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Conventional Wisdom

Code clones indicate bad smells
of poor design. We must
aggeressively refactor clones.

public void updateFrom (Classc) { public void updateFrom (ClassReader cr) {
String cType = Util.makeType(c.Name()); String cType =CTD.convertType (c.Name());
if (seenClasses.contains(cType)) { if (seenClasses.contains(cType)) {
return; return;
by >
seenClasses.add(cType); seenClasses.add(cType);

if (hierarchy != null) { if (hierarchy != null) {

} y



Our Previous Study of Copy and Paste

Programming Practices at IBM
[Kim et al. ISESE2004]

e Even skilled programmers often create and
manage code clones with clear intent.

- Programmers cannot refactor clones because of
programming language limitations.

- Programmers keep and maintain clones until they
realize how to abstract the common part of clones.

- Programmers often apply similar changes to clones.



Research Questions

How do clones evolve over time?
e consistently changed?

e long-lived (or short-lived)?

e easily refactorable?



Previous Studies of Code Clones

e automatic clone detection

- lexical, syntactic (AST or PDG), metric, etc.

 studies of clone coverage ratio
- gcc (8.7%), JDK (29%), Linux (22.7%), etc.

 studies of clone coverage change

- changes of clone coverage in Linux [Antoniol+02], [Li+04]

These studies do not answer how individual clones changed
with respect to other clones.
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Model of Clone Evolution
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Clone genealogy is a set of clone groups connected
by cloning relationships over time.

consistently
changed

lineage
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and modified




Clone Genealogy Extractor (CGE)

Given multiple versions of a program, V, for 1<ksn.

e find clone groups in each version using CCFinder.
« find cloning relationships among clone groups of V.
and V., using CCFinder.

« map clones of V; and V., using diff based algorithm.

e separate each connected component of cloning
relationships (a clone genealogy).
e identify clone evolution patterns in each genealogy.
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Record

rrF rormWWire(Mame name, inttvpe, int delass, long tl, int lenath,
DataBytelnputStream ind

throws |OException

KEYRecord rec = new KEYRecord{hame, delass, ),
if (i == full
return rec;
rec.flags = inreadShort();
rec.prato = inreadByte,;
rec.alg = in.readByte(;
if{length = 43 {
rec. key = new bytellength - 4];
in.readirac_keyl,
i

return rec;

Fecord
rdataFromString{Mame name, int delass, long ], Takenizer st, Narme origin)

throws |OException
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Two Java Subject Programs

Program carol dnsjava
LOC /878 ~ 23731 5756 ~ 21188
Duration 2 years 2 months | 5 years 8 months

versions 37 224

versions: a set of check-in snapshots that increased or decreased the total lines
of code clones




Running CGE on Java Programs

e CCFinder setting

- minimum token length = 30
- longest sequence matching

e CGE setting
- text similarity threshold = 0.3

o false positives
- repetitive field declaration
- repetitive static method invocation
- a series of case switch statements

- etc.



Consistently Changing Clones

Question: How often do programmers update
clones consistently?

Study Method:

e A genealogy has a “consistent change” pattern
iff all lineages include at least one consistent
change pattern.

o We counted genealogies with a “consistent
change” pattern.



Consistently Changing Clones

Results:

e 38% and 36% of genealogies include a consistent
change pattern.

Consistent with conventional wisdom, programmers
often apply similar changes repetitively to clones.




Volatile Clones

Question: How long do clones survive in the

system before they disappear, and how do
they disappear?

Study Method:

e A genealogy is “dead” if it does not include
clones of the final version.

« We measured the age (lifespan or length) of
dead genealogies.



Volatile Clones

Results:
disappeared within carol dnsjava
2 versions 52% 35%
5 versions 75% 36%
10 versions 79% 48%

e 26% and 34% of clone lineages were discontinued because of
divergent changes in the clone group.



How do lineages disappear?

reasons

carol

dnsjava

divergent changes

26%

34%

refactoring or
removal

67%

45%

cut off by the
threshold

7%

21%

Contrary to conventional wisdom, immediate
refactoring may be unnecessary or
counterproductive in some cases.




Locally Unfactorable Clones

Question: How many clones are difficult to
refactor?

Study Method:

e A clone group is locally unfactorable if

- programmers cannot use standard refactoring techniques, or
- programmer must deal with cascading non-local changes, or

- programmers cannot remove duplication due to programming
language limitations.

« We manually inspected all genealogies and
counted locally unfactorable genealogies.



Locally Unfactorable Clones

public void exportObject(Remote obj)
throws RemoteException{
if (TraceCarol.isDebugRmiCarol()) {
TraceCarol.debugRmiCarol(
"MultiPRODelegate.exportObject(” ... .

}
try {
if (init) {
for (Enumeration e =
activePtcls.elements(); ...

((ObjDlgt)e.nextElement()).exportObject
(obj);
3

}
}catch (Exception e) {
SFri?g msg = "exportObject(Remote obj)
ail”;
TraceCarol.error(msg,e);
throw new RemoteException(msg);

}

public void unexportObject(Remote obj)
throws NoSuchObjectException {

if (TraceCarol.isDebugRmiCarol()) {
TraceCarol.debugRmiCarol(
"MultiPRODelegate.unexportObject(” ... .

}
try {
if (init) {
for (Enumeration e =
activePtcls.elements(); ...

((O nggt)e.nextElement()).unexportObje
Ct(O j);

}
} catch (Exception e) {
SFri?g msg = "unexportObject(Remote obj)
ail”;
TraceCarol.error(msg,e);
throw new NoSuchObjectException(msg);

}



Locally Unfactorable Clones

Result:
e 64% and 49% of genealogies are locally unfactorable.

Contrary to conventional wisdom, refactoring may
not remove many clones easily.




Long-Lived Clones

Question: For clones that live for a long time
and tend to change with other clones, can
they be easily refactored?

Study Method:

« We measured cumulative proportion of locally
unfactorable and consistently changed
genealogies.



Long-Lived Clones

Results:

e 51% and 61% of genealogies that lasted more
than half of programs’ lifetime are locally
unfactorable and consistently changing.

e The proportion of locally unfactorable yet
consistently changed genealogies increases with
the age of genealogies.

Contrary to conventional wisdom, refactoring
cannot help many consistently changed,

long-lived clones.




Study Limitations

clone detection techniques
- CCFinder vs. other clone detection techniques.

location tracking techniques

- diff vs. other location tracking techniques.
subject programs

- 20KLOC vs. large scale projects

time granularity

- versions vs. editing operations

language dependency
- Java vs. other languages



Summary

« We have built a tool that extracts history of
code clones from a set of program versions.

e Our study of clone genealogy contradicts some
conventional wisdom about code clones.

- Immediate and aggressive refactoring may be
unnecessary for volatile and diverging clones.

- Refactoring may not help many long-lived and
consistently changing clones.

e Our study opens up opportunities for
complementary clone maintenance tools.



