
An Empirical Study of Code Clone
Genealogies

Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy

University of Washington

University of British Columbia

ESEC/FSE Sept 2005

Conventional Wisdom

public void updateFrom (Class c) {
String cType = Util.makeType(c.Name());
if (seenClasses.contains(cType)) {

return;
}
seenClasses.add(cType);
if (hierarchy != null) {

….
}
…

public void updateFrom (ClassReader cr) {
String cType =CTD.convertType (c.Name());
if (seenClasses.contains(cType)) {

return;
}
seenClasses.add(cType);
if (hierarchy != null) {
….

}
…

Code clones indicate Code clones indicate bad smellsbad smells

of poor design. We must of poor design. We must

aggressively refactoraggressively refactor clones.clones.

Our Previous Study of Copy and Paste
Programming Practices at IBM

• Even skilled programmers often create and
manage code clones with clear intent.

– Programmers cannot refactor clones because of

programming language limitations.

– Programmers keep and maintain clones until they

realize how to abstract the common part of clones.

– Programmers often apply similar changes to clones.

[Kim et al. ISESE2004]

Research Questions

How do clones evolve over time?

• consistently changed?

• long-lived (or short-lived)?

• easily refactorable?

Previous Studies of Code Clones

• automatic clone detection

– lexical, syntactic (AST or PDG), metric, etc.

• studies of clone coverage ratio
– gcc (8.7%), JDK (29%), Linux (22.7%), etc.

• studies of clone coverage change
– changes of clone coverage in Linux [Antoniol+02], [Li+04]

These studies do not answer how individual clones changed
with respect to other clones.

þ motivation

q clone genealogy : model and tool

q study procedure and results

Outline

Model of Clone Evolution

Version i Version i+1 Version i+2 Version i+3

Clone group

Code snippet

Location overlapping

relationship

Cloning relationship

Consistent ChangeAdd Inconsistent Change

Evolution Patterns

A

B

A

B

C

D

A

B

C

D D

A

B

A

B

C

D

B

A

C

D

B

A

B

D

A

F

G

E

F

E

F

E

Clone genealogy is a set of clone groups connectedClone genealogy is a set of clone groups connected

by cloning relationships over time.by cloning relationships over time.

copied,

pasted,

and modified

consistently

changed

lineage

lineage

Clone Genealogy Extractor (CGE)

Given multiple versions of a program, Vk for 1≤k≤n.

• find clone groups in each version using CCFinder.

• find cloning relationships among clone groups of Vi

and Vi+1 using CCFinder.

• map clones of Vi and Vi+1 using diff based algorithm.

• separate each connected component of cloning

relationships (a clone genealogy).

• identify clone evolution patterns in each genealogy.

þ motivation

þ clone genealogy : model and tool

q study procedure and results

Outline

Two Java Subject Programs

22437versions

5 years 8 months2 years 2 monthsDuration

5756 ~ 211887878 ~ 23731 LOC

dnsjavacarolProgram

versions: a set of check-in snapshots that increased or decreased the total lines

of code clones

Running CGE on Java Programs

• CCFinder setting
– minimum token length = 30

– longest sequence matching

• CGE setting
– text similarity threshold = 0.3

• false positives
– repetitive field declaration

– repetitive static method invocation

– a series of case switch statements

– etc.

Consistently Changing Clones

Question: How often do programmers update
clones consistently?

Study Method:

• A genealogy has a “consistent change” pattern
iff all lineages include at least one consistent
change pattern.

• We counted genealogies with a “consistent
change” pattern.

Consistently Changing Clones

Results:

• 38% and 36% of genealogies include a consistent

change pattern.

Consistent with conventional wisdom, programmers
often apply similar changes repetitively to clones.

Volatile Clones

Question: How long do clones survive in the
system before they disappear, and how do
they disappear?

Study Method:

• A genealogy is “dead” if it does not include
clones of the final version.

• We measured the age (lifespan or length) of
dead genealogies.

Volatile Clones

Results:

• 26% and 34% of clone lineages were discontinued because of

divergent changes in the clone group.

35%52%2 versions

48%79%10 versions

36%75%5 versions

dnsjavacaroldisappeared within

How do lineages disappear?

34%26%divergent changes

21%7%cut off by the

threshold

45%67%refactoring or

removal

dnsjavacarolreasons

Contrary to conventional wisdom, immediate
refactoring may be unnecessary or
counterproductive in some cases.

Locally Unfactorable Clones

Question: How many clones are difficult to
refactor?

Study Method:

• A clone group is locally unfactorable if
– programmers cannot use standard refactoring techniques, or

– programmer must deal with cascading non-local changes, or

– programmers cannot remove duplication due to programming

language limitations.

• We manually inspected all genealogies and

counted locally unfactorable genealogies.

public void exportObject(Remote obj)
throws RemoteException{
if (TraceCarol.isDebugRmiCarol()) {
TraceCarol.debugRmiCarol(
"MultiPRODelegate.exportObject("

}
try {
if (init) {
for (Enumeration e =
activePtcls.elements(); ...

((ObjDlgt)e.nextElement()).exportObject
(obj);
}

}
}catch (Exception e) {
String msg = "exportObject(Remote obj)
fail";
TraceCarol.error(msg,e);
throw new RemoteException(msg);

}

public void unexportObject(Remote obj)
throws NoSuchObjectException {
if (TraceCarol.isDebugRmiCarol()) {
TraceCarol.debugRmiCarol(
"MultiPRODelegate.unexportObject("

}
try {
if (init) {
for (Enumeration e =
activePtcls.elements(); ...

((ObjDlgt)e.nextElement()).unexportObje
ct(obj);
}

}
} catch (Exception e) {
String msg = "unexportObject(Remote obj)
fail";
TraceCarol.error(msg,e);
throw new NoSuchObjectException(msg);

}

Locally Unfactorable Clones

Locally Unfactorable Clones

Result:

• 64% and 49% of genealogies are locally unfactorable.

Contrary to conventional wisdom, refactoring may
not remove many clones easily.

Long-Lived Clones

Question: For clones that live for a long time
and tend to change with other clones, can
they be easily refactored?

Study Method:

• We measured cumulative proportion of locally

unfactorable and consistently changed

genealogies.

Long-Lived Clones

Results:

• 51% and 61% of genealogies that lasted more

than half of programs’ lifetime are locally

unfactorable and consistently changing.

• The proportion of locally unfactorable yet

consistently changed genealogies increases with

the age of genealogies.

Contrary to conventional wisdom, refactoring

cannot help many consistently changed,

long-lived clones.

Study Limitations

• clone detection techniques
– CCFinder vs. other clone detection techniques.

• location tracking techniques
– diff vs. other location tracking techniques.

• subject programs
– 20KLOC vs. large scale projects

• time granularity
– versions vs. editing operations

• language dependency
– Java vs. other languages

Summary

• We have built a tool that extracts history of
code clones from a set of program versions.

• Our study of clone genealogy contradicts some
conventional wisdom about code clones.
– Immediate and aggressive refactoring may be

unnecessary for volatile and diverging clones.

– Refactoring may not help many long-lived and
consistently changing clones.

• Our study opens up opportunities for
complementary clone maintenance tools.

