A Case Study of Cross-System
Porting in Forked Software Projects

Baishakhi Ray and Miryung Kim
The University of Texas at Austin

Motivation

Software forking has become popular.

Developers may need to port similar feature
additions and bug-fixes across the projects.

The characteristics of repeated work required
to maintain forked projects is yet unknown.

Study Findings

Cross system patch porting happens
periodically.

Porting practice heavily depends on core
developers doing their porting job on time.
Ported changes are less defect-prone than
non-ported changes.

Ported changes are localized.

Outline

Related Work

Study Subjects

Repertoire Approach
Research Questions & Results
Conclusions

Related Work

Code clone analysis [kamiyaetal., Jiang et al., Baker et al.].
Detect only duplicate code

Cannot detect repeated work involved in cross-
system porting

Case studies on the BSD product family
Focus on cross-system communications [Canfora et al.]

Analyze copy-right implications of code flow [German
et al.].

Studies on recurring bug fixes

Investigate only individual projects as opposed to a
product family [Nguyen et al.].

Study Subjects

FreeBSD

NetBSD

OpenBSD

359 to 4479 54
(R1.0 - R8.2)
859 to 4463 14
(R1.0 - R5.1)
297 to 2097 30

(R1.1 - R5.0)

405

331

264

18

18

16

Repertoire (FSE'12 tool-demo)

Input: a sequence of diff based program patches
from forked projects.

Output: ported edits among the patches.
Repertoire compares patches to identify similar
contents and edit operations.

Step 1: Identify cloned regions

using CCFinderX [Kamiya et al.]

kEhkk* O|d XKk *

X1 for(i=0;i<MAX;i++){
X2 - x=array[i]+x;

X3 - y=foo(x);
X4 - X=XYy;
X5 |}

kkk* NeW Xik*k*

X6 for(i=0;i<MAX;i++) {
X7+ y=xty

X8 + x=array[i]+x;

X9 + y=-foo(x,y);

X10 1}

*xk*k%k O|d *xk*k*k

Y1 for(j=0:j<MAX;j++) {
Y2 qgq=p+tgq;

Y3 - q=array[j]+p;

Y4 - p=fool(q);

Y5)

xk%k NeW *Kk*k%k

Y6 for(j=0:;j<MAX;j++) {
Yl q=p+tg;

Y8 + q=array[j] + q;
YO + p=fool(p,q);

Y10 }

Step 2: Match edit operations of

cloned regions

kEhkk* O|d XKk *

X1] For(i=0;i<MAX;i++){
X2 X = array[i]+x;

X3 - y=foo(x);
X4 - X=XYy;
X5 |}

XKk * NeW Xik*k*

X6| For(i=0;i<MAX;i++) {
XL Yy = x+y;

X8| +| x = array[i]+x;
X9L+] y = foo(x,y);

X10 1}

*k*k%* O|d)k k%*

Y1 for(j=0;j<MAX:j++) {
Y2} |g=p+tq;

Y3] - | g = array[j]+p;

Y4 - p=fool(q);

Y5)

kX NeW *Kk*k%k

Y6 | for(j=0:;j<MAX:j++) {
Y/l la=p+q;

Y8 |+ | q = array[j] + q;
YO |+] p = fool(p,q);

Y10 }

Step 2: Match edit operations of

cloned regions

XKk * O|d XKk *

X1] For(i=0;i<MAX;i++){
X2

X3 - y=foo(x);
X4 - X =Xy;
X5 |}

XKk * NeW Xik*k*

X6| For(i=0;i<MAX;i++) {
X7

X8 y[i]+X;
X9L+] y = foo(x,y);

X10 1}

kKA * O|d XKk *x

Y1 for(j=0;j<MAXj++) {

Y2 | q=p+q;
Y3

Y4 - p=fool(q);
Y5)

Xk EX NeW k%%

Y6 | tor(j=0;j<MAX;j++) {
Y7

Y8

YO |+] p = fool(p,q);
Y10 }

Ported
edits

10

Step 3: Disambiguate source and

destination of ported edit

(Jan '10)

(Mar “10)

kEhkk* O|d XKk *

X1 for(i=0;i<MAX;i++){
X2 - x=array[i]+x;

X3 - y=foo(x);
X4 - X=XYy;
X5 |}

kkk* NeW Xik*k*

X6 for(i=0;i<MAX;i++) {
X7+ y=xty

X8 + x=array[i]+x;

X9 + y=-foo(x,y);

X10 1}

*k*k* O|d *k*k*

Y1 for(j=0;j<MAX;j++) {
Y2 qg=p+tq;

Y3 - q = array[j]+p;

Y4 - p=fool(q);

Yo }

Xkik*k* NeW k%%

Y6 for(j=0;j<MAX;j++) {
Y/ q=p+tq;

Y8 + q=array[j] + q;
YO + p=fool(p,q);
Y10 }

11

Patch Porting Example from

FreeBSD to NestBSD

FreeBSD Patch (bin/cp/cp.c: rev 1.3)
Date:1994/12/30
Author: bde

Change Log:

Be more careful about concatenating
pathnames: don't check that the
pathname fits until prefixes have been
discarded

p = &curr->fts_path[base];

nlen = curr->fts_pathlen - base;

| target_mid =to.target_end;

Lif (*p !="/' && target_mid[-1] '="/")
I *target_mid++="/';

I *target_mid = o;

NetBSD Patch (bin/cp/cp.c: rev 1.40)
Date: 2005/11/16
Author: christos

Change Log:

- Better detect pathname overflow (from
FreeBSD)

- Change destination normal file detection
to match with FreeBSD

p = &curr->fts_path[base];
nlen = curr->fts_pathlen - base;
I target_mid = to.target_end;
Lif (*p !="/' && target_mid[-1] '="/")
| *target_mid++ ="/,
| *target_mid = o;

12

Accuracy Measurement

We manually constructed a ground truth set
of edits ported from NetBSD to OpenBSD
releases 4.4 and 4.5.

We evaluate with Repertoire’s output against

the ground truth set, while varying the token
size threshold for CCFinderX [Kamiya et al.].

13

Accuracy Measurement

(")]
()]
=)
©
>
©
sl_J 0.6
C
O
L]
U
()]
| -
Q.

1.2

1.0 precision

0.8 recall
f-measure

20 30 60 70 80 90 100

~
(@)
wl
(@)

Token Size

Precision: 94%, Recall: 84%
Token threshold: 40

14

Accuracy Measurement

1.2 precision=0.94

1.0 precision
0.8 ’ recall

f-measure
recall=0.84
0.4

0.2

precision-recall values
O
(@)

0.0
20 30 40 5O 60 70 80 90 100

Token Size

Precision: 94%, Recall: 84%
Token threshold: 40

15

Outline

Related Work

Study Subjects

Repertoire Approach

Research Questions & Results
Conclusions

16

Research Questions

Q1: What is the extent of changes ported from other
projects?

Q2: Are ported changes more defect-prone than non-
ported changes?

Q3: How many developers are involved in porting
patches from other projects?

Q4: How long does it take for a patch to propagate to
different projects?

Qs: Where is the porting effort focused on?

17

Qa: What is the extent of changes ported

from other projects?

Methodology

Compare program patches at release granularity.

NetBSD

Net1.0 Net2.0 Net3.0 Net4.0 Net5.0
BN NN NN N ——

o ~
Y

Open3.7 Open4.0 Opend.4 5penBSD

18

Qa: What is the extent of changes ported

from other projects?

Methodology
Compare program patches at release granularity.
Identify ported lines.
Compute porting rate.

E ported _ edits

releases

E total _edits

releases

avg _ porting _rate =

Example: If a patch contains 10 lines of total edits, where 5 of them are
ported from another project, porting rate is 50% on average.

19

Qa: What is the extent of changes ported

from other projects?

80 FreeBSD (avg. = 13.77%, 12,127 CLOC)
60 NetBSD (avg. = 15.52%, 45,429 CLOC)

OpenBSD (avg. =10.74%, 16,927 CLOC)
40

% ported edits

20

0
1996 1998 2000 2002 2004 2006 2008 2010

release years

Porting is significant in the BSD family evolution, and it

is not necessarily decreasing over time.
20

Q2:Are ported edits more defect prone

than non-ported edits?

Methodology

Measure ported and non-ported lines using
Repertoire.
Measure Spearman rank correlation

between the number of bug fixes [Mockus and

votta]and ported and non-ported lines
respectively, at file granularity.

21

Q2:Are ported edits more defect prone

than non-ported edits?

FreeBSD 0.26 0.15 0.25
NetBSD 0.41 0.36 0.42
OpenBSD 0.37 0.32 0.38

Files with ported edits are less defect-prone than the files
with non-ported edits

22

Q3: How many developers are involved

In porting patches from other projects?

Methodology
Measure the percentage of developers involved in
porting.
Measure porting workload distribution by calculating

normalized entropy score of developers’ contribution
[Hassan et al].

normalized _entropy = —E p, *log (p.)

If entropy is high, the workload is more equally
distributed among the contributors.

23

Q3: How many developers are involved

In porting patches from other projects?

80%

FreeBSD
% 0.5
o 60% 59
& 45% g 4
O =
O 40% S 03
S 26% >
X O 0.2
20% =
v 0.1
0%

o
o

FreeBSD releases

ported edits ®=®non-ported edits

FreeBSD NetBSD OpenBSD

A significant portion of active committers port changes, but
some do more porting work than others.

24

Q4: How long does it take for a patch to

propagate to different projects?

Methodology

A patch propagation latency = target patch
release date — source patch release date.

(Dec., ‘'04)
& & & &
47 months
O O &
Open3.7 Open4.0 Open4 .4
P P (Nov., '08) OpenBSD

25

Q4: How long does it take for a patch to

propagate to different projects?

90 o

80 FreeBSD
g
5 60 =—=NetBSD
7] £0 / .
< | 90% OpenBSD
£ 40 50% porting
g 30 porting
® 20

10

o)

3 33 63 93 123 153 183

months

While most ported changes migrate to peer projectsin a
relatively short amount of time, some changes take a very long

time to propagate to other projects.
26

Qs: Where is the porting effort focused

on?

Methodology

Measure the file level distribution of ported edits
in each BSD project.

Consider a file is affected by porting in the it"
release, if it is modified by at least one ported edit

since its previous release.

27

Qs: Where is the porting effort focused

on?

FreeBSD (avg. = 11.58%)

0

> NetBSD (avg. = 18.62%)
3 40 OpenBSD (avg. = 15.86%)
=
© 30
=
9 20
P

10

0

1995 1998 2001 2004 2007 2010

release years

Ported changes affect about 12% to 19% of modified files and
porting effort is concentrated on specific parts of the BSD

codebase.
28

Qs: Where is the porting effort focused

on?

Top 4 directories with the largest amount of
ported changes.

1 src/crypto/ 21.54% src/sys/ 20.34 src/sys/dev 24.57
openssl| arch % %

2 src/crypto/ 13.98% src/sys/dev 19.96 src/lib/libssl 16.36
openssh % %

3 src/crypto/ 13.31% src/crypto/ 10.61 src/sys/arch 11.16%
heimdal dist %

4 src/sys/ 8.95% src/gnu/ 4.54% src/usr.sbin/ 6.27%

dev dist ppPpP

29

Summary

Repertoire analyzes cross-system porting in
temporal, spatial and developer dimension.

The repeated maintenance work is significant.

Ported changes are more reliable than non-ported
changes.

Cross-system porting in the BSDs heavily
depends on developers doing their porting job on
time.

30

Summary

Calls for automated approaches for cross-
system porting [Meng et al.,Anderson et al.]
Calls for tools to notify developers of
potential collateral evolution and cross-
system change impact analysis

31

Acknowledgment

We thank Jihun Park for gathering the bug history
data for FreeBSD, NetBSD, and OpenBSD projects.

This work was in part supported by National Science
Foundation under the grants CAREER-1117902,

CCF-1149391, and CCF-1043810 and Microsoft SEIF
award.

Data sets and Repertoire tool are available for
public.
http://dolphin.ece.utexas.edu/Repertoire.html

32

A Case Study of Cross-System
Porting in Forked Software Projects

Baishakhi Ray and Miryung Kim
The University of Texas at Austin

