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Abstract. When a program evolves, its test suite must be modified to
reflect changes in requirements or to account for new feature additions.
This problem of modifying tests as a program evolves is termed test re-
pair. Existing approaches either assume that updated implementation is
correct, or assume that most test repairs require simply fixing compi-
lation errors caused by refactoring of previously tested implementation.
This paper focuses on the problem of repairing semantically broken or
outdated tests by leveraging specifications. Our technique, Spectr, em-
ploys a lightweight formal method to perform specification-based repair.
Specifically, Spectr supports the Alloy language for writing specifica-
tions and uses its SAT-based analyzer for repairing JUnit tests. Since
Spectr utilizes specifications, it works even when the specification is
modified but the change has not yet been implemented in code—in such
a case, Spectr is able to repair tests that previous techniques would not
even consider as candidates for test repair. An experimental evaluation
using a suite of subject programs with pre-conditions and post-conditions
shows Spectr can effectively repair tests even for programs that perform
complex manipulation of dynamically allocated data.

1 Introduction

Testing is the most commonly used technique for validating software quality.
While conceptually simple, testing can be expensive and involves much manual
effort, specifically in writing test cases and describing expected test outputs. To
reduce this cost, regression test suites are commonly used to check behavioral
modifications as a program evolves. However, behavioral modifications may ren-
der certain existing tests invalid due to new feature additions or bug fixes, which
in turn modify the expected test outputs.

Several research projects have addressed this problem of test repair [5, 6, 8].
Existing techniques can fix compilation errors in tests caused by simple refac-
torings such as method renamings or signature changes, so that the old tests
could run as before. Some can modify test assertions to ensure those tests that
passed before could still pass. However, all existing techniques perform test up-
dates with respect to implementation changes, assuming that implementation is
always correct. If the specification changes, but the implementation has not yet
been modified or has been modified incorrectly, existing techniques are not able
to repair tests to correctly reflect the updated specifications.



This paper presents Spectr, a novel specification-based test repair tech-
nique using a lightweight formal method. Given the specifications of a modified
program—pre-conditions defining expected inputs and post-conditions defining
expected behavior—and an existing test suite, Spectr repairs each test that
exercises modified behavior. Specifically, it repairs test assertions that check the
actual output against the expected output, so that failing tests reflect specifica-
tion violation and passing tests reflect specification conformance.

As an enabling technology, Spectr uses the Alloy tool set [13]. Alloy is a
first-order declarative language based on relations, and is particularly suitable
for expressing structural invariants on graphs, such as class invariants on object-
graphs in a Java program. The Alloy tool set includes a fully automatic SAT
solver engine that checks Alloy formulas within a given scope, i.e., bound on the
universe of discourse. The back-end deployment of state-of-the-art SAT solvers
makes the Alloy tool set particularly effective for test repair.

Given Alloy specifications, Spectr uses a SAT solver to compute expected
outputs for test assertions using post-conditions. The key insight behind our
approach is that because each test case represents a single program execution
for deterministic programs, updating a test oracle needs to explore only one
execution behavior and does not need enumerate all possible behaviors. Thus
Spectr differs from previous testing and verification techniques using Alloy [7,9,
16,21] by avoiding the traditional state-space explosion. Moreover, for manually
written tests, Spectr allows utilizing the tester’s intuition behind the design of
test inputs, since they directly form a part of the repaired test cases.

Spectr repairs JUnit [1] tests that have a fairly general structure with three
primary components: (1) initialization—initializing input values, i.e., the pre-
state, for the sequence of methods under test, e.g., using explicit object allo-
cations and field assignments, (2) execution—invoking the sequence of meth-
ods under test on the inputs, and (3) assertion—checking the post-state for
the sequence using a test assertion, e.g., using the assertEquals method in
org.junit.Assert. To repair a test, Spectr first uses the initialization com-
ponent to initialize an Alloy instance that represents the pre-state. Next, it uses
Alloy to compute an expected post-state subject to the execution component.
Finally, it updates affected assertions to reflect behavioral conformance to the
updated specification.

Spectr makes it possible to repair tests even before the implementation
is modified to reflect the updated specifications. Thus, Spectr directly sup-
ports test-driven development, a key practice behind the success of Extreme
Programming and other agile software development processes. To the best of
our knowledge, Spectr is the first such technique for test repair.

This paper makes the following contributions:

– Specification-based test repair. We introduce the idea of repairing tests
to reflect modifications to expected behavior as encoded in specifications.
Previous techniques for test repair are based on implementation changes,
assuming that updated code is always correct. Therefore, they do not handle
semantic changes with respect to modified specifications.



– A lightweight formal method for test repair. To our knowledge, Spectr
is the first technique for test repair using a lightweight formal method. It
leverages the Alloy tool set and presents a non-conventional application of
propositional satisfiability solvers for repairing tests.

– Evaluation. We perform an experimental evaluation using our prototype
embodiment of Spectr to repair tests for a suite of subject programs. Our
experiments show that Spectr effectively repairs tests, even for programs
that perform complex manipulations of dynamically allocated data.

While our approach is based on Alloy specifications, our ideas generalize
to programs annotated using different specification languages, such as the Java
Modeling Language, which enhances the applicability of our approach. In fact,
our approach directly applies to code with Java Modeling Language (JML) an-
notations: the JForge tool [7] performs Alloy-based static analysis of JML anno-
tated code and provides an enabling technology for our technique.

2 Related Work
Test Repair The need of test repair is well-recognized in regression testing [3,
19] and software evolution [26]. Recent years have seen several frameworks that
automate test repair [5,6,8,18]. The key difference between Spectr and previous
work is Spectr’s use of specifications for test repair. Previous techniques for
test repair use changes in implementation to repair tests, and hence can only
repair tests to reflect actual behavior, which may not be the intended behavior.
In contrast, Spectr can repair tests even when the modified implementation is
buggy. Indeed, Spectr does not even require the implementation to be modified
before the tests are repaired.

Daniel et al. [5,6] proposed a technique which performs a combined dynamic
and static analysis to find test repairs that developers are likely to accept. How-
ever, their approach assumes the implementation is correct, and then repairs
failing tests by recording its runtime behavior. [18] proposed an approach to
repairing test cases for evolving method declarations. It only repairs test case
compilation errors that depend on changes in parameters or return values. It
assumes that the original functionality is preserved for the given test inputs.

Test repair has also been investigated for GUI-based systems, where it is
common for developers to create test scripts using record-and-replay testing tools
in GUI testing. The scripts generated in this way are quite fragile and easy to be
broken when the system changes. To address this problem, Memon [17] proposed
techniques for correcting sequences of test scripts so that they compile with the
tested application. More recently, Grechanik et al. [11] presented a technique to
identify modified GUI objects and locate test script statements that reference
these modified GUI objects, so the test engineers can fix the test scripts.
Debugging Recent years have seen much progress in automated techniques
for removing bugs, i.e., debugging – the process of locating faults, i.e., fault
localization [4, 12, 15] and fixing them, i.e., program repair [10, 14, 24, 27]. Test
repair is a special case of program repair where the program to repair is the old
test suite. However, existing techniques for program repair are not well suited



for test repair since they are ambivalent of the specific structure of test case. In
contrast, test repair techniques utilize this structure for enhanced effectiveness.
Alloy The Alloy tool-set has provided an enabling technology for various anal-
yses for Java programs, including static checking using Jalloy [21], systematic
testing using TestEra [16], data structure repair using Tarmeem [25], and most
recently for program repair by Gopinath et al [10]. Our work shares insights with
previous work and provides a novel use of the Alloy tool-set in test repair. The
problem of test repair has similarities with the problem of test generation and
the problem of program repair. Spectr’s technical approach is different from
TestEra’s, which generates inputs at the concrete level using sequences of field
assignments and uses the Alloy Analyzer to evaluate Alloy post-conditions as
test oracles. In contrast, Spectr supports method sequences for input creation,
enables re-use of existing test inputs, and generates test assertions that directly
check correctness criteria. Also, Spectr’s approach is different from Gopinath
et al.’s approach for program repair, which repairs faulty object field assignment
statements. In contrast, Spectr repairs JUnit test assertions, which are written
using arbitrary Java expressions.
N-version Programming Our work bears resemblance1 to N-version pro-
gramming—a methodology where the same initial specification is used to create
N ≥ 2 functionally equivalent programs to enable fault tolerance [2]. There are
three basic differences between our approach and N-version programming. First,
we are performing specification-based repair where the specification is in a declar-
ative language. We do not have two (or more) imperative programs implementing
the same specification – the central condition for N-version programming. Sec-
ond, N-version programming does not account for specification evolution, which
is the central theme of our work. Third, N-version programming is defined for
fault tolerance, not for test repair. However, we could generalize the spirit of N-
version programming to view a specification—assuming it is executable—itself
as one program version that may evolve. Then, after an evolution, the results of
specification execution, if feasible, can be used to repair tests. For Alloy spec-
ifications, execution is made feasible by Alloy’s SAT-based back-end, which is
indeed the enabling technology for Spectr’s test repair. It is plausible to opti-
mize solving of Alloy formulas in the specific context of test repair, but that is
an open research problem.

3 Illustrative Example

This section presents an example to illustrate Spectr’s test repair process; we
describe basic Alloy syntax and semantics as we introduce it; details on Alloy
can be found elsewhere [13].

Spectr takes as input an old test and a modified specification and repairs
the old test. To illustrate, consider a singly-linked acyclic list data structure that
stores integers in sorted order. Fig. 1 illustrates test repair for this example; the
figure shows 1 a Java declaration for lists; 2 an old Alloy specification that

1 We thank an anonymous reviewer for pointing us to N-version programming.



1 Code

public class List {
Node header;
static class Node {int elem; Node next;}
public int size (){...}
public void add(int){...}

}

2

Old Spec:
acyclic, sorted
lists with unique
elements

pred RepOk(l: List , s: State) {
all n: l.( header.s).*( next.s) {
n not in n.^( next.s) // list is acyclic
// list is sorted with unique elements
some n.(next.s) => n.(elem.s) < n.(next.s).( elem.s)

}
}

pred add_pre(l: List , x: Int , s: State) {
RepOk[l, s]

}

pred add_post(l: List , x: Int , s, s’: State) {
RepOk[l, s’]
l.( header.s ’).*( next.s’).( elem.s’)
= l.( header.s).*( next.s).( elem.s) + x

}

pred size_pre(l: List , s: State) {
RepOk[l, s]

}

pred size_post(l: List , result: Int , s: State) {
result = #l.( header.s).*( next.s)

}

3

New Spec:
acyclic, sorted
lists that allow
repetitions

Modified Spec:
“RepOk”,
“add post”

Unchanged Spec:
“add pre”,
“size pre”,
“size post”

pred RepOk(l: List , s: State) {
all n: l.( header.s).*( next.s) {
n not in n.^( next.s) // list is acyclic
// list is sorted , while allowing repetitions
some n.(next.s) => n.(elem.s) <= n.(next.s).( elem.s)

}
}

pred add_pre(l: List , x: Int , s: State) {...}

pred add_post(l: List , x: Int , s, s’: State) {
RepOk[l, s’]
all i: Int {
i != x =>
#{n: l.( header.s).*( next.s) | n.(elem.s)=i}
= #{n: l.( header.s’).*( next.s’) | n.(elem.s’)=i}

else

#{n: l.( header.s).*( next.s) | n.(elem.s)=i} + 1
= #{n: l.( header.s’).*( next.s’) | n.(elem.s’)=i}

}
}

pred size_pre(l: List , s: State) {...}

pred size_post(l: List , result: Int , s: State) {...}

4
Example Test
Repair:
assertion updated

@Test public void test() {
List l = new List ();
l.add (0);
l.add (0);
assertEquals (1, l.size ());

}
(a)

@Test public void test() {
List l = new List ();
l.add (0);
l.add (0);
assertEquals (2, l.size ());

}
(b)

Fig. 1. Example program evolution & test repair



defines the list class invariant (RepOk) and methods add and size; 3 a new
Alloy specification that defines the modified list class invariant and method add;
and 4 an example test repair performed by Spectr.

The Java code declares that each list has a header node, and each node has
an integer elem and has a next node. The method size returns the number of
elements in the list. The method add inserts a given integer into the list.

The Alloy specification in Fig. 1- 2 has five predicates; each predicate (pred)
defines a parameterized formula. The predicate RepOk states the class invariant
and has two parameters: a list l and a state s. This universally quantified (all)
formula expresses acyclicity and sortedness of unique elements. The operator
‘.’ represents relational join. An expression o.(f.s) represents dereferencing
of field f of object o in state s. ‘*’ represents reflexive transitive closure. For
example, header.*next denotes all nodes reachable from header. ‘^’ represents
transitive closure. The first sub-formula states directed acyclicity by ensuring
that a traversal that starts node x cannot revisit the same node. The second sub-
formula ensures that the list is sorted and contains no repetitions. The predicate
add post states the post-condition of method add. States s and s’ represent a
pre-state and a post-state after invoking add respectively. The first formula states
the class invariant holds in the post-state. The second formula states the elements
in the list is a union of the elements in the pre-state and an added element
x. The predicate size post states the post-condition of method size. The
operator ‘#’ denotes the cardinality of a set. The parameter result represents
the return value. Since size is a pure method, i.e., the execution of the method
does not change the state of its inputs, its predicate does not need a post-state.
The predicates add pre and size pre state the pre-conditions of add and size

respectively; both the predicates state that the class invariant holds in the pre-
state s.

An example JUnit test with respect to this specification is shown in Fig. 1-
4 -(a). The test allocates a new list and makes two invocations of add followed
by a correctness check using assertEquals. Since the class invariant does not
allow repetitions, the assertion checks that the size of the list after the two add

operations is 1. This test passes only if method add correctly avoids repetitions.

To demonstrate Spectr’s test repair process, consider the following modi-
fication to the list specification: a list may now contain repeated elements, and
must still be acyclic and sorted (Fig. 1- 3 ). Note the comparison operator in
RepOk is now ‘<=’ instead of ‘<’. The post-condition of add is updated corre-
spondingly. This modified post-condition states that the number of times each
integer other than x appears in the list in the pre-state is the same as the number
of times that they appear in the post-state, whereas the number of times that x
appears in the list is increased by 1.

With respect to this modified specification, the JUnit test in Fig. 1- 4 -(a)
is no longer correct, since the list size is expected to be 2 instead of 1. Spectr
transforms the old test to the repaired test shown in Fig. 1- 4 -(b). The repaired
test is now correct with respect to the modified specification in the sense that
every test failure now represents a violated specification. We emphasize that



Spectr does not require method implementations to be correct with respect
to the modified specification. Moreover, none of the previous test repair tech-
niques [5, 6, 8, 18] can repair the above test since they use the updated code as
opposed to the updated specification as a basis for test repair.

4 Spectr
Spectr repairs JUnit tests using method-level specifications written in Alloy.
Spectr takes as input an existing test and the modified specifications of the
methods invoked by the test, and corrects the test’s expected output. Section 4.1
describes our test repair algorithm. Section 4.2 describes how we leverage the
Alloy tool set as an enabling technology for automated test repair.

4.1 Algorithm Overview
Given a set of tests that need to be repaired with respect to the modified spec-
ifications, Spectr repairs the tests one at a time. Spectr assumes that each
test case consists of three components in the following style:
@Test public void testcase () {

// 1. initialization : code to create pre -state (inputs)
...
// 2. execution : code to execute sequence of methods under test
...
// 3. assertion : code to check post -state (output)

}

In general, JUnit methods can contain arbitrary Java code and may not follow
this structure, e.g., have no assertion to check the output. Such non-conforming
tests are not handled by Spectr. However, our approach can, in principle, lever-
age the JForge framework [7] to handle more general JUnit tests, including those
with loops, conditional statements, or even multiple test assertions.

Fig. 2 describes our test repair algorithm. Given an old test to repair (oldTest)
and a modified specification (newSpec), it returns a repaired test (newTest) con-
forming to newSpec. The resulting repaired test must have the same initializa-
tion and method execution code as the old version followed by updated assertion
checks, conforming to modified specifications.

Identification of Expected Test Behavior. Spectr emulates the execution
of a test case by executing corresponding modified specifications using Alloy.
The execution of a JUnit test essentially makes several state transitions starting
from the initial state and checks certain properties at certain states. Given an
initial state, a sequence of method invocations, and the specifications of invoked
methods, the Alloy Analyzer generates the pre-states and post-states of those
method invocations to identify the expected behavior of the test.

Consider a sequence of method invocations and state transitions in a test:
〈σ0〉m1(); 〈σ1〉m2();〈σ2〉 ...; 〈σk−1〉mk(); 〈σk〉. m1 is invoked on a pre-state σ0

(initial state abstracted from test initialization code). If σ0 satisfies m1’s pre-
condition, its expected post-state σ1 is generated by the Alloy Analyzer using the
pre-state σ0 and m1’s post-condition. For the invocation of mi, where 1 < i ≤ k,
the post-state of mi−1, σi−1 is the pre-state for mi. Assuming σi−1 satisfies the



1TestCase repair(TestCase oldTest , Spec newSpec) {
2 // extract the three elements of the given test
3 Code testInit = oldTest.getTestInitCode ();
4 Code methodExec = oldTest.getMethodExecution ();
5 AssertEquals assertion = oldTest.getAssertEquals ();
6

7 TestCase newTest = new Test (); // output
8 newTest.append(testInit );
9 newTest.append(methodExec );

10

11 // compute expected post -state
12 Instance post; // expected post -state w.r.t spec
13 Instance pre = abstract(Java.execute(testInit ));
14 post = Alloy.solve(createModel(pre , methodExec , newSpec ));
15

16 // synthesize new correctness check(s)
17 Expression actual = assertion.getActual ();
18 newTest.append(new AssertEquals(
19 concretize(Alloy.solve(createModel(post , actual , newSpec ))), actual );
20 return newTest;
21}

Fig. 2. Test repair algorithm

pre-condition of mi, the Alloy Analyzer computes a corresponding post-state σi
based on the post-condition of mi. If any method’s pre-condition is not satisfied
by the method invocation’s pre-state, it means that the inputs of the method
invocation do not meet a pre-condition, and thus the test is broken and cannot
be repaired. These tests need to be removed from the test suite.

Replacement of Expected Values in JUnit Assertions. JUnit provides
several assert methods to write correctness properties, which can be de-sugared
into the assertEquals method. Each test is repaired by using the post-state
Alloy instance after the invocation of the sequence of methods under test to
compute the expected value for the assertion check.

4.2 Using Alloy for Test Repair
The initialization code of the old test is used to generate the pre-state Alloy
instance using an abstraction translation [16], which traverses the Java data
structures and initializes a corresponding Alloy instance.

Each method of a class has its corresponding specification, i.e., a pre-condition
and a post-condition. Consider a method m in class C:
class C{T m (T1 p1, T2 p2 , ..., Tk pk ){...}}

The Alloy pre-condition for m has the following declaration:
pred m_pre(c:C, p1:T1, p2:T2, ..., pk:Tk, s_pre:State ){...}

If the return type T is not void, and method m is not a pure method, the
post-condition for method m has the following declaration:
pred m_post(c:C, p1:T1, p2:T2 , ..., pk:Tk, result:T,

s_pre:State , s_post:State ){...}

If the return type T is void, then the parameter result:T in m post does not
exist. If method m is a pure method, the parameter s post:State does not exist,
since the values other than the return value don’t change between the pre-state
and post-state of the method invocation.



If the method m is static, for both pre-condition and post-condition, the
parameter c:C does not exist in the parameter list.

To illustrate, in our running example (Section 3), the class List has methods
add and size. The method add is not pure, its return type is void, and it has an
int type parameter; while the method size is pure, its return type is int, and it
has no parameters. Their pre-conditions and post-conditions have the following
declarations:
pred add_pre(l:List , p1:Int , s_pre:State ){...}
pred add_post(l:List , p1:Int , s_pre:State , s_post:State ){...}
pred size_pre(l:List , s_pre:State ){...}
pred size_post(l:List , result:Int , s_pre:State ){...}

Alloy directly supports primitive integers. Support for other primitive types
can be provided through Alloy libraries, e.g., the standard Alloy library includes
a model for Boolean.

Given the specifications for each method, the method invocations are trans-
lated to an Alloy model using four steps:

1. Model the receiver object and include it as the first parameter for the
pre/post-conditions;

2. Model the formal parameters and append them to the parameter list for the
pre/post-conditions;

3. For post-condition specification, if there’s a return value, create an Alloy
signature with the corresponding return type, and append it to the parameter
list; and

4. Append the current state to the parameter list. If the list is for the post-
condition and the method is not pure, create a new Alloy State and append
it to the parameter list, and update the current state to the newly created
one.

For example, consider the following method invocation in state S1:
l.add (2);

This invocation is translated to the following Alloy code:
add_pre[l, 2, S1]
add_post[1, 2, S1, S2]

and the current state is updated to S2.
Given the specifications for methods invoked, and an initial state abstracted

from the execution result of test initialization code, the Alloy Analyzer checks
the satisfiability of each method’s pre-condition before the invocation of the
method, and generates a post-state using the pre-state and post-condition. For
example, for the test shown in Fig. 1- 4 -(a), Spectr generates the following
Alloy code to check whether the pre-state of the first add method invocation
(the initial state S0) satisfies the method’s pre-condition.
one sig S0 extends State {}
one sig l extends List {}
fact {
no l.( header.S0)
add_pre[l, 0, S0]

}

pred test() {}
run test



If the Alloy Analyzer finds no solution, which means that the pre-condition
is not satisfied, Spectr reports to the users that the inputs in the test are not
as expected and that the test cannot be repaired and should be removed from
the test suite; otherwise, the pre-condition is satisfied, and Spectr can generate
an expected post-state of the method invocation by constructing the following
Alloy code and solving it with the Alloy Analyzer.

one sig S0, S1 extends State {}
one sig l extends List {}
fact {
no l.( header.S0)
add_pre[l, 0, S0] && add_post[l, 0, S0, S1]

}

pred test() {}
run test

The post-state of the method invocation, which is the Alloy instance at S1, is
generated using the pre-state, which is the Alloy instance at S0, and the method’s
post-condition add post. Similarly, all pre-states of other method invocations
can be checked, and all post-states of those invocations can be generated. Thus,
each method invocation triggers a state transition from a state to its next state.
Except for the initial state S0, all other states are expected states resulting from
reasoning on S0 and specifications.

The Alloy instance at the state where the assertion is to be checked is used
to compute the expected value. For the actual expression in the assertEquals

method, Spectr uses its corresponding value in the Alloy instance as expected
value and replaces the old value with it for the updated test.

For the test example shown in Fig. 1- 4 -(a), Spectr generates the following
Alloy model and solves it using the Alloy Analyzer.

one sig S0, S1 , S2 extends State {}
one sig l extends List {}
one sig Result {val: Int}
fact {
no l.( header.S0)
add_pre[l, 0, S0] && add_post[l, 0, S0, S1]
add_pre[l, 0, S1] && add_post[l, 0, S1, S2]
size_pre[l, S2] && size_post[l, Result.val , S2]

}

pred test() {}
run test

Given this Alloy model and a scope, the Alloy Analyzer finds an instance that
shows at S2 Result.val is 2, which is the expected value with respect to the
modified specification. Spectr then replaces the expected value of the assertion
with 2 to repair the test.

Our current Spectr prototype repairs tests by updating primitive values. A
more comprehensive tool would allow updating more complex data structures,
which can be achieved by concretizing an output from SAT and using the equals
method for checking the validity of the output from the program under test.



Table 1. Evolution Scenarios

Sce. Subject Old Spec Modified Spec
Test Method
Executions

Assertion
Method

#1
Sorted Singly-
Linked List

The comparison
among list
elements is “<”

The comparison
among list
elements is “<=”

add(0), remove(0),
add(1), remove(1)

size()

#2 Binary Heap Min heap Max heap
insert(0), insert(1),
insert(2), insert(3)

peek()

#3
java.util.
LinkedList

Method add(E e)
appends e to the
end of the list

Method add(E e)
inserts e at the
beginning of the list

add(0), add(1),
add(2), add(3)

getFirst()

#4
java.util.
TreeSet

All integer values
are allowed in
the set

Only positive integer
values are allowed in
the set

add(-1), add(0),
add(1), add(2)

add(E e)

5 Experiments

This section describes experiments to evaluate test repair performed by our
prototype implementation of Spectr. The goal of our study is to demonstrate
Spectr’s ability to repair tests using modified specifications for structurally
complex subjects and to demonstrate its feasibility for repairing test suites with
a few hundred tests.

5.1 Evolution Scenarios

Table 1 shows the four evolution scenarios used in our study. Each row in the
table lists the subjects, specification changes, the methods under test, and the
methods used in correctness check. Those subject programs have been previously
used to evaluate various approaches in testing and verification [7, 9]. Sorted
singly-linked list represents sorted acyclic lists as described in Section 3. Bi-
nary heap is a heap data structure based on a binary tree. The tree is a complete
binary tree. Heaps can be of two kinds: max-heap and min-heap. In a max-heap,
each node is greater than or equal to each of its children. In a min-heap, each node
is less than or equal to each of its children. The subjects java.util.LinkedList
and java.util.TreeSet are from the standard Java libraries. The implementa-
tions of the subjects remain the same during evolutions. Having the old specifi-
cations is not necessary for applying Spectr; however, if we also have access to
the old specifications, we can reduce the number of tests we attempt to repair by
identifying a subset of tests that invoke methods with modified specifications.

Test case generation using Java PathFinder. Spectr assumes a regression
test suite exists—developers may have already written test cases for the old
program version or generated them using an automated test generation tool.
In our evaluation study, we use the Java PathFinder (JPF) model checker [22]
to automatically generate a test suite for the old program version following a
variant of an earlier approach [23].

We use JPF’s non-deterministic choice operator to enumerate JUnit tests,
where each test starts with a default constructor call, executes methods under
test, and checks a correctness property. Note that the correctness check in each
test reflects the actual behavior of the old version, but not the expected behavior



Table 2. Test repair by Spectr.

Sce.
Old

Tests
Affected

Tests
Sucessfully
Repaired

Modified
Tests

Unchanged
Tests

Total
(seconds)

Average
(seconds)

#1 340 100% 100% 112 228 38 0.11
#2 340 100% 100% 340 0 53 0.16
#3 340 100% 100% 252 88 15 0.04
#4 340 100% 100% 99 241 12 0.03

Table 3. Test repair by ReAssert.

Sce.
Old

Tests
Passing
Tests

Failing
Tests

Repaired
Tests

#1 340 340 0 0
#2 340 340 0 0
#3 340 340 0 0
#4 340 340 0 0

according to a given specification. Fig. 4 in Appendix A shows an example test
generator for singly-linked lists.

This JPF-based driver generates 340 tests in total for each data structure: 4
tests with one method execution, 16 tests (4*4) with two method executions, 64
tests (4*4*4) with three method executions, and 256 tests (4*4*4*4) with four
method executions. Repetition is allowed in each sequence of method execution.
Tests for TreeSet execute the last add(E e) in the sequence of method executions
in the test assertion.

5.2 Test Repair Results
We compiled all our subject programs and JUnit tests using Java version 6 and
JUnit 4.4. We used the Alloy Analyzer version 4 as a back-end for solving Alloy
specifications. The study was performed on a Dell Desktop running at 2.8 GHz
Intel Core i7 CPU with 8 GB of memory and running Windows 7 Professional.

Table 2 shows Spectr’s repairing results. Old Tests column indicates the
number of tests in the old test suite, and Affected Tests column shows the per-
centage of tests, which invoke some method with a specification change. Column
Successfully Repaired shows the percentage of tests successfully repaired out
of all affected tests. Column Modified Tests indicates the number of tests that
are modified after the repair, while column Unchanged Tests shows the number
of tests that are not changed by Spectr. Column Total is the total time taken
to repair all the tests, while column Average is the average time taken for a
single test repair.

For all program evolutions considered in this study, all tests are affected,
and Spectr successfully repaired all of them. However, the number of modified
tests, unchanged tests, and the time cost vary for different evolution scenarios.
For instance, all tests were modified in scenario #2, while only 112 tests, less
than one third of the total, were modified in scenario #1. Moreover, 53 seconds
were spent on repairing the 340 tests in scenario #2, while only 12 seconds were
spent on repairing the same number of tests in scenario #4. The cost of repair
depends on the complexity of the modified specification and the length of the
test execution.



@Test public void testcase47() {
LinkedList l = new LinkedList();
l.add(1);
l.add(2);
l.add(3);

− assertEquals(1, l.getFirst());
+ assertEquals(3, l.getFirst());
}

(a) Modified Test

@Test public void testcase311() {
LinkedList l = new LinkedList();
l.add(3);
l.add(2);
l.add(0);
l.add(3);
assertEquals(3, l.getFirst());

}
(b) Unchanged Test

Fig. 3. Two example test repairs performed by Spectr.

Note that a test repair technique that does not take into account specifica-
tions and is driven purely by implementation would not repair any of the old
tests. We applied ReAssert [6], a recent test repair technique, in these four sce-
narios. ReAssert did not repair or modify any tests since all tests passed and
ReAssert only repairs failing tests (Table 3).

To validate repairs made by Spectr, we manually inspected all repaired
tests and found that all of them correctly reflect the modified specifications.

Fig. 3-(a) shows an example of the repair done by Spectr for scenario #3.
In the modified specification, add(E e) inserts e at the beginning instead of
appending e to the end, thus the expected result of l.getFirst() in testcase47
is modified from 1 to 3 to reflect the modified specification.

Note that some tests remain unchanged after repair, since the test inputs
result in the same outputs according to the old specification as well as the
modified specification. Fig. 3-(b) shows such a case for scenario #3, where the
first element and the last element added to the list are the same.

We ran the repaired tests against the implementation, and found that all
the modified tests failed. Those failing tests reflect the errors in implementations
which have not yet undergone modifications.

Our study demonstrates that for the subject programs and the selected types
of evolution used in the study, Spectr effectively repairs existing tests to reflect
the modified specifications. Spectr automatically updates the expected test
outcomes. The cost of test repair using Spectr is reasonable, with a range from
0.03 to 0.16 seconds per test. Our Spectr prototype is not optimized, e.g., it
uses several file-I/O operations to read each old test and write each modified
test. We plan to optimize Spectr is future work.

6 Conclusions and Future Work
This paper presents Spectr, a novel specification-based technique for test repair.
Given behavioral specifications for the modified program and an existing test
suite, Spectr repairs each test that exercises modified behaviors. It leverages
the existing test inputs and updates the test assertions to reflect the modified
specification.

The experiments conducted on a suite of subject programs with modified
specifications show that Spectr can effectively repair tests with respect to
modified specifications. Moreover, Spectr is efficient in terms of test repair
performance, and the time spent on each repair is less than a half second on
average for the subject programs used in our experiments.



Spectr leverages the Alloy tool-set as an enabling technology and hence
requires the use of first-order logic and SAT. While properties of a diverse class
of programs can conveniently be expressed in Alloy and checked using SAT, for
some programs, e.g., those that perform complex numeric calculations, effective
test repair would need an alternative enabling technology. However, our basic
approach for test repair would still be applicable, for example, to enable the Pex
framework [20] to repair C# tests using Spec# specifications.

As future work, we plan to conduct more extensive evaluation of Spectr,
especially using more complex subjects, such as open source programs.
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A JPF-based test generator
Fig. 4 shows an example test generator, which we use for generating singly-linked
lists using Java PathFinder in our experiments (Section 5).

1static void testGenerator () {
2 Verify.resetCounter (0); // test ID
3 final int SEQ_LENGTH = Verify.getInt(1, 4);
4 StringBuilder tc = new StringBuilder (); // test case
5 tc.append(" List l = new List ();\n");
6 List l = new List ();
7 for (int i = 0; i < SEQ_LENGTH; i++) {
8 int arg = Verify.getInt(0, 1);
9 if (Verify.getBoolean ()) {

10 tc.append(" l.add(" + arg + ");\n");
11 l.add(arg);
12 } else {
13 tc.append(" l.remove(" + arg + ");\n");
14 l.remove(arg);
15 }
16 }
17 int expected = l.size ();
18 tc.append(" assertEquals(" + expected + ", l.size ());\n" + "}");
19 tc.insert(0, "@Test public void testcase" + Verify.getCounter (0) + "() {\n");
20 System.out.println(tc + "\n");
21 Verify.incrementCounter (0);
22}

Fig. 4. JPF-based test generator. It generates tests that represent all possible sequences
involving one to four method executions on a list l: l.add(0), l.add(1), l.remove(0),
and l.remove(1). Line 3 non-deterministically chooses the length of the sequence be-
tween 1 to 4. The for-loop from line 7 to 16 non-deterministically chooses one of the
four possible method executions. In addition to generating method sequences, JPF also
runs them on the old program implementation (Lines 6, 11, 14, and 17) and computes
the value of the expressions (l.size()) in assertion checks.
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