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Abstract Developers occasionally make more than one patch to fix a bug. The related
patches sometimes are intentionally separated, but unintended omission errors require sup-
plementary patches. Several change recommendation systems have been suggested based
on clone analysis, structural dependency, and historical change coupling in order to reduce
or prevent incomplete patches. However, very few studies have examined the reason that
incomplete patches occur and how real-world omission errors could be reduced. This paper
systematically studies a group of bugs that were fixed more than once in open source
projects in order to understand the characteristics of incomplete patches. Our study on
Eclipse JDT core, Eclipse SWT, Mozilla, and Equinox p2 showed that a significant portion
of the resolved bugs require more than one attempt to fix. Compared to single-fix bugs,
the multi-fix bugs did not have a lower quality of bug reports, but more attribute changes
(i.e., cc’ed developers or title) were made to the multi-fix bugs than to the single-fix bugs.
Multi-fix bugs are more likely to have high severity levels than single-fix bugs. Hence, more
developers have participated in discussions about multi-fix bugs compared to single-fix
bugs. Multi-fix bugs take more time to resolve than single-fix bugs do. Incomplete patches
are longer and more scattered, and they are related to more files than regular patches are.
Our manual inspection showed that the causes of incomplete patches were diverse, includ-
ing missed porting updates, incorrect handling of conditional statements, and incomplete
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refactoring. Our investigation showed that only 7 % to 17 % of supplementary patches had
content similar to their initial patches, which implies that supplementary patch locations
cannot be predicted by code clone analysis alone. Furthermore, 16 % to 46 % of supplemen-
tary patches were beyond the scope of the immediate structural dependency of their initial
patch locations. Historical co-change patterns also showed low precision in predicting sup-
plementary patch locations. Code clones, structural dependencies, and historical co-change
analyses predicted different supplementary patch locations, and there was little overlap
between them. Combining these analyses did not cover all supplementary patch locations.
The present study investigates the characteristics of incomplete patches and multi-fix bugs,
which have not been systematically examined in previous research. We reveal that predicting
supplementary patch is a difficult problem that existing change recommendation approaches
could not cover. New type of approaches should be developed and validated on a supple-
mentary patch data set, which developers failed to make the complete patches at once in
practice.

Keywords Software evolution · Empirical study · Patches · Bug fixes

1 Introduction

When developers attempt to fix a bug, they occasionally make more than one patch. Ordi-
nary events, such as coffee breaks, sometimes cause the developers to separate related
commits. However, many of these multi-fix bugs are resolved long after the initial patch. We
observed that a number of initial patches required supplementary patches in open source
projects. These kinds of bugs have not been systematically studied yet, and existing change
recommendation systems have not been evaluated with these real-world incomplete patches,
in which developers failed to apply an appropriate fix to the initial patch.

To prevent incomplete patches, several change recommendation systems (Hassan and
Holt 2004; Nguyen et al. 2010; Robillard 2005; Ying et al. 2004; Zimmermann et al.
2005) have been suggested to predict additional change locations for a given change
set. These change recommendation systems make their own assumptions about common
omission errors and about how such errors could be eliminated. For example, FixWiz-
ard suggested the code clones of an existing patch to reduce potential missed updates
(Nguyen et al. 2010). Robillard used the dependency structure of a change set to sug-
gest where additional changes need to be made (Robillard 2005). Zimmermann et al. and
Ying et al. predicted additional change locations based on historical co-change patterns
derived from version histories (Ying et al. 2004; Zimmermann et al. 2004). Hassan and
Holt predicted additional change locations based on co-change patterns and the dependency
graph of a change set in conjunction with them (Hassan and Holt 2004). These previ-
ous studies have made various assumptions about how additional change locations can be
recommended, but very few studies have focused on the reason that incomplete patches
occur, as well as the prediction of supplementary patch locations for an initial change
set.

This study examines supplementary patches—patches that are subsequently applied to
supplement or correct initial fix attempts and multi-fix bugs—the bugs required the supple-
mentary patches to be resolved. The goal of this study is to understand the characteristics
of multi-fix bugs and to investigate how to predict the supplementary patch locations based
on the initial patch location. We inspect the quality of the bug reports, the level of diffi-
culty, and the characteristics of incomplete patches. To provide insights into the reasons that
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incomplete patches occur, and the kinds of tools that are needed to prevent omission errors,
we conduct a manual inspection of the common causes of incomplete patches. We also
investigate the relationship between the initial patches and supplementary patches in terms
of cloning, structural dependency, and historical change coupling using the version histories
of Eclipse JDT core, Eclipse SWT, Mozilla, and Equinox p2.

The findings of our study are summarized as follows.

– Howmany bugs require supplementary patches? A considerable portion of resolved
bugs (23 % in Eclipse JDT core, 26 % in Eclipse SWT, 33 % in Mozilla, and 26 %
in Equinox p2) involves supplementary patches. We define bugs that are fixed with
only one commit as single-fix bugs, and we define bugs that require supplementary
patches later as multi-fix bugs. The quality of multi-fix bug reports is not less than that
of single-fix bug reports, but more bug report attribute changes are made to multi-fix
bugs. Because multi-fix bugs are more challenging than single-fix bugs are in terms of
bug severity, more developers participate in the discussion about them. Multi-fix bugs
also required more time to resolve compared to single-fix bugs.

– What are the common causes of incomplete patches? We randomly sampled a total
of 200 supplementary patches and inspected their content and corresponding initial
patches. Our manual inspection showed that the common causes of omission errors
were diverse, including missed porting updates, the incorrect handling of conditional
statements, and incomplete refactoring. Furthermore, we found that both the size of the
patches and the number of related files were greater in the incomplete patches than in
the regular patches and that the file-level dispersion was higher in incomplete patches
than in regular patches. These results imply that incomplete patches tend to be larger
and more scattered compared to regular patches.

– How can we predict supplementary patch locations based on initial patch location?
We estimated the utility of techniques based on a code-clone, structural dependency,
and historical co-change analysis to predict supplementary patch locations based on
initial patch locations. First, we found that only 7 % to 14 % of supplementary patches
had content similar to its initial patch in at least five lines. Second, 16 %, 21 %, and
45 % of the supplementary patch locations did not have direct dependence on nor
did they overlap, the initial patch location in Eclipse JDT core, Eclipse SWT, and
Equinox p2, respectively. Third, only 17 % to 36 % of supplementary patch locations
had co-changed with the initial patch locations within 50 days before the date of the
initial patch. Fourth, little overlap occurred among code clone, structural dependency,
and historical co-change analyses. In addition, even when the three approaches were
applied simultaneously, only 39 % to 53 % of the supplementary patch files could be
predicted.

These results indicate that applying supplementary patches is a common phenomenon,
and multi-fix bugs tend to be more difficult to fix than single-fix bugs. The causes of incom-
plete patches are diverse, and various approaches to recommend supplementary patches
will be required to prevent each type of incomplete patch. Existing change recommenda-
tion approaches cannot detect the relationships between initial patches and supplementary
patches. New tools to prevent real-world incomplete patches should be developed and
validated using a supplementary patch data set.

The rest of this paper is organized as follows. Section 2 introduces related work,
and Section 3 describes the subjects and analytical method used in the present study.
Section 4 presents the empirical results, Section 5 discusses threats to validity, and Section 6
summarizes the study.
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2 Related Work

Errors of Omission Fry and Weimer investigated how well a human could localize dif-
ferent types of bugs (Fry and Weimer 2010). They found that humans were five times more
accurate at locating extra statements than they were at locating missing statements. This
demonstrated that finding omission errors is much more difficult than finding commission
errors. Fry and Weimer focused on measuring the accuracy of fault localization for different
types of defects, whereas the present study focuses on the characteristics of supplementary
patches in order to gain insights into the common causes and characteristics of omission
errors.

FixWizard by Nguyen et al. (2010) suggests additional change locations by identifying
the candidates of recurring bug fixes. Recurring bug fixes are cloned fix code chunks that
are similar in terms of structure and function. They found that 17 % to 45 % of all fixing
changes could be considered recurring bug fixes. Recurring bug fixes include fixes within
the same commit, whereas the supplementary patches of the present study complement the
initial patch at different commits. According to Nguyen et al. (2010) only 17 % to 28 % of
recurring bug fixes occurred in different commits. Our study found that only 7 % to 16 %
of the supplementary patches were similar to the corresponding initial patches, indicating
that a clone analysis alone was insufficient to predict supplementary patch locations based
on the initial patch location.

Kim et al. studied incomplete patches that are made when developers try to fix null
pointer exceptions (Kim et al. 2010). They introduced the concept of the bug neighbor-
hood to represent the program statements that are directly related to null pointer dereference
bugs. Zhang et al. proposed a dynamic slicing method that detects execution omission
errors (Zhang et al. 2007). These techniques focused on detecting omission errors, whereas
the present study investigates the extent and characteristics of omission errors using the
incomplete and supplementary patches found in the version history.

This paper is an extended version of our previous work in MSR’12 (Park et al. 2012).
The present study extends our previous work in five ways. First, we extend the time frame of
our study period from two years on each project to five, six, and nine years in Eclipse JDT
core, Eclipse SWT, and Mozilla, respectively, so that our results could be generalized to a
period of long-term development. We also add a new subject program, Equinox p2. Second,
we investigate the levels of quality and difficulty of bug reports by inspecting their attributes
and the history of each bug. Third, we manually inspect 100 more bugs (a total of 200 bugs)
than in our previous work, which resulted in new categories, including late updates of test
codes and property updates. In this study, two additional graduate students participated in
the manual inspection to validate the categorization. Fourth, we study how supplementary
patch locations can be predicted based on historical co-change patterns. Fifth, we study
the degree to which code clone, structural dependency, and historical co-change analysis
overlap.

In another work in ASE’14 (Park et al. 2014), we proposed the change relationship graph
(CRG) to study how supplementary change locations could be predicted based the initial
change locations. In the previous study, we used the supplementary patch data set of Eclipse
JDT core, Eclipse SWT, and Equinox p2, which is also used in the present study. We found
that it was inherently challenging to predict supplementary change locations.

Empirical Studies of the Extent of Supplementary Patches Yin et al. investigated
incorrect bug fixes in large operating systems (Yin et al. 2011). They found that 15 % to
24 % of post release patches were incorrect and that the most difficult type of bug was
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related to concurrency. Their results showed that a considerable proportion of bugs under-
went more than one fix. Gu et al. studied bad fixes, i.e., cases in which a bug fix failed to
fix the bug or created a new bug in Ant, AspectJ, and Rhino (Gu et al. 2010). They found
that bad fixes corresponded to as much as 9 % of all bugs. They assessed bug fixes using
two criteria: coverage—if the fix correctly handled all bug-triggering inputs, i.e., the fixed
program passed all failing test cases; and disruption—if the fix unintentionally introduced
a new bug, i.e., the behavior of fixed program was the same as that of the correct oracle. Gu
et al. used the re-opened bug reports as the data set. Of the re-opened bugs, they aimed to
identify bad fixes that failed to fix the failing test cases correctly. The present study inves-
tigates the characteristics of incomplete patches which require supplementary patches to be
completely resolved. Their tool, Fixation, could be used to detect incomplete patches that
are related to failing test cases.

Purushothaman et al. investigated the extent of small changes and found that nearly 40 %
of bug fixes caused one or more defects in Lucent 5ESS (Purushothaman and Perry 2005).
The findings of the present study support these results, which showed that incomplete bug
fixes are common in practice.

Change Recommendation Systems for Supplementary Patches Robillard’s
approach (Robillard 2005) reduced omission errors by using a change set as input and
recommending additional change locations based on the dependence structure of the
change set. His approach was based on the assumption that additional change locations are
likely to have structural dependencies on the previously changed code. Hassan and Holt
proposed several change propagation heuristics and found that historical change coupling
was more accurate than structural dependencies, such as method call relationships (Hassan
and Holt 2004). Zimmermann et al. group changes, and mine co-change patterns in pre-
dicting extra change locations given an existing change (Zimmermann et al. 2004). Ying
et al. suggested an association-mining technique to predict extra change locations based
on change patterns, i.e., the type of files that frequently have been changed simultane-
ously in the past (Ying et al. 2004). Nagappan et al. investigated the predictive power of
consecutive code changes (change bursts) (Nagappan et al. 2010). Padioleau et al. (2008)
found that Linux device drivers often co-evolved when kernel APIs changed, suggesting
an approach that infers a generic patch from an example edit (Andersen and Lawall 2008).
Based on a similar assumption, Wang et al.’s approach automatically found edit locations
similar to an existing bug fix using dependence-related queries (Wang et al. 2010). While
these approaches make individual assumptions about how supplementary patch locations
can be predicted based on the content and location of an existing patch, our study inves-
tigates the actual location, content, and characteristics of incomplete and supplementary
patches.

Bug Report Quality Hooimeijer and Weimer (2007) suggested a model that predicts
whether the triage cost of a bug report is expensive or not. Zimmermann et al. (2010) stud-
ied the quality of bug reports based on results of a survey of developers and reporters. They
developed the prototype tool, CUEZILLA, which measures the quality of a new bug report.
The researchers used bug report attributes as input features for their models. These attributes
included the readability of the bug description and the presence of code samples or stack
traces. We found that the low quality of the initial bug report was not the main cause of
incomplete patches. Instead, attribute changes caused by incorrect information were more
common in multi-fix bugs than in single-fix bugs.
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Re-opened Bugs In a bug tracking system, developers often re-open a bug after the first
closing of the bug. Zimmermann et al. (2012) studied the characteristics of re-opened bugs.
Bug re-openings were caused by a bug that was difficult to reproduce when developers mis-
understood the root cause or by a bug with insufficient information when the priority of the
bug was underestimated. Shihab et al. (2013) also studied re-opened bugs in open source
software and predicted whether a bug would be re-opened after the bug was resolved. Their
prediction model used bug attributes with four dimensions: 1) work habits, 2) bug report,
3) bug fix, and 4) team. They found that the comment text and the status at the time when
the bug was initially closed were the most important factors related to bug re-opening. An
et al. (2014) studied the relationship between supplementary bug fixes, as defined in our
previous work (Park et al. 2012), and re-opened bugs. They found that 21.6 % to 33.8 %
of supplementary bug fixes were related to bug re-opening, and that 33 % to 57.5 % of re-
opened bugs were fixed only once in the version history. Most previous studies on re-opened
bugs were focused on the information given by the bug reporting system, whereas the cur-
rent study focuses the characteristics of code changes in incomplete and supplementary
patches.

Others Rahman et al. (2012) found that the majority of bugs were not related to code
clones. Bettenburg et al. (2012) also found that only a small portion of clone genealogies
induced software defects at the release level. These results are aligned with our finding
that supplementary patches rarely had content similar to the initial patches. Ray and Kim
(2012a) studied cross-system porting in the BSD product family, finding that 11 % to 14 %
of all edits were ported from other projects. We found that porting changes were among the
most common causes of supplementary bug fixes. 5 % to 10 % of supplementary patches
were patches in which the initial patch was ported to a different component or a different
branch.

3 Study Approach

This section describes our study subjects and the method used to identify supplementary
patches.

Study Subjects We selected Eclipse JDT core, Eclipse SWT, Mozilla, and Equinox p2 as
our study subjects. Eclipse is an integrated development environment that has been widely
used in several studies on mining software repositories. Eclipse JDT core, Eclipse SWT,
and Equinox p2 are sub-projects of Eclipse and are written mainly in Java. Mozilla is an
open source project for the web, which contains many different sub-projects written in many
different languages (mostly C, C++, and Java). Two examples are the Firefox web browser
and the Thunderbird mail client.

When we extracted information from the bug databases, we ensured that the bugs were
completely resolved and would not be re-opened later by considering only the bug reports
reported within the periods of January 2002 to December 2007 in Eclipse JDT core; August
2002 to December 2008 in Eclipse SWT; January 2000 to December 2009 in Mozilla; and
October 2006 to January 2010 in Equinox p2. From the bugs in the selected periods, we
excluded invalid bugs, which were not fixed adequately, that is, did not display FIXED
status. Table 1 summarizes our study subjects.
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Table 1 Study subjects

Eclipse JDT core Eclipse SWT

Type IDE IDE

Development period 2001/06 ∼ 2009/02 2001/05 ∼ 2010/05

Study period 2002/01 ∼ 2007/12 2002/01 ∼ 2008/12

Total revisions 17009 revisions 21530 revisions

Mozilla Equinox p2

Type Several projects IDE

associated with internet

Development period 1998/03 ∼ 2011/08 2006/01 ∼ 2013/07

Study period 2000/01 ∼ 2009/12 2006/10 ∼ 2010/01

Total revisions 261630 revisions 6761 revisions

Identification of the Commit Transaction Eclipse JDT Core, Eclipse SWT, and
Mozilla provide CVS repositories.1 We grouped file-revisions checked in the same commit,
by converting CVS repositories to SVN repositories using cvs2svn.2 We also converted the
Equinox p2 GIT repository to a SVN repository using subgit3 to permit the use of the same
analytical method used with the other study subjects. We disregarded all patches that did not
include source file changes. The extensions c, cpp, h, and java were regarded as source files,
which accounted for 82 %, 912 %, 53 %, and 75 % of all changed files in the repositories
of Eclipse JDT core, Eclipse SWT, Mozilla, and Equinox p2, respectively. We also disre-
garded patches that involved more than 50 files in order to remove noise from the analyses
of very large changes.

Identification of Incomplete and Supplementary Bug Fixes Previous studies of bug
fixes (Kim et al. 2011, 2008) found that bug fix revisions could be extracted by matching
keywords against commit logs using the heuristic developed by Mockus and Votta (2000).
We parsed change logs to look for bug ID numbers and regarded all integers as potential
bug IDs. We then checked those numbers against the corresponding bug databases to ensure
that those extracted numbers indeed correspond to bug IDs that are of interest (Fischer
et al. 2003; Čubranić and Murphy 2003). We disregarded invalid numbers, such as numbers
representing dates (e.g., 20050101), or small numbers (e.g., 1, 8, and 6 in 1.8a6) using this
method. We identified that 24 % to 33 % of the commits were bug fixes.

After identifying the bug IDs, we grouped the bug reports into two groups: 1) single-fix
bugs—the bugs that were mentioned in only one fix commit; and 2) multi-fix bugs—the
bugs that were mentioned in multiple fix commits. Based on this grouping, we divided the
commits of multi-fix bugs into two categories: 1) incomplete (initial) patches as the first
attempt to address a multi-fix bug; and 2) supplementary patches as later attempts to correct,
extend, complement, or revert an incomplete fix.

We assessed the accuracy of our method of identifying supplementary patches by inspect-
ing sample periods of bug reports (01 January 2007 to 31 January 2007 in Eclipse JDT core

1They currently use the GIT (Eclipse sub-projects) and Mercurial (Mozilla) repositories
2http://cvs2svn.tigris.org/
3http://subgit.com/

http://cvs2svn.tigris.org/
http://subgit.com/
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Table 2 Accuracy of our incomplete patch identification method

JDT SWT Mozilla Equinox Total

# of revisions 107 165 786 193 742

# of incomplete fixes (automated) 12 7 53 15 87

# of incomplete fixes (ground truth) 13 10 55 19 97

Precision 100 % 100 % 100 % 100 % 100 %

Recall 92.3 % 70.0 % 96.4 % 78.9 % 89.7 %

and Eclipse SWT, 01 January 2007 to 14 January 2007 in Mozilla, and 01 January 2008 to
31 January 2008 in Equinox p2).

To compose the ground truth set of incomplete patches, we identified whether the auto-
matically identified incomplete patches were false positives or not. We also manually
inspected the incomplete patch candidates to find false negatives by investigating the fol-
lowing: 1) the same file was fixed again within one month; 2) two commit log messages
were similar (i.e., the longest common subsequence of them was longer than 80 % of the
shorter one), or 3) the contents of the two patches were similar (identified by CCFinderX).

We compared this ground truth set to the results of our incomplete patch identification
method. Our incomplete patch identification method had 100 % precision and 90 % recall
overall, as shown in Table 2. There were no false positives, but we found that several incom-
plete patches were not linked to a bug ID. Developers often make a patch without making
a bug report because the problem is minor, and the first patch in the minor problem is
sometimes complemented by a supplementary patch.

4 Study Results

In this section, we present the characteristics of multi-fix bugs and describe how to predict
supplementary patch locations.

4.1 How Many Bugs Require Supplementary Patches?

Table 3 shows the number of bugs fixed only once (single-fix bugs) vs. the number of bugs
with more than one fix commit (multi-fix bugs). Of the resolved bugs, 22.9 % to 33.7 %
required supplementary patches. In Fig. 1, the X axis represents the number of times the
same bug ID occurred in the fix commits, and the Y axis represents the percentages of all
multi-fix bugs with n patches. Overall, 60 % to 75 % of multi-fix bugs were fixed twice.

To determine whether the supplementary patches were caused by a mistake or were
intended separation of related patches, we inspected the commit logs. We investigated
whether the developers recorded their mistake in the commit logs. We first observed that
34 % to 80 % of the supplementary patches had the same or similar commit logs as the

Table 3 The number of single-fix bugs and multi-fix bugs

Eclipse JDT core Eclipse SWT Mozilla Equinox p2

# of bugs 3677 3992 42283 1641

# of single-fix bugs 2836 (77.1 %) 2959 (74.1 %) 28034 (66.3 %) 1203 (73.3 %)

# of multi-fix bugs 841 (22.9 %) 1033 (25.9 %) 14249 (33.7 %) 438 (26.7 %)
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Fig. 1 The number of times that the same bug is fixed

corresponding initial patch had (the longest common subsequence accounted for more than
90 %). For the remaining patches, we looked for keywords that implied that their ini-
tial patch was incomplete—improve, again, complement, complete, mistake, supplementary,
incomplete, clarify, workaround, additional, rewrite, better, port, undo, revert, optimize,
clean up, redesign, etc. We found that 10 % to 19 % of the supplementary patches included
these keywords. Table 4 shows examples of unintended supplementary patches that were
very likely caused by omission errors.

Figure 2 shows the number of days taken for a supplementary patch to appear since an
initial fix attempt. We measured the time gap between the first patch and the last patch
of the multi-fix bugs. Of the supplementary patches, 31 % to 58 % appeared within one
day. In addition, 16 % to 31 % of supplementary patches were made within 1 h from the
initial patch. Very short time gap between initial and supplementary patches indicates that
the patches could be intentionally separated or caused by ordinary events, such as lunch or
coffee break.

On the other hand, some supplementary patches take a very long time and require a
large number of fix attempts. For example, in Mozilla, one bug (236613) was resolved with
105 commits over five years to re-license Mozilla for a MPL/LGPL/GPL tri-license. In

Table 4 Examples of supplementary patches caused by omission errors

Revision Date Author Comment

Bug 80904 of Eclipse JDT core

13468 2006/04/20 Jeromel HEAD - 80904

13471 2006/04/20 Jeromel HEAD - Better fix for 80904

Bug 135811 of Mozilla

125980 2002/08/07 Timeless Bug 135811 Crash after infinite recursion: nsContentTree...

167681 2005/02/01 Bzbarsky Undo the checkin for bug 135811 and refix it better...

Bug 207624 of Equinox p2

321 2007/10/27 Pascal Bug 207624 - [prov] Logic to make the path relative and ...

337 2007/10/30 Pascal Reverting changes for bug 207624
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Eclipse SWT, a supplementary patch for bug 28766 was applied 1938 days after the initial
fix attempt. This bug was found in printing a transparent region; the bug was fixed and
tested with a gif file. However, the same problem reoccurred in a png file, and the bug was
re-opened to resolve it again.

In conclusion, 23 % to 34 % of the bugs required supplementary patches. 16 % to 31 %
of the supplementary patches were made within one hour from the initial patch, indicating
that they could be intended separations of related commits, and that supplementary patches
might not be a totally bad phenomenon. Meanwhile, 10 % to 19 % of the supplementary
patches explicitly mentioned that the first patch was incomplete, and 42 % to 69 % take
more than 24 hours to be made.

A considerable portion of bugs requires supplementary patches.

4.2 How Different are the Quality Levels of the Bug Reports of Single-Fix Bugs
and Multi-fix Bugs?

We hypothesized that a low quality bug report leads to supplementary patches. To assess the
initial quality levels of bug reports, we investigated the descriptions and comments made by
the reporter within 15 min from the creation of the bug report (Zimmermann et al. 2010).
We investigated the presence of code samples, stack traces, patch attachments, screenshot
attachments, other type of attachments in the bug description or comment, the readability of
the bug description, and the length of the bug description.

We identified the specific patterns of code samples and stack traces in the descriptions of
the bugs. For example, code lines end with opening/ending brackets (‘{’ or ‘}’) or start with a
conditional/loop statement (for, while, or if). Attachments were categorized into three types:
patches, screenshots, and others. All images were regarded as screenshots (Zimmermann
et al. 2010). We used the Coleman-Liau index4 to calculate the readability of the description.

4http://en.wikipedia.org/wiki/Coleman-Liau index

http://en.wikipedia.org/wiki/Coleman-Liau_index
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Table 5 The quality of single-fix bugs and multi-fix bugs

JDT SWT Mozilla Equinox

S-fix M-fix S-fix M-fix S-fix M-fix S-fix M-fix

Code sample 41.8 % 39.6 % 24.8 % 22.2 % 6.3 % 6.5 % 3.9 % 3.3 %

Stack trace 2.2 % 1.1 % 3.8 % 3.4 % 0.1 % 0.1 % 8.5 % 9.4 %

Patch att. 2.9 % 4.9 % 3.2 % 2.4 % 22.4 % 18.9 % 10.6 % 8.2 %

Screenshot att. 0.6 % 0.7 % 9.0 % 7.5 % 2.4 % 2.0 % 2.8 % 2.6 %

Other att. 5.8 % 7.7 % 9.8 % 9.7 % 11.5 % 11.6 % 4.6 % 5.6 %

Readability 34.8 32.1 17.5 15.2 19.4 18.1 15.4 16.0

Desc. length 1214.8 % 1368.6 % 1120.7 % 1387.9 726.9 % 796.0 % 785.7 % 992.9 %

Gray cell means the difference is not statistically significant (p-value is greater than 0.05)

To obtain the length of the bug description, we removed html tags and calculated the string
length of the description.

Table 5 shows the quality of bug reports for single-fix vs. multi-fix bugs.5 For the five
true/false attributes (the presence of code samples, stack traces, patch attachments, screen-
shot attachments, and other attachments), we used z-tests for two proportions. We used t-test
to determine the difference in readability and description length.

Only a small portion of the results (7 of 28) was statistically significant. Furthermore,
the results did not consistently indicate that the quality level of the multi-fix bugs was lower
than that of the single-fix bugs. The average length of a bug description was longer for
multi-fix bugs than for single-fix bugs, which indicated that the multi-fix bug reports likely
contained more information, were of higher quality (Zimmermann et al. 2010), or were more
complicated to describe. The inconsistent and statistically insignificant numbers indicated
that the quality levels of the single-fix bugs and the multi-fix bugs were not substantially
different, and the incomplete patches might not have been caused by low-quality reports.

When a reporter submits a bug, he or she inputs bug report attributes. After the report is
filed, the bug report attributes can be changed. We investigated the attribute changes made
to single-fix bugs and multi-fix bugs to assess the degree to which the report was initially
correct.

Table 6 shows the average number of changes made to single-fix vs. multi-fix bugs within
a week after the report. To remove the effect of time, we considered the attribute changes
within one week after the reporting of the bug, instead of the whole bug history. On average,
5 % to 20 % more changes were made to multi-fix bugs than to single-fix bugs.

Table 7 shows the average number of changes within a week after the report for each
attribute. First, we observed that 12 % to 53 % more developers were added in the CC lists
of multi-fix bugs than in those lists of single-fix bugs. This result implies that multi-fix bugs
require more attention from developers than single-fix bugs do.

The greater number of changes to title, severity, or keyword indicate that the correspond-
ing information in multi-fix bugs is more likely to be incorrect or inadequate. For example,
a change in the title field indicated that the initial title of the bug report was inadequate,

5In the remainder of the paper, we will use S-fix and M-fix as abbreviation of single-fix bugs and multi-fix
bugs, respectively, in tables because space is limited.



Empir Software Eng (2017) 22:436–473 447

Table 6 The average number of
changes within a week since the
reporting

S-fix M-fix p-value

Eclipse JDT core 3.82 4.35 2.16e-08

Eclipse SWT 3.04 3.39 1.41e-05

Mozilla 6.35 7.60 2.63e-82

Equinox p2 3.62 3.80 2.19e-01
Gray cell means the difference is
not statistically significant
(p-value is greater than 0.05)

and a change in the severity field indicates that the initial estimation of the severity was
incorrect.

The initial quality of multi-fix bug reports was not lower than that of
single-fix bug reports. However, more bug report attribute changes are

made to multi-fix bugs, which involve incorrect information.

4.3 How Difficult are Single-Fix Bugs and Multi-fix Bugs to Fix?

We investigated the severity levels and the time-to-fix of single-fix bugs and multi-fix bugs
by extracting and comparing the following information from the bug databases; 1) The
severity level of a bug, 2) the number of comments within a week of the initial reporting of
a bug, 3) the number of developers involved within a week, and 4) the time taken to resolve
a bug.

The severity levels indicated the seriousness of a defect: Blocker/Critical/Major/Normal/
Minor/Trivial/Enhancement is the descending order of severity. Table 8 shows the severity
distributions of single-fix bugs vs. multi-fix bugs. The multi-fix bugs were 26 % to 59 %
more likely to be Blocker or Critical.

We conducted a z-test to compare the two proportions of bugs according to Blocker or
Critical severity in each project. Our analysis showed that a high level of severity was more
likely to occur in multi-fix bugs than in single-fix bugs in each project—Based on the
results of the z-tests, the hypotheses that the two proportions are the same was rejected. The

Table 7 The average number of changes on bug history for each type

JDT SWT Mozilla Equinox

S-fix M-fix S-fix M-fix S-fix M-fix S-fix M-fix

CC 0.47 0.73 0.79 1.00 1.90 2.28 1.27 1.42

Status 1.16 1.17 0.62 0.54 1.09 1.07 0.77 0.75

Resolution 0.71 0.73 0.55 0.47 0.49 0.46 0.60 0.50

Target milestone 0.74 0.73 0.26 0.20 0.34 0.35 0.90 0.80

Assignee 1.00 1.03 0.92 1.00 0.45 0.46 0.62 0.61

Title 0.27 0.35 0.14 0.17 0.22 0.24 0.22 0.26

Component 0.18 0.15 0.14 0.16 0.14 0.15 0.05 0.07

Severity 0.05 0.07 0.05 0.07 0.10 0.11 0.06 0.06

Keyword 0.02 0.04 0.02 0.03 0.44 0.63 0.05 0.07

Gray cell indicates the difference is not statistically significant (p-value is greater than 0.05)
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Table 8 Severity of single-fix bugs and multi-fix bugs

JDT SWT Mozilla Equinox

S-fix M-fix S-fix M-fix S-fix M-fix S-fix M-fix

Blocker 0.88 % 1.54 % 1.85 % 2.51 % 2.67 % 2.37 % 1.24 % 2.05 %

Critical 3.03 % 4.04 % 4.35 % 7.35 % 12.52 % 16.70 % 1.66 % 2.51 %

Major 8.11 % 8.79 % 12.20 % 15.29 % 9.34 % 11.12 % 5.23 % 7.30 %

Normal 77.36 % 74.43 % 75.39 % 63.98 % 65.90 % 61.08 % 86.36 % 79.90 %

Minor 4.47 % 2.85 % 2.29 % 1.83 % 3.78 % 2.51 % 1.99 % 1.82 %

Trivial 1.65 % 0.71 % 1.14 % 0.67 % 2.12 % 0.99 % 0.58 % 0.00 %

Enhancement 4.47 % 7.60 % 2.73 % 8.32 % 3.63 % 5.19 % 2.90 % 6.39 %

findings showed that multi-fix bugs required urgent fixes by developers, and they had
greater effects on programs than the single-fix bugs had.

We also found that the proportion of Enhancement was greater in multi-fix bugs than
in single-fix bugs. Multi-fix bugs were 43 % to 204 % more likely to be an Enhancement.
Enhancement issues are likely to be fixed more than once because they often require more
discussion than usual bugs do. Usual bug reports include faulty behavior, but Enhance-
ment issues are often related to functional or nonfunctional improvements for which the
specifications are not clarified.

Table 9 shows the results of the developer participation and the time taken to resolve
bugs. We counted the number of comments on a bug report and the number of developers
who wrote comments on the bug report within a week of the initial reporting of the bug. The

Table 9 The effort taken to fix single-fix bugs and multi-fix bugs

S-fix M-fix p-value

The number of comments within a week

Eclipse JDT core 3.40 4.63 4.64e-11

50-e63.303.337.2TWSespilcE

68-e40.509.614.5allizoM

10-e77.407.335.32pxoniuqE

The number of developers involved within a week

Eclipse JDT core 1.69 1.87 5.28e-04

40-e16.937.175.1TWSespilcE

33-e02.618.225.2allizoM

10-e75.737.117.12pxoniuqE

The time taken to resolve bugs

Eclipse JDT core 103.40 165.05 6.86e-08

Eclipse SWT 153.94 292.97 1.74e-16

43-e52.553.22815.007allizoM

30-e87.133.60160.372pxoniuqE

Gray cell indicates the difference is not statistically significant (p-value is greater than 0.05)
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results showed that more comments were written and that more developers were involved in
multi-fix bugs than in single-fix bugs during the first week of bug reporting. The developers
had more interest in multi-fix bugs. The reason might be that multi-fix bugs have higher
severity levels, and thus they are more likely to deal with complicated or difficult tasks that
require more interest and effort from developers.

The results also showed that the multi-fix bugs took more time to resolve. The time taken
to resolve an individual bug was measured as the time taken from the reporting of the bug
to the last status change of the bug (i.e., from REPORTED to VERIFIED, RESOLVED, or
CLOSED status). Although multi-fix bugs attracted more attention from developers, they
took 60 %, 90 %, 17 %, and 46 % more time to resolve in Eclipse JDT core, Eclipse SWT,
Mozilla, and Equinox p2, respectively.

Multi-fix bugs are likely to have a greater effect on programs than single-fix
bugs. They draw more attention than single-fix bugs from developers, but

they take more time to be resolved

4.4 What are the Common Causes of Incomplete Patches?

To understand why omission errors occur in practice, we initially contrasted the character-
istics of incomplete patches (initial patches of multi-fix bugs) to those of regular patches
(patches of single-fix bugs). We measured the average number of files, the total number of
changed lines, the percentage of added lines of all changed lines, and physical dispersion.
We measure the physical dispersion by computing the Shannon Entropy at the file and pack-
age levels. Shannon (1949) entropy = −∑n

i=1pi ∗ log2(pi). pi is the probability that a
changed line is made to a particular changed file (or package), which is the same method
used by Hassan (2009). A low entropy score implied that only a few files include most of
the modifications. If the entropy was high, the changed code was more equally distributed
among the different changed files. The results are summarized in Table 10. The incom-
plete patches were larger in size than the regular patches were, and they tended to include a
greater number of scattered and non-localized edits.

We investigated the common causes of omission errors by randomly selecting 200 incom-
plete patches and inspecting their patch contents, the structural dependence relationships

Table 10 The size and physical dispersion of regular patches vs. incomplete patches

JDT SWT Mozilla Equinox

Files Regular 2.42 2.12 2.97 3.44

Incomplete 3.16 2.80 3.51 3.93

LOC Regular 107.55 95.81 148.86 134.77

Incomplete 183.23 106.04 208.42 179.40

Added LOC Regular 63.50 65.89 61.24 65.28

Incomplete 65.82 69.93 64.86 68.45

Dispersion Regular 0.64 0.56 0.84 1.03

(file) Incomplete 0.79 0.83 0.94 1.14

Dispersion Regular 0.28 0.23 0.36 0.67

(package) Incomplete 0.33 0.40 0.41 0.70
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Fig. 3 An initial patch is ported to a different component or branch

between an incomplete patch and its supplementary patches, and the associated bug reports.
We identified the causes of incomplete patches, and then devised categories by grouping
the incomplete patches according to similar causes. The categorization was initially done
by the first author, and then verified by two graduate students. We agreed on 175 incom-
plete patches. The inter-rater agreement (Cohen’s kappa) was 0.85, which indicated almost
perfect agreement (Viera et al. 2005). For the 25 incomplete patches on which our opin-
ions initially diverged, we worked in conjunction to find the most appropriate category. The
following summarizes the taxonomy of the common omission errors found in the subject
programs.

1) An initial patch is ported to a different component or branch. For example, to fix
bug 88829 in Eclipse SWT, the patch for Windows was subsequently ported to Mac
in the same file, Table.java. Ported edits are usually identical or very similar to
the original edits, but the content is often adjusted for different target components or
branches, as shown in Fig. 3.6

2) Code elements referring to or being referenced by changed code (i.e., calls,
accesses, or extends) are later updated. For example, the programmer originally
fixed Display to fix bug 93294 in SWT. The class Device, a super-type of
Display, was later modified.

3) The conditional statement of an initial fix is not correct. For example, the initial
patch of bug 80699 in Eclipse JDT core modified control flows when the condition
(modifiers && AccAnnotation) is true. Subsequently, the condition was

6Additional examples are provided in the Appendix
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modified to handle the corner case of AccInterface, as shown in Fig. 11 in the
Appendix.

4) An initial patch is reverted. For example, an API that was added to the initial patch
of bug 110048 in Eclipse JDT core was deleted during a supplementary patch because
the API was inadequate, and the developers decided to apply a new approach. Its
status was changed to REOPENED.

5) The test code is added or updated. For example, a developer fixed a bug by check-
ing whether the variable profile was null (bug 229205 in Equinox p2). The test
code for the bug fix, which is done by using testNoSelfProfile, was added to the
supplementary patch. (See Fig. 12 in the Appendix)

6) An initial patch is refactored during the supplementary patch. The initial patch
of bug 287052 in Mozilla modified the function CERT FindCRLReasonExten,
which was later renamed as CERT FindCRLEntryReasonExten in the supple-
mentary patch.

7) The comment is improved to explain an initial patch in detail. For example, the
comment for bug 243392 in Mozilla was updated to explain the initial fix of ns-
ContentSink.cpp (see Fig. 13 in the Appendix).

8) Incomplete refactoring induces a supplementary patch. The initial patch of bug
104664 in Eclipse JDT core partially refactored the file and the zipFile func-
tions. The remaining parts were fixed during a supplementary patch (see Fig. 14 in
the Appendix).

9) Properties are updated. The initial patch of bug 183399 in Equinox p2 was applied
to find a default location for bundles.txt. The supplementary patch of this bug
updated the configuration file to change the default location folder from simple-
Configuration to org.eclipse.equinox.simpleconfigurator
(see Fig. 15 in the Appendix).

10) Two different parts calling different subclasses of the same type are not updated
together. The initial patch of bug 81244 in the Eclipse JDT core concerned the use
of ArrayTypeReference, and the supplementary patch concerned the use of
ArrayQualifiedTypeReference. The two classes are subtypes of the same
super type (see Fig. 16 in the Appendix).

11) The locations of incomplete and supplementary patches are related but cannot
be checked using the Java compiler. The initial patch of bug 83593 in Eclipse JDT
core was made to class CopyResourceElementsOperation and the supple-
mentary patch was made to class DOMFinder. The two classes do not have direct
static call dependencies because the code uses the Visitor design pattern (Gamma
et al. 1994).

12) Others. Other omission errors included missing null pointer checks, missed value
initialization, misunderstanding requirements, and forgetting to release run-time
resources. For example, the initial patch of bug 114935 in the Eclipse JDT core was
in CompilationUnitResolver.java to exit a loop early when there was no
need to resolve the types further. The remaining resources were not cleaned up, but
this problem was fixed during a supplementary patch.

Figure 4 shows the classification of 200 incomplete patches into the 12 categories
described above; 36 % of the incomplete patches involved missed porting updates, 20 %
involved forgetting to update a code that referenced a modified code, and 15 % involved
the incorrect handling of conditional statements. The categories of all sampled incomplete
patches are shown in Table 20 in the Appendix.
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Fig. 4 Categorization of manual inspection results

These categorization of common causes led to insights into several potential approaches
to preventing omission errors. For example, developers would find helpful a tool that would
automate porting the selected patches to a target branch or component. The existing research
on systematic editing, which has applied similar but not identical patches to a different
location, could be used. Porting patches often require slight changes to the initial patch, such
as the identifier name (Meng et al. 2011, 2013). In another approach, an analysis tool would
find the differences in the control flows of a changed block, which could mitigate the errors
in detecting all cases of conditional statements. Tools that detect incomplete refactoring
based on the class inheritance hierarchy (Görg and Weißgerber 2005) might also prevent
users from introducing omission errors when developers miss propagating a refactoring
change to related locations, such as subclasses or sibling classes.

The common causes of incomplete fixes are diverse. Incomplete patches
are larger in size and more scattered than regular patches.

4.5 Are Supplementary Patches Similar to Corresponding Initial Patches?

It is widely believed that code clones are difficult to maintain and that inconsistency in the
management of code clones is a frequent source of omission errors. We determined how
often supplementary patches were induced by the inconsistent management of clones by
measuring the degree of content similarity between a supplementary patch and its initial
patch. The patches were extracted using svndiff. The cloning relationship between an initial
patch and its supplementary patch was identified by Repertoire (Ray and Kim 2012b), which
was built on CCFinderX (Kamiya et al. 2002) to analyze ported changes with a minimum
size of five tokens.

We determined how often supplementary patches involved the porting of patches to dif-
ferent branches or different components. Although our previous work (Park et al. 2012)
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considered only backporting, that is, porting the same or similar patches to different
branches, this study considers cases involving the porting of the same or similar patches to
either different branches or different components.

We identified a supplementary patch as a porting patch if the following conditions held.
1) more than 80 % of the lines of the added code were detected as a clone of the corre-
sponding initial patches; and 2) the files on supplementary patches had the same name as
the files on the corresponding initial patches, but the patch was applied to another branch
or another component. We used a high threshold value (80 % of lines should be similar to
corresponding initial patches) to reduce false positives and to consider porting patches that
were almost identical to only the corresponding initial patches. The ported patches account
for 4 % to 11 %, as shown in Fig. 5.

Table 11 shows the top five most frequent source and target branches of porting in each
project. In Eclipse JDT core, the developers generally ported patches from the trunk to
maintenance branches, while some patches were ported from a maintenance branch to the
trunk. In Eclipse SWT, porting from and to different components was relatively more com-
mon than in other projects because the Eclipse SWT project consists of several components
for different libraries (e.g., win32, carbon, gtk, cocoa, etc.) In Equinox p2, only four source
and target branches of porting occurred more than two times.

If we excluded supplementary patches that were involved in porting codes to different
branches or different components, only 7 % to 14 % of supplementary patches included at
least five lines similar to their initial patches, as shown in Fig. 5. Overall, 75 % to 86 % of
the supplementary patches, the majority, were not similar to the initial patches. These results
did not support the conventional wisdom that clone management can significantly prevent
or reduce omission errors. The results also revealed the inadequacy of existing change rec-
ommendation systems based on clone detection analysis alone (Duala-Ekoko and Robillard
2007; Nguyen et al. 2009, 2010).

4% to 11% of supplementary patches involve porting an initial patch to a
different branch or component. Only 7% to 14% of supplementary
patches have content similar to their corresponding initial patches.

4.6 Where are the Locations of Supplementary Patches with Respect to the
Initial Patches?

We determined how the location of an initial patch was related to the location of a supple-
mentary patch at the file level in Java subject programs to obtain insights into the prediction
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Fig. 5 The percentage of cloned patches and backported patches of all supplementary patches
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Table 11 The most common
porting source and targets Eclipse JDT core trunk → branches/R3 1 maintenance

trunk → branches/R3 2 maintenance

trunk → branches/R3 3 maintenance

branches/R3 1 maintenance → trunk

trunk → branches/TARGET 321

Eclipse SWT trunk → branches/R3 4 maintenance

trunk → branches/R3 2 maintenance

trunk → branches/R3 3 maintenance

win32 → carbon

win32 → gtk

Mozilla trunk → branches/MOZILLA 1 8 BRANCH

trunk → branches/MOZILLA 1 0 BRANCH

trunk → branches/MOZILLA 1 7 BRANCH

trunk → branches/MOZILLA 0 9 2 BRANCH

trunk → branches/MOZILLA 1 8 0 BRANCH

Equinox p2 branches/v20080930 → branches/R3 4 1

branches/v20080722 → branches/v20080930

branches/R3 4 1 → branches/v20080930

branches/v20080930 → branches/v20080605-1731

of supplementary patch locations given an existing change set. The files fixed in an initial
patch could be modified again during a supplementary patch, or new files could be fixed
instead.

As shown in Fig. 6, 29 % to 55 % of the supplementary patches were applied to the same
files to which the initial patches were applied. We determined the changes made to similar
line locations using the heuristic developed by Yin et al. (2011); i.e., at least one line change
was made within 25 lines of at least one changed line in the original patch. Because we used
the line number from the patches, blank lines were also included. Of the supplementary
patches, 27 % to 50 % were made within 25 lines of the initial patch locations.

We identified the structural dependence relationship between the files of initial patches
and the files of supplementary patches by using LSDiff to extract instances of structural
dependence among the source files. LSDiff infers systematic structural differences as a
logic rule (Kim and Notkin 2009; Loh and Kim 2010), and represents each program ver-
sion using a set of logic facts, such as call (callerMethodName, calleeMethodName) and
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Fig. 6 16 % to 45 % of the files neither overlap an initial patch location nor have direct dependencies on
them
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access (fieldName, accessorMethodName), etc. Using this technique, we extracted struc-
tural facts for every released version of Eclipse JDT core, Eclipse SWT, and Equinox p2.
We then mapped the facts to file-level dependence relationships. For example, the first
patch of bug 111618 was in the class ForeachStatement and the third patch was in the
class AbstractVariableDeclaration. The class ForeachStatement called a
method named printAsExpression in AbstractVariableDeclaration, pro-
ducing a file-level dependence relationship between the initial patch and the supplementary
patch. Of all the files of the supplementary patches, 27 % to 30 % were directly related to
at least one file in the initial patch.

We also investigated the indirect dependence relationships between the files of the sup-
plementary patches and the files of the initial patches (see Table 12). A sibling relationship
indicated that the two files extended the same ancestor type, and indirect call/access meant
that a file was indirectly called or accessed via a different file. Overall, 16 %, 21 %, and 45 %
of the files in the supplementary patches in Eclipse JDT core, Eclipse SWT, and Equinox
p2, respectively, did not overlap with or have any direct relationship to the files modified in
the initial patch. This result indicates that change recommendation systems suggesting the
direct dependence neighbors of an existing change set are not sufficient to reduce omission
errors.

16% to 45% of supplementary patch locations were beyond the scope of
the direct neighbors of the initial patch locations.

4.7 Can a Historical Co-change Pattern Analysis Predict Supplementary Patch
Locations?

Previous studies found that additional change locations could be identified using histori-
cal co-change patterns (Hassan and Holt 2004; Zimmermann et al. 2004). We determined
whether supplementary patch locations could be identified by using historical co-change
patterns. We first determined whether change coupling existed between supplementary
patch locations and their initial patch locations in one of two ways: 1) they were changed
together recently (within n days); or 2) they were changed together frequently (more
than n commit transactions) before each initial fix date. We considered only the files of

Table 12 The structural dependence relationships between an initial patch and its supplementary patch at
the file level

Relation type Eclipse JDT core Eclipse SWT Equinox p2

Direct Call 746 (25.4 %) 1284 (28.7 %) 527 (25.1 %)

dependence relations Access 619 (21.1 %) 1148 (25.6 %) 58 (2.8 %)

Return 210 (7.1 %) 317 (7.1 %) 18 (0.9 %)

Fieldoftype 206 (7.0 %) 311 (6.9 %) 110 (5.2 %)

Extend 95 (3.2 %) 107 (2.4 %) 64 (3.0 %)

Implement 28 (1.0 %) 4 (0.1 %) 7 (0.3 %)

Indirect dependence Sibling 133 (4.5 %) 165 (3.7 %) 160 (7.6 %)

relations Indirect call 160 (5.4 %) 91 (2.0 %) 144 (6.9 %)

Indirect access 115 (3.9 %) 41 (0.9 %) 3 (0.1 %)

Other 418 (14.2 %) 427 (9.5 %) 820 (39.0 %)
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supplementary patches that did not appear in the files of the corresponding initial patches.
Figure 7 sows the proportion of supplementary patch locations that could be predicted

by historical co-change patterns. The X axis represents the parameters, days and the num-
ber of times that the files changed together, and the Y axis represents the proportions of
supplementary patch locations of all files fixed in the supplementary patches. The results
showed that 17 % to 38 % of supplementary patch locations were changed together with
the corresponding initial patch locations within 50 days of the initial patch. Overall, 35 %
to 80 % of the supplementary patch locations in Eclipse JDT core, Eclipse SWT, Mozilla,
and Equinox p2, respectively, were co-changed with the initial patch locations at least once.
This finding indicated that about 20 % to 65 % of the supplementary patch locations had
not been co-changed with the initial patch locations, and they could not be predicted using
historical co-change patterns.

We also investigated the accuracy of predictions based on the historical co-change pat-
tern. We identified a set of files that had been co-changed with the files of an initial patch 2)
within n days and 1) more than n times. In this set, we identified a set of files that appeared
in the supplementary patch. The equation of accuracy is shown below.

Accuracy = |S ∩ C|
|C|

where S = A set of files that appear in supplementary patches, and C = A set of files that
were co-changed with the location of the corresponding initial patch.
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We calculated the average accuracy for multi-fix bugs. Figure 8 shows the results of the
accuracy analysis. As the number of suggested entities decreased, the prediction accuracy
increased. However, the accuracies were less than 10 %. This low level of accuracy indicated
that less than 10 supplementary patch locations would appear among a hundred of files that
were suggested by the historical co-change pattern based prediction method.

Some of the supplementary patch locations were identified
using historical co-change pattern based prediction,

but the accuracy was very low.

4.8 Do Results of the Three Prediction Approaches Overlap?

We use code clone analysis, structural dependency analysis, and historical co-change ana-
lysis to predict the supplementary patch locations given the corresponding initial patch
locations. We determined whether the results from these three prediction approaches were
correlated or whether individual approaches suggested unique locations. At the file level,
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three result sets were identified based on the results of Sections 4.5, 4.6, and 4.7 of Eclipse
JDT core, Eclipse SWT, and Equinox p2. We used five lines as the code clone threshold,
which indicated that the result set from the code clone analysis contained supplementary
patch files that were similar to the initial patch in at least five lines. The structural depen-
dency analysis identified a set of files that had a direct structural relationship with an initial
patch file. The historical co-change analysis identified the supplementary patch files that
had been co-changed with an initial patch file at least twice before the initial patch.

Figure 9 shows the number of overlapping results from the code clone, structural depen-
dency, and co-change analyses. The number of files in the supplementary patches that could
be identified by each prediction approach are shown in the figure. For example, in Eclipse
JDT core, 10 files in the supplementary patches were identified using any of the three pre-
diction approaches, and 257 files were identified by the historical co-change analysis alone.
The percentages shown in parentheses indicate the proportion of all the supplementary patch
files.

The results of the code clone analysis rarely overlapped the results of the structural
dependency or co-change analyses. Because the structural dependency and historical co-
change analyses identified the relationship between two distinct locations, the results from
these two analyses do not contain the same locations as the initial patch locations. Of the
cloning based relationships, 75 % to 95 % appeared in the same file path as the initial patch.
Most of the cloning based relationships were related to ported patches (i.e., in the same file
path but on a different branch or component) or missed updates of code clones within the
same file. A fair amount (10 % to 25 %) of the results of structural dependency analysis and
the co-change analysis overlap, but both two techniques alone were responsible for 16 % to
22 % of the supplementary patch files.

Among all supplementary patches, 39 % to 53 % of supplementary patch files were
identified by the three prediction approaches. In conclusion, the overlap of each analysis
was very small, indicating that each type of analysis was necessary. Further, combining
three types of analysis alone could not predict all supplementary patch locations. This result
indicates that there is a need for a different type of analysis in addition to the present
approach.

Eclipse SWT
(4479 files in total)

Equinox p2
(2102 files in total)

Eclipse JDT core
(2938 files in total)

Code
clone
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5
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(0.3%)

7
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Fig. 9 The number of overlapping results from code clone, structural dependency, and co-change analyses
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Table 13 The extent of single-fix and multi-fix bugs in open source projects

Project name Bug identifier # of single-fix bugs # of multi-fix bugs # of total bugs

activemq AMQ 2045 (73.1 %) 752 (26.9 %) 2797

ambari AMBARI 9149 (90.5 %) 959 (9.5 %) 10108

camel CAMEL 4404 (66.5 %) 2218 (33.5 %) 6622

cassandra CASSANDRA 4042 (81.2 %) 937 (18.8 %) 4979

commons-lang LANG 303 (67.9 %) 143 (32.1 %) 446

commons-math MATH 486 (60.6 %) 316 (39.4 %) 802

flink FLINK 584 (80.3 %) 143 (19.7 %) 727

hadoop HADOOP 2321 (86.9 %) 350 (13.1 %) 2671

karaf KARAF 1460 (76.2 %) 457 (23.8 %) 1917

spark SPARK 3571 (87.4 %) 514 (12.6 %) 4085

zookeeper ZOOKEEPER 933 (91.5 %) 87 (8.5 %) 1020

jbosstools-base JBIDE 1114 (71.5 %) 443 (28.5 %) 1557

spring-framework SPR 2787 (73.0 %) 1032 (27.0 %) 3819

spring-roo ROO 1421 (68.3 %) 661 (31.7 %) 2082

Results of code clone, structural dependency, and historical co-change
analyses rarely overlapped, and combining these analyses was also

insufficient to predict supplementary patch locations.

5 Discussion

External Validity We studied Eclipse JDT core, Eclipse SWT, Mozilla, and Equinox p2
as representatives of open source projects, but the study results may not be generalized
to other projects. Table 13 shows the extent of the multi-fix bugs in many open source
projects from Apache,7 JBoss,8 and Spring,9 which use JIRA as their bug tracking system.
We tracked the bug identifier and the bug identification number for JIRA (e.g., LANG-123
for the Commons-Lang project) in the commit logs. The extent of multi-fix bugs was 9 %
to 39 %, an average of 23 %. This result shows that a considerable portion of bugs were
not fixed in the first fix attempt, and that applying a supplementary patch was a common
phenomenon in the open source projects. However, the other results of this study, such as
the severity levels and the relationship between initial and supplementary patches, may not
be generalized to other projects. An in-depth study of further projects will be conducted in
future work.

Misclassification of Supplementary Patches We assessed our supplementary patch
identification method by manually inspecting one-month periods for Eclipse JDT core,

7https://projects.apache.org/
8http://www.jboss.org/projects/
9https://spring.io/projects

https://projects.apache.org/
http://www.jboss.org/projects/
https://spring.io/projects
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Eclipse SWT, and Equinox p2 (107, 165, and 193 commits, respectively), and a two week
period for Mozilla (786 commits). We used a relatively short period for the Mozilla project
because it had too many commits. This two-week period yielded 786 commits, the most
highest number our subject programs. One threat to validity is that in manual inspection,
building the ground truth set might not cover all incomplete patches in the period. Our
study revealed that the three criteria for the ground truth set were not sufficient to cover the
relationship between the incomplete patches and the supplementary patches.

Overall, the precision of our incomplete patch identification method was 100 % in all
projects. Hence, the number recorded in the commit log generally indicated a bug ID. How-
ever, the recall rates were 90 % on average because the developers did not always include a
bug ID when they applied a bug fix. The method used to identify supplementary patch was
fairly accurate in terms of precision, but we may have missed some supplementary patches
that were not managed by the bug reporting system; several patches may not have been
linked to bug reports (Bird et al. 2009). Furthermore, it is possible that some developers did
not recognize that they fixed the same bug when they applied a supplementary patch.

In addition, Herzig et al. (2013) also showed that many non-bugs are misclassified as
bugs, and they claimed that the automated quantitative analysis of a bug data set should
consider the effects of misclassification. According to our definition of a supplementary
patch, non-fixing changes could be included in our data set. In Section 4.4, the results of the
manual inspection showed that missed porting changes or incomplete refactoring induced
supplementary patches. Herzig et al. did not regard these changes as bug fixes. The accuracy
of the prediction approaches based on code clone, structural dependency, and historical co-
change analyses could be affected by the non-fixing changes, which then would threaten
the validity.

Confounding Factors Pertaining to the Difference Between Single-Fix Bugs and
Multi-fix Bugs Compared to single-fix bugs, multi-fix bugs have larger patch sizes,
involve more people, and require more time to resolve. By sampling several bugs, we
found that multi-fix bugs frequently involved incomplete specifications, which could cause
a reassignment of the task or involve additional discussions among relevant developers.
Reassignment processes and discussion processes to fix the requirement could require the
involvement of another developer and additional time and effort for discussion. Because
multi-fix bugs are more likely to be difficult to fix compared to single-fix bugs, they may
require longer patches than single-fix bugs require.

Identification of Cloned Patches In our study, a supplementary patch is regarded as
a cloned patch when its code chunk is similar to the code in the initial patch, and the
code chunk is longer than five lines. However, it is possible for only a few lines in a
supplementary patch to be similar to the initial patch.

Figure 10 shows the percentage of cloned patches while varying the threshold. In Eclipse
JDT core, 15.0 % of the supplementary patches were classified as cloned patches within a
threshold of five lines. When the threshold of ten lines was used, only 6.5 % of the sup-
plementary patches were identical. In addition, it is possible that recent clone detection
techniques (Jiang et al. 2007; Pham et al. 2009) could be used instead.

Relationships Among Supplementary Patches In our study, we considered only the
first commit an incomplete (initial) patch, and we investigated the relationships between the
incomplete patch and corresponding supplementary patches. If there were three patches for
a multi-fix bug, then only the first patch was regarded as an incomplete patch. However,
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the second patch also could be regarded as incomplete because it was complemented by
the third patch. Developers could make a supplementary patch to complement the previous
incomplete patch, but the supplementary patch also can be an incomplete patch. An inves-
tigation of the relationships between consecutive supplementary patches will be conducted
in future work.

Statistical Significance of the Results We used t-tests to justify the statistical signifi-
cance of our results. If the sample size is large enough, even when two distributions are
similar, a t-test can determine that there is a significant difference. In this case, we used
an effect size measure, such as the Cliff’s delta, to compare two distributions statistically.
Cliff’s delta measures the probability that a value from group A (size n) is greater than a
value from group B (size m) by comparing each element (n × m times) (Cliff 1996).

We calculated Cliff’s delta between the number of changed files of regular and incom-
plete patches in Eclipse SWT. As shown in Table 14, there was a probability of 39.2 % that
the number of changed files of incomplete patches was greater than that of regular patches.
Although incomplete patches are more likely have a greater number of changed files, the
Cliff’s delta value (0.1517) was relatively small (Grissom and Kim 2005).

Validity of Manual Inspection In Section 4.4, we manually inspected the causes of
incomplete patches. The first author initially categorized the causes of incomplete patches,
after which two graduate students, who were studying software engineering, validated the

Table 14 Cliff’s delta between the number of changed files of regular and incomplete patches in Eclipse
SWT

Cliff’s delta = 0.1517

xr < xi xr = xi xr > xi

39.20 % 36.77 % 24.03 %

xr : a value from a regular patch

xi : a value from an incomplete patch
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Table 15 An example of a
tangled change that a
supplementary patch applied later

Bug 81571 of Eclipse JDT core

Revision Date Author Comment

10294 2005/01/06 Kent 81824 + 81571 + 81568

10301 2005/01/07 Kent 81571

categorization. For bugs where our classifications diverged, we reached a consensus to
classify the bug into the correct category. Although we endeavored to obtain accurate cat-
egorizations, threats to validity still exist, such as subjectivity and incorrect classifications.
In addition, because we selected 200 samples of incomplete patches, categories that were
not covered by the samples might have been missed.

Effect of Tangled Changes Herzig and Zeller (2013) addressed the possible effects of
tangled changes, in which code changes were related to more than one bug report. Recent
researches on change decomposition (Tao and Kim 2015; Barnett et al. 2015) also pointed
out that a portion of changes contained composite changes, which were related to more than
one issue. If irrelevant issues were tangled into a patch, it could be a noise for identifying
the relationship between the initial patches and the supplementary patches. We find that 3 %
to 5 % of commits were connected to more than one bug report, and this noise from the
tangled changes could be a threat to validity.

An interesting case that a tangled change might affect the incomplete patch is shown
in Table 15. A developer first tried to fix three bugs (81824, 81571, and 81568) at the
same time, and a supplementary patch for only one bug (81517) was applied later. These
tangled changes might cause incomplete patches because the developer tried to handle mul-
tiple issues at the same time. The in-depth investigation of the relationship between tangled
changes and incomplete patches requires future work.

Roles and Experience of Developers It is possible that the roles of developers are dif-
ferent. Hence, more than one developer should be involved in fixing corresponding parts
such as GUI or test codes. We found that supplementary patches were usually written by
the same author who wrote initial patch; 73 % to 85 % of multi-fix bugs were written by the
same author. The authors usually participated in the discussion of the bug report; however,
we could not find evidence that the roles of developers were separate.

We also found that the authors of single fix bugs made 6 % to 8 % more commits before
the fix commits in Eclipse JDT core, Eclipse SWT, and Equinox p2, which indicated that
the incomplete patches were made by less experienced developers. In Mozilla, however,
the authors of the multi-fix bugs were more experienced than the authors of the single-
fix bugs. The experience of developers can be measured in several ways, such as the total
number of program lines that a developer has made (Mockus and Weiss 2000; Rahman and
Devanbu 2011) or the amount of time since a developer’s first commit (Eyolfson et al. 2011).
Further investigations of the relationship between the roles and experience of developers
and supplementary patches will be studied in future work.

6 Conclusions

Developers occasionally make incomplete patches, and unintended omission errors require
supplementary patches. Many approaches have been proposed to reduce incomplete patches
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by recommending supplementary change locations. These approaches include assumptions
about the characteristics of omission errors. In this study, we investigated the reasons that
incomplete patches occur in practice and how such errors could be prevented by examining
the characteristics of incomplete patches and supplementary patches.

Our study of four open source projects showed that a considerable proportion of bugs
required supplementary patches. The quality of the reports on multi-fix bugs were not lower
than that of single-fix bugs, but they contained more attribute changes because of the incor-
rect information about multi-fix bugs. The results of our study indicate that multi-fix bugs
are likely to have higher severity levels than single-fix bugs because they are often related
to important and complicated parts of a program. Although more developers actively partic-
ipate in multi-fix bugs than in single-fix bugs, the multi-fix bugs takes more time to resolve
than single-fix bugs do. Furthermore, incomplete patches tended to be larger and more scat-
tered than regular patches. The common causes of omission errors are diverse, including
missed porting changes, the incorrect handling of conditional statements, or incomplete
refactoring. In contrast to the conventional wisdom that missed updates of code clones
often cause omission errors, the findings of this study showed that only a small number
of supplementary patches had content similar to their initial patches. Moreover, structural
dependency analysis alone is insufficient to predict supplementary patch locations, so as
historical co-change analysis. The findings showed that the three code clone, structural
dependency, and historical co-change analyses predicted different locations with little over-
lap. However, combining these analyses is still not sufficient to predict all supplementary
change locations. Because existing change recommendation approaches are insufficient in
identifying the relationship between initial and supplementary patch locations and since the
causes of incomplete patches are diverse, new approaches to prevent each type of real-world
incomplete patches should be developed and validated using a supplementary patch data set.
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Appendix

The data set and soucre code for the analysis in this paper are available on the first author’s
web page 10. In this appendix section, we compare the results from our previous work
published in MSR 2012 (Park et al. 2012), and the extended results for this journal revision.

We extend our study period from two years in each project to five, six, and nine years
in Eclipse JDT core, Eclipse SWT, and Mozilla, respectively. All analyses including bug
extent analysis, bug severity analysis, the similarity analysis between the initial and supple-
mentary patches, and the location analysis for the initial and supplementary patch locations
are redone for the extended periods, allowing us to generalize our results to the long-term
history of the development.

10http://se.kaist.ac.kr/jhpark

http://se.kaist.ac.kr/jhpark


464 Empir Software Eng (2017) 22:436–473

Table 16 Comparison of the results from our MSR paper and this journal paper—the extent of single-fix
bugs and multi-fix bugs

Study period # of bugs # of single-fix bugs # of multi-fix bugs

MSR Eclipse JDT core 2004/07 ∼ 2006/07 1812 1405 (77.5 %) 407 (22.5 %)

Eclipse SWT 2004/07 ∼ 2006/07 1256 954 (76.0 %) 302 (24.0 %)

Mozilla 2003/04 ∼ 2005/07 11254 7562 (67.2 %) 3692 (32.8 %)

Journal Eclipse JDT core 2002/01 ∼ 2007/12 3677 2836 (77.1 %) 841 (22.9 %)

Eclipse SWT 2002/01 ∼ 2008/12 3992 2959 (74.1 %) 1033 (25.9 %)

Mozilla 2000/01 ∼ 2009/12 42283 28034 (66.3 %) 14249 (33.7 %)

Tables 16, 17, 18 and 19 show the comparison results. The number of bugs increases as
we extend our study period, but the proportions of single-fix bugs (Type I bugs) and multi-
fix bugs (Type II bugs) remain similar. The severity analysis—the percentage of bugs with

Table 17 Comparison of the results from our MSR paper and this journal paper—the percentage of bugs
with Blocker/Critical severity, the number of developers involved, and the days taken to resolve each bug

Blocker/critical bugs (S-fix) Blocker/critical bugs (M-fix)

MSR Eclipse JDT core 3.63 % 4.91 %

Eclipse SWT 5.66 % 9.27 %

Mozilla 11.24 % 12.71 %

Journal Eclipse JDT core 3.91 % 5.58 %

Eclipse SWT 6.20 % 9.86 %

Mozilla 15.19 % 19.07 %

# developers involved (S-fix) # developers involved (M-fix)

MSR Eclipse JDT core 3.67 4.44

Eclipse SWT 3.13 4.29

Mozilla 4.70 7.28

Journal Eclipse JDT core 3.08 3.97

Eclipse SWT 2.73 4.06

Mozilla 5.08 7.45

# days to resolve bugs (S-fix) # days to resolve bugs (M-fix)

MSR Eclipse JDT core 120.79 188.27

Eclipse SWT 176.99 337.32

Mozilla 594.50 805.92

Journal Eclipse JDT core 103.40 165.05

Eclipse SWT 153.94 292.97

Mozilla 700.51 822.35
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Table 18 Comparison of the results from our MSR paper and this journal paper—the percentage of files in
the supplementary patches similar to initial patches

Class 1 Class 2 Class 3

MSR Eclipse JDT core 424 (70.2 %) 108 (17.88 %) 72 (11.9 %)

Eclipse SWT 392 (68.5 %) 35 (6.1 %) 145 (25.4 %)

Mozilla 5477 (78.8 %) 858 (12.3 %) 620 (8.9 %)

Journal Eclipse JDT core 904 (75.2 %) 128 (10.6 %) 170 (14.1 %)

Eclipse SWT 1766 (85.7 %) 102 (4.9 %) 194 (9.4 %)

Mozilla 20180 (83.3 %) 2343 (9.7 %) 1704 (7.0 %)

Class1: No cloning relationship exists between an initial patch and its supplementary patch

Class2: A cloning relationship exists between an initial patch and its supplementary patch, but the
supplementary patch is a ported patch

Class3: A cloning relationship exists between an initial patch and its supplementary patch, which is not a
ported patch

Table 19 Comparison of the results from our MSR paper and this journal paper—the relationship between
initial patch locations and supplementary patch locations

Class 1 Class 2 Class 3 Class 4

MSR Eclipse JDT core 504 (48.1 %) 51 (4.9 %) 335 (32.0 %) 158 (15.1 %)

Eclipse SWT 454 (41.5 %) 174 (15.9 %) 314 (28.7 %) 151 (13.8 %)

Journal Eclipse JDT core 1469 (50.0 %) 132 (4.5 %) 869 (29.6 %) 468 (15.9 %)

Eclipse SWT 1587 (35.4 %) 607 (13.6 %) 1333 (29.8 %) 952 (21.3 %)

Class1: Changes made within 25 lines of an initial patch

Class2: Changes made beyond 25 lines of an initial patch but on the same files

Class3: Changes made to the files that directly depend on the initial patch or the files on which an initial
patch depends on

Class4: Changes that are not made to the same files of an initial patch and that do not have a direct dependence
relation with the initial patch

Table 20 Categories of 200 sampled incomplete fix revisions

# Bug ID (Project)

1) 71 66512 (JDT), 91709 (JDT), 99903 (JDT), 104780 (JDT), 140879 (JDT), 148010 (JDT),

161557 (JDT), 171703 (JDT), 191739 (JDT), 201104 (JDT), 24542 (SWT), 30854

(SWT), 39223 (SWT), 39892 (SWT), 56780 (SWT), 76185 (SWT), 76391 (SWT),

83408 (SWT), 83819 (SWT), 85666 (SWT), 85962 (SWT), 87554 (SWT), 88829

(SWT), 89785 (SWT), 90856 (SWT), 97981 (SWT), 106289 (SWT), 107777 (SWT),

194146 (SWT), 236312 (SWT), 90064 (Mozilla), 118656 (Mozilla), 136580 (Mozilla),

155222 (Mozilla), 174132 (Mozilla), 193372 (Mozilla), 203041 (Mozilla), 203211
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Table 20 (continued)

# Bug ID (Project)

(Mozilla), 207673 (Mozilla), 208843 (Mozilla), 212112 (Mozilla), 220933

(Mozilla), 223111 (Mozilla), 224313 (Mozilla), 226600 (Mozilla), 228176

(Mozilla), 231166 (Mozilla), 261886 (Mozilla), 280740 (Mozilla), 301338 (Mozilla),

305041 (Mozilla), 307277 (Mozilla), 335366 (Mozilla), 337110 (Mozilla), 342922

(Mozilla), 358296 (Mozilla), 222969 (Equinox),227189 (Equinox), 227835 (Equinox),

233229 (Equinox),235496 (Equinox),235906 (Equinox), 240062 (Equinox),240254

(Equinox), 241185 (Equinox), 242632 (Equinox), 243422 (Equinox), 244630 (Equinox),

246432 (Equinox), 247177 (Equinox), 257242 (Equinox)

2) 39 73479 (JDT), 79772 (JDT), 80914 (JDT), 108372 (JDT), 120264 (JDT), 120640

(JDT), 123522 (JDT), 133071 (JDT), 23745 (SWT), 29642 (SWT), 57777 (SWT), 76750

(SWT), 81987 (SWT), 88463 (SWT), 90024 (SWT), 92230 (SWT), 93294 (SWT), 94003

(SWT), 94467 (SWT), 210825 (SWT), 220398 (SWT), 225351 (SWT), 255113 (SWT),

34373 (Mozilla), 77234 (Mozilla), 78809 (Mozilla), 82141 (Mozilla), 211267 (Equinox),

212647 (Equinox), 212651 (Equinox), 217492 (Equinox), 221573 (Equinox), 226344

(Equinox), 228730 (Equinox), 232315 (Equinox), 232440 (Equinox), 249215 (Equinox),

252449 (Equinox), 257602 (Equinox)

3) 29 80699 (JDT), 92315 (JDT), 92888 (JDT), 96763 (JDT), 105531 (JDT), 110422 (JDT),

111494 (JDT), 119844 (JDT), 139621 (JDT), 142772 (JDT), 208541 (JDT), 211872

(JDT), 70318 (SWT), 72401 (SWT), 81081 (SWT), 85386 (SWT), 85867 (SWT), 200144

(Mozilla), 211470 (Mozilla), 213910 (Mozilla), 216581 (Mozilla), 227432 (Mozilla),

390275 (Mozilla), 212305 (Equinox), 228406 (Equinox), 251561 (Equinox), 251772

(Equinox), 258130 (Equinox)

8) 3 42839 (JDT), 104664 (JDT), 125518 (JDT)

9) 3 118117 (Mozilla), 183399 (Equinox), 222260 (Equinox)

10) 2 81244 (JDT), 78554 (SWT)

11) 2 83593 (JDT), 126625 (JDT)

12) 14 114935 (JDT), 126180 (JDT), 183211 (JDT), 212222 (Mozilla), 22231 (SWT), 74095

(SWT), 91317 (SWT), 124965 (SWT), 180576 (Mozilla), 191749 (Mozilla), 215587

(Mozilla), 225570 (Mozilla), 206818 (Equinox), 246822 (Equinox)

4) 13 73330 (JDT), 98906 (JDT), 110048 (JDT), 141289 (JDT), 77102 (SWT), 85069 (SWT),

235832 (Mozilla), 246966 (Mozilla), 251337 (Mozilla), 289558 (Mozilla), 99168 (Mozilla),

210484 (Equinox), 236077 (Equinox)

5) 11 212361 (Equinox), 212476 (Equinox), 226929 (Equinox), 229205 (Equinox), 235165

(Equinox), 249318 (Equinox), 249483 (Equinox), 250164 (Equinox), 255623 (Equinox),

255820 (Equinox), 258370 (Equinox)

6) 7 100636 (JDT), 117302 (JDT), 148224 (JDT), 75148 (SWT), 110559 (SWT), 223435

(Mozilla), 287052 (Mozilla)

7) 6 86580 (JDT), 110797 (JDT), 122442 (JDT), 130390 (JDT), 243392 (Mozilla),

208343 (Equinox)
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Fig. 11 The conditional statement of an initial fix is not correct

Blocker/Critical severity, the number of developers involved, and the days taken to resolve
each bug—also show trends similar to those noted in the previous results. For the similarity
analysis, the proportions of cloned patches and ported patches decrease, confirming that

Fig. 12 The test code is added or updated
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Fig. 13 The comment is improved to explain an initial patch in detail

code clone analysis is insufficient to identify supplementary patch locations. The results
from the location analyses also show similar trends.

Table 20 shows the categories of 200 sampled incomplete fix revisions. Figures 3, 11, 12,
13, 14, 15 and 16 show the code snippets for the categorizations of our manual inspection.
For the contexts of these table and figures, please refer to Section 4.4.

Fig. 14 Incomplete refactoring induces a supplementary patch
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Fig. 15 Properties are updated

Fig. 16 Two different parts calling different subclasses of the same type are not updated together
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