An Empirical Study of Code Clone
Genealogies

Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy
University of Washington
University of British Columbia

ESEC/FSE Sept 2005

Conventional Wisdom

Code clones indicate bad smells
of poor design. We must
aggeressively refactor clones.

public void updateFrom (Classc) { public void updateFrom (ClassReader cr) {
String cType = Util.makeType(c.Name()); String cType =CTD.convertType (c.Name());
if (seenClasses.contains(cType)) { if (seenClasses.contains(cType)) {
return; return;
by >
seenClasses.add(cType); seenClasses.add(cType);

if (hierarchy != null) { if (hierarchy != null) {

} y

Our Previous Study of Copy and Paste

Programming Practices at IBM
[Kim et al. ISESE2004]

e Even skilled programmers often create and
manage code clones with clear intent.

- Programmers cannot refactor clones because of
programming language limitations.

- Programmers keep and maintain clones until they
realize how to abstract the common part of clones.

- Programmers often apply similar changes to clones.

Research Questions

How do clones evolve over time?
e consistently changed?

e long-lived (or short-lived)?

e easily refactorable?

Previous Studies of Code Clones

e automatic clone detection

- lexical, syntactic (AST or PDG), metric, etc.

 studies of clone coverage ratio
- gcc (8.7%), JDK (29%), Linux (22.7%), etc.

 studies of clone coverage change

- changes of clone coverage in Linux [Antoniol+02], [Li+04]

These studies do not answer how individual clones changed
with respect to other clones.

QOutline

motivation
g clone genealogy : model and tool
g study procedure and results

Model of Clone Evolution

Location overlapping
relationship

Cloning relationshi p

Code snippet

Clone group
Version i Version i+1 Version i+2 Version i+3

Add Consistent Change Incg_nsistent Change

—_Evolution Pattefns

Clone genealogy is a set of clone groups connected
by cloning relationships over time.

consistently
changed

lineage

copied, A lineage
pasted,

and modified

Clone Genealogy Extractor (CGE)

Given multiple versions of a program, V, for 1<ksn.

e find clone groups in each version using CCFinder.
« find cloning relationships among clone groups of V.
and V., using CCFinder.

« map clones of V; and V., using diff based algorithm.

e separate each connected component of cloning
relationships (a clone genealogy).
e identify clone evolution patterns in each genealogy.

Code Graph
Postscript Rep_ort
ReleaseStat LineageStat |

[y e T 20-T24 ¥ S¥Good Fact. ..
[y 9120~ 24 L4 54 Good Mot
@ 120
[} 33:08~1.3.0 L:21 ©1 520 Good Fact.,
[y 52:1.2.4~1.3.0 L1 51 Good Fact..
¢ 3131
[211.4~1.31 L3 C2 511 Good Noth...
[45:01-1.31 L:33 A1 532 Good Mot
¢ T1.32
[y 1308 2~132 L'21 ¢1 520 Good Notit
[y 4201~1.32 L34 A3 R2 C3 12 577 Good Fact..
[5:11.3.0~1.3.2 L:2 52 Good Motf...
®. 133
[20:1.3.3~1.2.3 LOBad Mot
[2:0.81-1.3.3 L:23 523 Good MNotft...
[33:1.3.3~1.3.3 L0 Good Noth..
[48:01~1.3.3 L:35 C4 531 Good Fact..
[B:1.2.3~1.3.3 L:0 Good Notft..
140
IREER!
[REE]
¢ 1143
[10:1.4.0~1.4.3 L3 53 Good Nott..
4150
@ TI1.51
[131 4.0~1.51 L5 S5 Good Notft
@ 152
[40:1.4.0~1.62 L'6 C1 55 Good Notft...
[48:1.3.0-1.5.2 L1710 C1 S8 Good Moth...
[57:1.50~1.52 L2 52 Good Nott..
[5:1.4.0~1.5.2 Li6 A3 R2 C1 12 84 Good Notft..
Ky
(162

[¥]

Layout

bogual B 128
'

5
[T LT 2 28

{00 R)YoLR¥02x2.100%,) D_OLDD_RNW
1526
#

L#
(00,00, 10034 0 Lo L100% En2 Ty
(000 2055 Y e 10l 23550 RIART

(00,20, 1005 K010 1.100%)
{0010.100%: 0111, 100%) D _CHG

o6 T4

{021 1003 A1 T)
{00 EXo Ln0 1003 o2 RIART

To4

{0 T o0, 1005 02,0 1,100%,)
(o0l 100%, o 132, 003 44T

@ Group Yiewr

| Close || Compare || \Write Note || Toggle Refactor || Toggle Good |

Trace Forward || ‘Trace Backward |

11526

@ [1.4.0:8Goad Mot
@ 1 4 1:8Gand Mot
©- 31 .4 2:9G00d Notftr
©- 31 4 3:9Good Nottr
9‘Ij'1 Go
©- 9 1.5.1:5G00d Notftr
©= [1.5.2:28Good Notr
© 3 1.5.2:6G00d Nottr

16:1.4.0~1.5.2 L:6 A3 R2 C1 12 $4 Good Notftr Control Logic

thiz. key = key,
+

Record

rrF rormWWire(Mame name, inttvpe, int delass, long tl, int lenath,
DataBytelnputStream ind

throws |OException

KEYRecord rec = new KEYRecord{hame, delass,),
if (i == full
return rec;
rec.flags = inreadShort();
rec.prato = inreadByte,;
rec.alg = in.readByte(;
if{length = 43 {
rec. key = new bytellength - 4];
in.readirac_keyl,
i

return rec;

Fecord
rdataFromString{Mame name, int delass, long], Takenizer st, Narme origin)

throws |OException

Outline

motivation
clone genealogy : model and tool
g study procedure and results

Two Java Subject Programs

Program carol dnsjava
LOC /878 ~ 23731 5756 ~ 21188
Duration 2 years 2 months | 5 years 8 months

versions 37 224

versions: a set of check-in snapshots that increased or decreased the total lines
of code clones

Running CGE on Java Programs

e CCFinder setting

- minimum token length = 30
- longest sequence matching

e CGE setting
- text similarity threshold = 0.3

o false positives
- repetitive field declaration
- repetitive static method invocation
- a series of case switch statements

- etc.

Consistently Changing Clones

Question: How often do programmers update
clones consistently?

Study Method:

e A genealogy has a “consistent change” pattern
iff all lineages include at least one consistent
change pattern.

o We counted genealogies with a “consistent
change” pattern.

Consistently Changing Clones

Results:

e 38% and 36% of genealogies include a consistent
change pattern.

Consistent with conventional wisdom, programmers
often apply similar changes repetitively to clones.

Volatile Clones

Question: How long do clones survive in the

system before they disappear, and how do
they disappear?

Study Method:

e A genealogy is “dead” if it does not include
clones of the final version.

« We measured the age (lifespan or length) of
dead genealogies.

Volatile Clones

Results:
disappeared within carol dnsjava
2 versions 52% 35%
5 versions 75% 36%
10 versions 79% 48%

e 26% and 34% of clone lineages were discontinued because of
divergent changes in the clone group.

How do lineages disappear?

reasons

carol

dnsjava

divergent changes

26%

34%

refactoring or
removal

67%

45%

cut off by the
threshold

7%

21%

Contrary to conventional wisdom, immediate
refactoring may be unnecessary or
counterproductive in some cases.

Locally Unfactorable Clones

Question: How many clones are difficult to
refactor?

Study Method:

e A clone group is locally unfactorable if

- programmers cannot use standard refactoring techniques, or
- programmer must deal with cascading non-local changes, or

- programmers cannot remove duplication due to programming
language limitations.

« We manually inspected all genealogies and
counted locally unfactorable genealogies.

Locally Unfactorable Clones

public void exportObject(Remote obj)
throws RemoteException{
if (TraceCarol.isDebugRmiCarol()) {
TraceCarol.debugRmiCarol(
"MultiPRODelegate.exportObject(”

}
try {
if (init) {
for (Enumeration e =
activePtcls.elements(); ...

((ObjDlgt)e.nextElement()).exportObject
(obj);
3

}
}catch (Exception e) {
SFri?g msg = "exportObject(Remote obj)
ail”;
TraceCarol.error(msg,e);
throw new RemoteException(msg);

}

public void unexportObject(Remote obj)
throws NoSuchObjectException {

if (TraceCarol.isDebugRmiCarol()) {
TraceCarol.debugRmiCarol(
"MultiPRODelegate.unexportObject(”

}
try {
if (init) {
for (Enumeration e =
activePtcls.elements(); ...

((O nggt)e.nextElement()).unexportObje
Ct(O j);

}
} catch (Exception e) {
SFri?g msg = "unexportObject(Remote obj)
ail”;
TraceCarol.error(msg,e);
throw new NoSuchObjectException(msg);

}

Locally Unfactorable Clones

Result:
e 64% and 49% of genealogies are locally unfactorable.

Contrary to conventional wisdom, refactoring may
not remove many clones easily.

Long-Lived Clones

Question: For clones that live for a long time
and tend to change with other clones, can
they be easily refactored?

Study Method:

« We measured cumulative proportion of locally
unfactorable and consistently changed
genealogies.

Long-Lived Clones

Results:

e 51% and 61% of genealogies that lasted more
than half of programs’ lifetime are locally
unfactorable and consistently changing.

e The proportion of locally unfactorable yet
consistently changed genealogies increases with
the age of genealogies.

Contrary to conventional wisdom, refactoring
cannot help many consistently changed,

long-lived clones.

Study Limitations

clone detection techniques
- CCFinder vs. other clone detection techniques.

location tracking techniques

- diff vs. other location tracking techniques.
subject programs

- 20KLOC vs. large scale projects

time granularity

- versions vs. editing operations

language dependency
- Java vs. other languages

Summary

« We have built a tool that extracts history of
code clones from a set of program versions.

e Our study of clone genealogy contradicts some
conventional wisdom about code clones.

- Immediate and aggressive refactoring may be
unnecessary for volatile and diverging clones.

- Refactoring may not help many long-lived and
consistently changing clones.

e Our study opens up opportunities for
complementary clone maintenance tools.

