccfinderxos.html

7. Select a time period for the project. Repertoire then ex-
tracts diff-based patches for each commit revision within
the time period.

8. Confirm analysis of the given data and then wait for
analysis to complete.

9. When the analysis is complete, check the output file
created by Repertoire in the working directory.

− A pickle file called rep_db.pickle is generated.
Pickle is a file format for Python object serializa-
tion and de-serialization. This is used as an input
for the visualization and analysis step.

C. RUNNING REPERTOIRE
1. Run rep_analysis.py from src/analysis

2. Select the pickle file rep_db.pickle produced from the
previous step and press Next.

3. The GUI provides four analysis views shown in Fig-
ure 3: Porting Frequency View, File Distribution View,
Developer View, and Porting Latency View (Timing Anal-
ysis).

Figure 3: Repertoire Analysis Menu

C.1 Porting Frequency View
Given the version histories of two projects, this view shows

the extent of edits ported from one project to another over
the available history. This is represented as a line diagram,
where x-axis shows a time line, and the y-axis shows the
average percentage of ported edits with respect to total edits
in diff-based patches. A user may select to see only ported
edits from Project A to B, B to A, or both at once. She may
also specify a specific time period over the entire evolution
history. Steps to run this view:

1. Select Porting Frequency in the menu.
2. Select a project: Project A or/and Project B
3. Set a time period for analysis.

C.2 File Distribution View
This view is a scatter plot where files from Project A is

shown along the x-axis and files from Project B is shown
along the y-axis. A point is plotted at (x,y) if there is an
edit ported from file X to file Y or vice versa. The color of
the dot indicates a ratio of ported edits to total edits. The
darker the color is, the higher density of ported edits. Steps
to run this view:

1. Select File Distribution in the menu.
2. By default, this view does not show full file names.

To see the full file names, click Display Label option.
Alternatively, click on a specific point in the diagram.
Corresponding file-names are shown at the bottom.

3. To browse ported code between the selected file pair,
press Display Ported Edit.

− A window will show the locations of the ported
edits between the two files, along with developer
and commit date information.

− Select any ported code fragment from this list, to
browse the corresponding ported edits.

C.3 Developer View
This view is a scatter plot diagram with developers of

project A in x-axis and developers of project B in y-axis.
It reflects the interaction pattern of the developers while
porting code. Another pie chart shows which developers are
responsible for what fraction of the total ported lines in a
particular project. Steps to run the developer analysis:

1. Select Developer Distribution in the menu.

− This view shows a scatter plot of developer distri-
bution, i.e., a point is plotted at (x,y) if developers
at x port code written by developer at y, and vice
versa.

2. By default, this view does not show developers’ identity,
as it clutters the display. To see the identities press
Display Label. Alternatively, click on any point on the
scattered plot. Corresponding developers names are
shown at the bottom.

3. To see the distribution of the developer who ported
code in a particular project in the form of pie chart,
select project A and/or project B from right hand win-
dow. Then press Display Developer Porting Statistics”.

C.4 Porting Latency View
This analysis shows how long it takes for a patch to be

propagated to the other project on average. Steps to run
this analysis:

1. Select Porting Latency in the menu.
2. Select a project (e.g. Project A and/or B), and then

press Porting Latency button. A cumulative distribution
of the time taken to port edits from the source to the
target projects is shown when Cumulative Distribution
is selected.

	Introduction
	Repertoire Features
	Implementation & Evaluation
	Summary
	References
	Installation
	Populating a Database
	Running Repertoire
	Porting Frequency View
	File Distribution View
	Developer View
	Porting Latency View

