Noname manuscript No.
(will be inserted by the editor)

Vdiff: A Program Differencing Algorithm for Verilog
Hardware Description Language

Adam Duley - Chris Spandikow -
Miryung Kim

The second revision is submitted to the ASEJ special issue on selected articles from the
ASE conference on March 15th, 2012.

Abstract During code review tasks, comparing two versions of a hardware
design description using existing program differencing tools such as diff is
inherently limited because these tools implicitly assume sequential execution
semantics, while hardware description languages are designed to model concur-
rent computation. We designed a position-independent differencing algorithm
to robustly handle language constructs whose relative orderings do not mat-
ter. This paper presents Vdiff, an instantiation of this position-independent
differencing algorithm for Verilog HDL. To help programmers reason about
the differences at a high-level, Vdiff outputs syntactic differences in terms of
Verilog-specific change types. The quantitative evaluation of Vdiff on two open
source hardware design projects shows that Vdiff is very accurate, with overall
96.8% precision and 97.3% recall when using manually classified differences as
a basis of comparison. Vdiff is also fast and scalable—it processes the entire
revision history of nine open projects all under 5.35 minutes. We conducted a
user study with eight hardware design experts to understand how the program
differences identified by the experts match Vdiff’s output. The study results

This research is in part supported by National Science Foundation grants under CCF-
1043810, CCF-1117902, and CCF-1149391 and 2011 Microsoft SEIF Award. The research
was in part conducted while the first two authors were graduate students at The University
of Texas at Austin.

Adam Duley
ARM Inc.
E-mail: adam.duley@arm.com

Chris Spandikow
IBM Corporation.
E-mail: spandiko@gmail.com

Miryung Kim
Electrical and Computer Engineering, The University of Texas at Austin E-mail:
miryung@ece.utexas.edu

2 Adam Duley et al.

show that Vdiff’s output is better aligned with the experts’ classification of
Verilog changes than an existing textual program differencing tool.

Keywords software evolution - program differencing - hardware description
languages

1 Introduction

Hardware description languages (HDLs) are pervasively used by engineers to
abstractly define hardware circuitry. Verilog, one of the most widely used
HDLs, uses a C-like syntax to describe massively concurrent tasks—Verilog
statements can represent parallel execution threads, propagation of signals,
and variable dependency [31]. Hardware projects are in a constant state of
change during the development process due to new feature requests, bug fixes,
and demands to meet power reduction and performance requirements. Dur-
ing code review tasks, hardware engineers predominantly rely on diff, which
computes line-level differences per file based on a textual representation of a
program.

Using existing program differencing tools for Verilog programs has several
limitations. First, line-based differencing tools for Verilog programs report
many false positive differences because the longest common sequence algo-
rithm [18] maps code in order and thus is too sensitive for languages that
model concurrent computation, such as asynchronously-executed statements
where the relative ordering between the statements do not matter. This is not
only the problem with line-based differencing tools; abstract syntax tree-based
differencing algorithms such as Cdiff [35] often match nodes in the same level
in order, making it unsuitable for programming languages where concurrent
execution is common. Second, unlike Java methods or C functions, Verilog pro-
cesses such as always blocks (i.e., event handlers) do not have unique labels.
Thus, existing differencing algorithms such as UMLAIff [34] cannot accurately
match position-independent language constructs in out-of-order, when they
do not have unique labels that produce one-to-one matching based on name
similarity. Third, while Verilog programs frequently use Boolean expressions
to define circuitry, existing algorithms do not perform equivalence checking
between these Boolean expressions, despite the availability of a mature tech-
nology to solve a Boolean formula satisfiability problem.

To overcome these limitations, we have developed Vdiff that uses an inti-
mate knowledge of Verilog syntax and semantics. Our differencing algorithm
takes two versions of a Verilog design file and first extracts abstract syn-
tax trees (ASTs). Traversing the trees top-down, for each level, it uses the
longest common sequence algorithm to align nodes by the same label. For
each mapped node pair from this process, it recursively applies the same LCS-
based algorithm to find correspondences between their children nodes. For the
remaining unmapped nodes, it then uses a weighted bipartite graph matching
algorithm to find out-of-order matching between similar subtrees to handle

Title Suppressed Due to Excessive Length 3

position-independent language constructs. To complement syntactic differenc-
ing, we also use an off-the-shelf SAT solver to compare the semantics of two
Boolean expressions in the process interface description (i.e., the sensitivity list
of Verilog’s always block). Furthermore, to help programmers better under-
stand AST matching results, it outputs differences in terms of Verilog-specific
change types (see Section 3.2 for a detail description on change-types). Vdiff
is instantiated as an Eclipse plug-in and available for download [15].

We applied Vdiff to two open source project histories and compared its
accuracy with manually labeled differences. We also compared our algorithm
with three existing AST matching algorithms, measured the types of changes
common in Verilog, assessed the impact of using similarity thresholds in match-
ing AST nodes, and measured the scalability and performance of Vdiff using
the revision history of nine open source projects from the OpenCores reposi-
tory.

Moreover, to assess the utility of Vdiff, we conducted a user study with
eight expert hardware design engineers from a large multinational semicon-
ductor and processor company. In this study, the participants were given two
code review tasks. For each task, the participants inspected changes between
the old and new version of a Verilog program and classified the program dif-
ferences explicitly as semantic or non-semantic differences. After completing
a manual inspection of code differences, they reviewed two sets of program
differencing outputs using Vdiff and Tkdiff, a popular program differencing
tool among hardware design engineers in the same company. The study re-
sults show that Vdiff’s output is better aligned with the experts’ classification
of Verilog program changes than Tkdiff. The expert designers also reported
that Vdiff makes it easier for them to filter out non-semantic differences caused
by reordering code elements. Vdiff helps them to grasp a high level structure
of design changes by presenting Verilog-specific change types in a hierarchical
order. The user study and the performance assessment are new contributions
since our original ASE 2010 conference paper. To the best of our knowledge,
our study is the first user study where hardware logic design engineers classified
program differences in Verilog and articulated the strengths and limitations of
existing program differencing tools for Verilog HDL.

In summary, our paper makes the following contributions:

— Vdiff uses a position-independent differencing algorithm to robustly handle
language constructs whose relative orderings do not matter, for example,
statements with concurrent execution semantics. The capability to match
code fragments in out-of-order is important for other programming lan-
guages as well.

— Vdiff produces accurate differencing results with 96.8% precision and 97.3%
recall when using manually classified differences as a basis of evaluation.

— Vdiff’s output matches the experts’ classification of Verilog program dif-
ferences better than a textual program differencing tool, Tkdiff. [6].

4 Adam Duley et al.

— Vdiff outputs syntactic differencing results in terms of Verilog-specific change
types to help hardware designers better understand the program differ-
ences.

— Vdiff is scalable and fast. It processes the entire version history of 54017
modified lines from nine open source projects with the total size of 83489
lines of code in their latest version all under 5.35 minutes.

— Our study participants reported that Vdiff robustly recognizes re-arranged
code blocks and filters out non-semantic differences.

Vdiff has several implications for the software engineering research com-
munity. First, the hardware design industry is facing challenges in evolving
existing design artifacts, just as the software industry is facing the problems
of evolving software. Yet, support for evolving hardware designs is very lim-
ited compared to evolving software. Our goal is to develop a foundation for
reasoning about differences in hardware design descriptions to enable various
hardware evolution research, such as regression analysis of hardware designs,
change impact analysis, etc. Second, the algorithm in Vdiff could be applied
to any language that provides ordering-independent language constructs.

The rest of this paper is organized as follows. Section 2 presents a mo-
tivating example for Verilog-specific program differencing. Section 3 presents
our algorithm. Section 4 describes our evaluation methods and results. Sec-
tion 5 presents our user study, and Section 6 discusses Vdiff’s limitations and
threats to validity. Section 7 discusses related work. Section 8 concludes with
a discussion of future work.

2 Motivating Example

Verilog is a hardware description language, in which statements and structures
map directly to hardware circuitry and its behavior. Because gates operate
concurrently [17], Verilog models concurrency explicitly by providing language
constructs such as always blocks, continuous assignments (assign), or non-
blocking assignments (<=).

To illustrate the key features of Verilog, Figure 1 provides a simple exam-
ple extracted from the uart_rfifo.v file in the OpenCores UART 16550 project.
This code is a simple implementation of a FIFO queue in Verilog. The key
items to note in this example are the module, the always blocks, the contin-
uous assignments (assign), and the non-blocking assignments. The module
uvart_rfifo()’s input and output declarations define which inputs are re-
quired for the module and which output signals it produces. Registers and
wires (reg and wire) can be considered to be field declarations in the module.

Functional specifications can be written either as an initialization block
(initial), a procedure block (always), or continuous assignments (assign).
Always blocks are process definitions that are re-evaluated when specified event
conditions become true. For example, always @(posedge clk or posedge
wb_rst_i) is evaluated when either the clk or wb_rst_i signal transitions

Title Suppressed Due to Excessive Length 5

Old Program Version

‘include "uart_defines.v"

module uart_rfifo (clk, wb_rst_i, data_in, push, pop, data_out, overrun);
input clk;

output [fifo_width-1:0] data_out;

reg [fifo_counter_w-1:0] count;

wire [fifo_pointer_w-1:0] top_plus_1 = top + 1’bi;

always Q@(posedge clk or posedge wb_rst_i)
begin

top <= #1 0;

bottom <= #1 0O;

count <= #1 0;

fifo[1] <= #1 0;
- fifo[2] <= #1 0;

end // always

- always @(posedge clk or posedge wb_rst_i)
- begin

- if (wb_rst_i) overrun <= #1 1°b0;

- else

- if (fifo_reset | reset_status)

- overrun <= #1 1°b0;

- else

- if (push & “pop & (count==fifo_depth))
- overrun <= #1 1°b1;

- end // always

assign data_out = fifo[bottom];

endmodule

New Program Version

‘include "uart_defines.v"

module uart_rfifo (clk, wb_rst_i, data_in, push, pop, data_out, overrun);
input clk;

output [fifo_width-1:0] data_out;

reg [fifo_counter_w-1:0] count;

wire [fifo_pointer_w-1:0] top_plus_1 = top + 1’bl;

always Q@(posedge clk or posedge wb_rst_i)
+ begin
+ if (wb_rst_i)

+ overrun <= #1 1°b0;

+ else

+ if (fifo_reset | reset_status)

+ overrun <= #1 1°b0;

+ else

+ if (push & “pop & (count==fifo_depth))
+ overrun <= #1 1’bl;

+ end // always
+ always @(posedge wb_rst_i or posedge clk)
begin
top <= #1 0;
bottom <= #1 0O;
count <= #1 O;
+ fifo[2] <= #1 0;
fifo[1] <= #1 0;

end // always
assign data_out = fifo[bottom];
endmodule

Fig. 1 Line-level diff results and expected differences between two versions of a Verilog
program

6 Adam Duley et al.

[v] wart_rfifo_verl.v (ﬂ uart_rfifo_ver2.v == Compare ('uart_rfifo_verl.v' - 'vart_rfifo_ver2.v') i3 =0

[v] Verilog Structure Diff
v M uart_rfifo
v o always @(posedge wb_rsi_i or posedge clk) //11 / always @(posedge clk or posedge wb_rst_i) //8
v o ifwb_rsri)
fifol2] <= 1'b0 / fifol2] <= 1'bl
© Text Compare P B < | & 4h 4R

[¥] VerTest/uart_rfifo_verl.v ‘] VerTest/uart_rfifo_ver2.v

| always @{posedge wb_rsk_i or posedge clky]

alwoys @{posedge clk or posedge wb_rst_i) begin
begin if (wb_rst_i)
if (wb_rst_i) begin
begin top == #1 0;
top == #1 0; bottom <= #1 1'b@3;
bottom <= #1 1'b@3; count == #1 @;
count == #1 @; fFifo[2] <= 1'b0@;
fifo[1] <= 1'b1; fifo[1] <= 1'bl;
fFifo[2] <= 1'b1; end
end
end
end
|2 Problems | & Console 2 £l Hismrﬂc Progress] w el et B9

veditor
line 28, AL_SE, Sensitivity list changes, but Boolean Equiwvalent
line 36, NB_CE, Change of expression for non_blocking assignment

(= 5

Fig. 2 Vdiff’s output in Eclipse IDE

from 0 to 1 due to posedge. Verilog provides two different types of assign-
ments, = and <=. The blocking assignment (=) is similar to an assignment
statement in C with sequential execution semantics, while the non-blocking
assignment (<=) denotes a non-blocking operation that executes simultane-
ously. In Verilog, non-blocking assignments are generally more common than
blocking assignments. Thus, inside the first always block, the registers top,
bottom, and count are all set to 0 simultaneously, unlike C. In other words, the
order in which top, bottom, and count are declared does not matter as long as
they are in the same control hierarchy. An ideal program differencing tool for
Verilog must not detect such reordering of non-blocking statements, as it does
not change the execution semantics. Similarly, the order of the always blocks
does not matter because all always blocks are executed simultaneously. Like-
wise, all continuous assignments (assign) in a module operate concurrently.
To draw an analogy between C-like languages and Verilog, one may claim that
each always block is treated like a function. This idea, however, falls short
since multiple blocks can be triggered by the same event list, meaning that
one cannot assume that each always block has a unique label.

Figure 1 contrasts what a human would consider to be differences and line-
level differences computed by diff: added lines are marked in red text with +,
and deleted lines are marked in blue text with -. In this code example, the
always blocks are reordered, the two non-blocking statements are reordered,
and the arguments in the first always block’s sensitivity list are reordered. A
human will recognize that, despite textual differences, there are no semantic
differences between the two versions. However, diff will report several false
positives: (1) addition and deletion of the second always block, (2) additions
and deletions of two non-blocking assignments, and (3) addition and deletion of

Title Suppressed Due to Excessive Length 7

the second always block’s sensitivity list. Furthermore, as diff cannot recognize
Verilog syntax, it will report differences that do not respect the boundaries of
each always block.

The following list summarizes the unique characteristics of Verilog from a
program differencing perspective.

— Verilog models concurrent executions by using constructs such as non-
blocking assignments, processes, and continuous assignments. Thus, ordering-
sensitive differencing algorithms designed for sequential execution seman-
tics will report many false positive differences

— In Verilog, processes do not necessarily have unique labels, even though it
is thought to be a bad practice to use the same name for multiple processes.
Thus, differencing algorithms cannot rely on mapping code elements solely
based on name similarity.

— Frequent usage of Boolean expressions in Verilog interface descriptions pro-
vides an opportunity to leverage a SAT solver to compare process interfaces
(i.e., sensitivity lists).

3 Approach

Vdiff accepts two versions of a Verilog design file and outputs syntactic differ-
ences in terms of Verilog-specific change types. It uses a hybrid program differ-
encing approach that performs a syntactic comparison of two abstract syntax
trees while checking semantic equivalence in process interface descriptions us-
ing an off-the-shelf SAT solver. Section 3.1 discusses our abstract syntax tree
matching algorithm that accounts for concurrent execution semantics such as
non-blocking assignments. Section 3.2 presents Verilog-specific change types,
which are designed to help programmers better understand AST-level match-
ing results. This section also describes when and how our algorithm performs
a semantic comparison using a SAT solver. Section 3.3 describes our Vdiff
Eclipse plug-in [15].

3.1 Position-Independent Abstract Syntax Tree Differencing

Our algorithm shown in Algorithm 1 takes as input the old and new versions
of a Verilog module and two thresholds used for determining text similarity.
For each Verilog module, it extracts an abstract syntax tree using the Verilog
syntax parser module provided by the VEditor plug-in [7]. Then it marks AST
nodes that correspond to non-blocking assignments, continuous assignments,
and always blocks. Marking these nodes allows for the matching algorithm
to carefully handle semantically equivalent reordering of such nodes. Figure 3
shows an example AST, where unordered children are marked with a dotted
edge. The resulting abstract syntax tree allows certain nodes to be arranged
in any sequence.

8 Adam Duley et al.

Once the trees, L and R, are built for each file, F,, and F,,, they are com-
pared hierarchically from the top down using compareTrees(). The initial
comparison is done by aligning nodes in the same level by the same labels,
using the longest common subsequence algorithm [18]. Any unmatched node
in R is added to ADD, and any unmatched node in L is added to DEL. The
step is recursively applied to all children of the matching nodes.

Algorithm 1: Position-Independent AST Matching

Input: F,, F,, /* old and new versions */
ths, th; /* similarity thresholds for short text and long text */
Output: ADD /* a set of nodes added to F), */
DEL /* a set of nodes deleted from F */
MAP /* a set of mapped node pairs */

L := createAST (Fy), R := createAST (Fy)
ADD := (, DEL := (), MAP := (), Candidate := 0
compareTrees (L, R, MAP, ADD, DEL)
findCandidate (ADD, DEL, Candidate, th;, ths)
repeat
/* Identify a weighted bipartite matching by selecting a candidate
match with the highest likeness value and updating ADD and DEL
accordingly */
Candidate = sort(Candidate)
foreach p € Candidate do
if p.a € ADD and p.d € DEL then
MAP := MAP U {(p.a, p.d)}
compareTrees (p.a, p.d, M’, A’, D)
ADD := ADD- {p.a}, DEL := DEL- {p.d}
removeMatches(Candidate, p) /* remove candidate matches that
include p.a or p.d */
end
ADD := ADD U A’, DEL := DEL U D’, MAP := MAP U M’

end

findCandidate (ADD, DEL, Candidate, thy, ths)
until Candidate # 0 ;

interpret (MAP, ADD, DEL)

Function compareTrees(L, R, M, D, A)

/* align L and R’s subtrees using the longest common subsequence
algorithm based on their labels */
MAP := alignLCS (L’s first level subtrees, R’s first level subtrees)
foreach | € L’s first-level subtrees do
| if | ¢ MAP.Left then DEL := DEL U {1}
end
foreach r € R’s first-level subtrees do
| if r ¢ MAP.Right then ADD := ADD U {r}
end
foreach (I,r) € MAP do
| compareTree (1, r, MAP, DEL, ADD);
end

Title Suppressed Due to Excessive Length 9

Function findCandidate(A, D, Candidate, th;, ths)

foreach a € ADD do
foreach d € DEL do
likeness := textSimilarity (a,d)
if ((a.text.length > 128 or d.text.length > 128) and likeness > th;) or
(a.text.length < 128 and d.text.length < 128 and likeness > ths) then
| Candidate := Candidate U { (a,d,likeness) }
end
end
end

Once the initial ADD and DFEL have been populated, the algorithm then
tries to match nodes from ADD and DFEL using a greedy version of a weighted
bipartite graph matching algorithm. First, for each pair in the Cartesian prod-
uct of ADD and DEL, we compute the pair’s weight using the text similarity
algorithm in UMLJiff [34], which computes how many common adjacent char-
acter pairs are contained in two compared strings. The weight calculation is
based on the full content of the node’s subtree. For example, when considering
an always block node, the text of its block declaration and its body is used.
If the similarity value is above a required threshold and the nodes are of the
same syntactic type, such as an always block mapping to an always block,
we add the pair to the set of potential matches, Candidate.

When computing text similarities, we use two different thresholds. For text
that is less then 128 characters a lower threshold thg is used, because small
changes have a relatively larger effect on the similarity calculation. While most
single line statements are kept under 128 characters, process blocks tend to
be multi-line statements, requiring a larger threshold value to ensure a quality
match.

Once all pairs in {ADD x DEL} have been evaluated, the potential match
set Candidate is sorted in descending order based on the pair’s text similarity.
Then we use a greedy algorithm to select a subset of Candidate. In each
iteration, we take the highest weighted pair and add it to the set of matched
nodes, M AP, and update Candidate by removing all candidate matches that
include either the selected pair’s left or right hand side. The children of the
matched pair are recursively compared to find any more additions, deletions,
or matches. At the end of the iterations, ADD, DFEL, and Candidate are
updated to account for newly matched nodes. This iteration continues until
no new candidate matches are found. For each pair (a,d) in M AP, if the full
text of a matches the full text of d exactly, they share the same parent, and
their execution orders do not matter (i.e., always, initial, generate, assign,
and <=), then the pair is removed from M AP and marked as unchanged.

10 Adam Duley et al.

Table 1 Change Types for Verilog Programs

Syntactic Pattern Description
Element
Always AL_ADD Always block added
AL_RMV Always block removed
AL_SE Changes in the sensitivity list
Assignment ASG_ADD Continuous assignment added
Statement ASG_CE Continuous assignment changed
ASG_RMV Continuous assignment removed
Blocking B_-ADD Blocking assignment added
Assignment B-CE Blocking assignment changed
B_RMV Blocking assignment removed
Non-Blocking NB_ADD Non-blocking assignment added
Assignment NB_CE Non-blocking assignment changed
NB_RMV Non-blocking assignment removed
If Statement IF_ABR Addition of else branch
IF_APC Addition of if branch
IF_CC Change of if condition expr
IF_.RBR Removal of else branch
IF_RMV Removal of if branch
Switch SW_ABRP Changes to switch hierarchy
Statement SW_CADD Addition of a case branch
SW_CRMV Removal of a case branch
SW_CHG Changes to condition
Module MD_CHG Changes in port type/width
Declaration MD_DNP Different number of ports
Module MI_ADD Module instantiation added
Instantiation MI_RMV Module instantiation removed
MI_DCP Different ports values
MI_DNP Different number of ports
MI_DTYP Different types
Initialization INIT_ADD Initial block added
INIT_RMV Initial block removed
Parameter PARAM_ADD Parameter added

PARAM_CHG Parameter changed
PARAM_RMV Parameter removed

Register RG_ADD Register added
RG_-CHG Register changed
RG_RMV Register removed
Wire WR_ADD Wire added
WR_CHG Wire changed
WR_RMV Wire removed
Pre-processor Pattern Description
Directives
Define DEFINE_.ADD DEFINE added

DEFINE_.CHG DEFINE changed
DEFINE_RMV DEFINE removed

Ifdef IFDEF_ADD IFDEF added
IFDEF_CHG IFDEF changed
IFDEF_RMV IFDEF removed

Include INC_ADD Include added
INC_RMV Include removed

Generate GEN_ADD Generate block added
GEN_RMV Generate block removed
GEN_CHG Generate block changed

Others

NC Formatting Changes

Title Suppressed Due to Excessive Length 11

Fig. 3 AST of uvart_rfifo.v from Figure 1

3.2 Change-Types for Verilog

In order to provide differencing results at a higher abstraction level than sim-
ply listing ADD, DEL, and M AP, we output syntactic differences in terms
of change types. This classification can potentially help users understand the
differences quickly by providing a set of categories that the hardware designer
can easily identify with. Furthermore, change classification can enable quan-
titative and qualitative assessments of frequent change types in Verilog by
providing a detailed uniform description of code changes.

The initial set of change types are motivated from Sudakrishnan’s change
types [30]. By manually inspecting all versions of OpenCores project UART16550
and the DRAM Memory Controller of the RAMP project (see Section 4), we
created a new change type if the change did not fit within the classification
list. The resulting list of change types is shown in Table 1.

Each of the major categories in the list has to do with a specific syntactic
element in Verilog. For example, IF deals with if statement; MD and MI
deal with module declarations and instantiations respectively; ASG focuses on
assignment statements; AL focuses on always blocks, etc. Figure 6 shows an
example of IF_CC and IF_RMV changes.

As a part of a post processing step, where Vdiff interprets the matching
results between two abstract syntax trees as Verilog-specific change types, it
refines the results in process interface declarations by extracting Boolean ex-
pressions from the AST nodes and checking their equivalence using a SAT
solver. We used the SAT4J public java library, which takes Boolean formula
in a conjunctive normal form (CNF) and proves whether there exists a set
of inputs that can satisfy the formula [4]. This is similar to Person et al.’s
differential symbolic execution technique [24] in that syntactic differencing is
complemented by using a decision procedure for checking semantic equivalence.
While differential symbolic execution techniques compute symbolic summaries
at a method (or block) and check equivalence between two methods [24,19],
Vdiff checks equivalence between sensitivity lists (i.e., Verilog’s process inter-
face descriptions written in Boolean logic) and does not perform extensive
symbolic execution like Person et al.’s technique.

12 Adam Duley et al.

For example, the first always block sensitivity list in Figure 1 was reordered
between versions. From a syntactic point of view, there has been a definite
change to the sensitivity list; however, the change has no effect on the operation
of the always block because the modified list is equivalent to the original list
for every possible set of input signals. We currently focus on checking changes
to an always block sensitivity list (AL_SE) to see if the original and modified
lists are Boolean equivalent. In the future version of Vdiff, we plan to extend
our SAT solver-based semantic comparison to include Boolean expressions
in blocking and non-blocking assignments, continuous assignments, and IF
conditions.

3.3 Vdiff Eclipse Plug-In

We implemented our differencing algorithm as an Eclipse plug-in. The plug-in
is available for download [15]. Vdiff plug-in compares program revisions re-
trieved from a Subversion repository using the Subclipse interface [5]. Figure
2 shows the screen snapshot of our Vdiff plug-in. Its tree view visualizes AST
matching results hierarchically; its text view presents textual differences be-
tween two program versions using the Eclipse compare plug-in and its console
outputs change-type level differences with a pointer to word level differences.
For example, changes to the sensitivity list are identified as textual differences
in the side-by-side view, but they are reported as AL_SE: sensitivity list changes.
As reordering input signals in the sensitivity list does not lead to any semantic
differences, the change is marked as Boolean equivalent.

4 Quantitative Evaluation

Our evaluation addresses the following research questions:

— RQ1: What is the overall accuracy of Vdiff in computing change-type level
differences?

— RQ2: How does Vdiff’s AST matching algorithm compare to existing AST
matching algorithms?

— RQ3: What is the impact of using similarity thresholds in matching AST
nodes?

— RQ4: How well does Vdiff scale to large projects with a large amount of
changed code?

Subject Programs. To evaluate Vdiff, we acquired data from two Verilog
projects: UART16550 [2] and GateLib’s DRAM controller project [3]. The
UART16550 project contains the design for the core logic of a serial com-
munication chip that provides communication capabilities with a modem or
other external devices. We also analyzed the RAMP project’s GateLib DRAM
controller. RAMP is an infrastructure used to build simulators using FPGAs
(field-programmable gate arrays). To be able to access memory uniformly inde-
pendent of a chosen platform, GateLib’s DRAM controller provides an abstract

Title Suppressed Due to Excessive Length 13

Table 2 Subject Programs

UART16550 GateLib
LOC 2095 to 3616 286 to 1843
Files 8 to 12 ltob
Check-ins 56 49
Avg. Modified Lines 42.12 27.98
Avg. Modified Files 1.92 1.35

interface which includes a standard DRAM interface, arbiter, asynchronous
adapter and remote memory access.

To evaluate the accuracy of Vdiff output, we created an evaluation data set
through manual inspection. We examined the individual output of svn diff on
the same revision and manually classified them into change-types. Vdiff ran on
the same version histories and produced change-type level differences. Running
Vdiff took 0.080 second per revision on average (in comparison to 0.059 second
on average when running GNU diff) on Intel Core 2 Duo Thinkpad 2 GHz with
1.96 GB of RAM running Windows XP. Vdiff’s output was then compared to
the manually created evaluation data set. In addition, to assess performance
and scalability, we applied Vdiff to the revision history of nine open source
projects using a machine configuration, an Intel Core i5 M 520, 2.40 GHz Dual
Core processor with 2GB of RAM, running Windows 7 Professional 32-bit.

4.1 Precision and Recall

Suppose that V' is a set of change-type level differences identified by Vdiff, and
E is a set of manually identified change-type level differences. Precision and
recall are defined as follows:

Precision: the percentage of Vdiff’s change-type level differences that are
VNE
| . |

Recall: the percentage of correct change-type level differences that Vdiff
finds, |V‘E|E| .

Figure 4 shows the results on UART16550 project’s 56 check-ins and GateLib
project’s 49 check-ins. Each row reports the number of revisions per file, the
size of an evaluation data set (i.e., manually inspected change-types |E|), the
number of change-type level differences reported by Vdiff (]V|), the number of
correct differences reported by Vdiff (|[V N E|), and precision and recall per file.
Our evaluation shows that Vdiff is extremely accurate for most modules—its
precision and recall are 97.5% and 97.7% on UART16550 and 96.2% and 96.9%
on GateLib’s DRAM controller.

The inability to match nodes due to low text similarity led to false positives
(incorrect differences found by Vdiff, V — F) and false negatives (correct differ-
ences that Vdiff could not find, E—V'). Figure 6 shows an example of both false
positives and false negatives. In this example, three changes were made: (1)
an extra condition (rstate == sr_idle) was added before setting counter_b
(IF.CC), (2) the condition for decrementing count_b was modified by removing

correct,

14 Adam Duley et al.

File Rev. LOC Eval. Vdiff |V NE| Prec. Rec.
(min:max) |E| \4 [V NE| [V NE|
/IV] /IE|
raminfr.v 3 95:111 3 3 3 100% 100%
timescale.v 3 3:64 3 3 3 100% 100%
vart_debug_if.v 6 98:126 9 9 9 100% 100%
uart_defines.v 10 177:247 25 25 25 100% 100%
uart_receiver.v 25 341:482 94 103 92 89.3% 97.9%
uart_regs.v 35 531:893 282 276 272 98.6% 96.5%
uart_rfifo.v 5 267:320 37 37 37 100% 100%
uart_sync_flops.v 2 122:122 2 2 2 100% 100%
uart_tfifo.v 3 227:243 3 3 3 100% 100%
uart_top.v 11 170:340 38 38 38 100% 100%
uart_transmitter.v 13 288:351 39 39 39 100% 100%
uart_wb.v 25 125:317 65 63 63 100% 96.9%
Total (UART) 141 600 601 586 97.5% 97.7%
DRAM.v 14 286:297 22 23 21 91.3% 95.5%
DRAMArbiter.v 15 286:429 214 224 214 95.5% 100.0%
DRAMArbiterlnner.v 5 392:396 5 5 4 80.0% 80.0%
DRAMExaminer.v 29 180:450 249 244 238 97.5% 95.6%
DRAMRouter.v 6 397:397 7 6 5 83.3% 71.4%
Total (GateLib) 69 497 502 482 96.2% 96.9%
Total ‘ 210 1097 1103 1068 96.8% 97.3%

Fig. 4 Precision and recall of Vdiff on subject programs (ths=0.65 and th;=0.80)

80
70
60
50
40
30

20

1 Uart
‘1 | | ’ | l|| ||||
n I| 1 | Y
0
O>WoW>SAQW>SQW>SxVlx>a00 Vae0>0000>2002>200>200200>00>0200>9
OEmlguéguénuémn.umzmgIEIZQEUZ,chDI§QI§Q:\:§QI§DI§D§DI§Z
E 0T e n'E N E R SO 00 <E 055 7 I0F 0 EI0E {0 0 IEI0E
| 2 102 e LS o] 1521219 L
20200 poZglesT e 129%00sZssEr'ssSsvopredunuyyLludzz >
<z 9<g z Lz S523szE Sy zzzuWiEZz>GW
22 =z az%z=2 22333 3352E2=50422553
£E5 cog =

Fig. 5 Frequency of change-types

counter b != 8’hff (IF.CC), and (3) the else block with the rx_lsr mask con-
dition was removed (IF_-RBR). Since the text similarity algorithm used by Vdiff
considers the first IF condition different enough from its original, the change
is actually classified as a removal of an IF statement (IF.-RMV) with an addition
of a new IF statement (IF_.APC). Thus, Vdiff reports two incorrect change-type
level differences (IF.-RMV, IFZAPC) and misses three expected differences as a
result (IF.CC, IF.CC, IF_RBR).

Title Suppressed Due to Excessive Length 15

Expected Differences
(old program version)

- if (!srx_pad_i) /*IF.CC*/

- counter_b <= #1 8°d191;

- else

- if (counter_b != 8’b0 && counter_b != 8’hff) /* IF.CC */
- counter_b <= #1 counter_b - 8’dil;

- else if (rx_lsr_mask)

- counter_b <= #1 8’hff; /* IF.RMV */

(new program version)

if (!srx_pad_i || rstate == sr_idle) /*IF_.CC*/
counter_b <= #1 8’d191;
else
if (counter_b != 8’b0) /* IF_.CC*/
counter_b <= #1 counter_b - 8’dl;

+ o+ o+ o+ o+

Vdiff Outputs
(old program version)

- if (!srx_pad_i) /* IF_RBR *:

- counter_b <= #1 8°d191;

- else

- if (counter_b != 8’b0 && counter_b != 8’hff)
- counter_b <= #1 counter_b - 8’dl;

- else if (rx_lsr_mask)

- counter_b <= #1 8’hff;

(new program version)

+ if (!srx_pad_i || rstate == sr_idle) /* IF_APC */
+ counter_b <= #1 8°d191;

+ else

+ if (counter_b !'= 8’b0)

+ counter_b <= #1 counter_b - 8’dl;

Fig. 6 Vdiff reported IF_APC and IF_RMV when two IF_CCs and one IF_RBR were expected.
Code with red shade represents removal, code with gray shade represents modification, and
code with blue shade represents addition.

To understand the types of changes common in Verilog, we plotted the
distribution of identified change-types in Figure 5. The two projects we an-
alyzed had very different characteristics: UART16550 had a significant num-
ber of core logic changes during its development, whereas GateLib’s DRAM
project evolved its abstract interface while hiding the actual implementation
of the platform-specific DRAM implementation. In the UART16550 design,
changes were frequently made to non-blocking assignments, registers, and
always blocks. GateLib project had many changes to generate blocks and
parameters. Ubiquitous changes observed across both projects were wire ad-
ditions, changes to module instantiation ports, and changes to assignments.

16 Adam Duley et al.

We hypothesize that by producing accurate syntactic differences in terms of
change-types, Verilog developers can better understand differences at a high
level of abstraction. In addition to our user study participants described in
Section 5, we demonstrated Vdiff to a few engineer with many years of ex-
perience in Verilog. One of the designers told us, “I can see a use for [the
change-types] right away. It would be great for team leads because they could
look at this log of changes and understand what has changed between versions
without having to look at the files [textual differences].” We plan to study how
engineers use Vdiff on their codebase, measure its accuracy with respect to the
differences expected by the engineers, and improve Vdiff’s algorithm based on
their suggestions.

4.2 Comparison of AST Matching Algorithms

To assess the effectiveness of our weighted bipartite graph matching algorithm

in matching AST nodes in the same level, we constructed two alternative

algorithms by borrowing ideas from existing AST matching algorithms [12,

22].

1. Exact Matching: This is the most naive version of AST matching algorithm
that finds corresponding nodes in the same level using the exact same label.
It has the same effect of using Neamtiu et al.’s AST matching algorithm
[22] that traverses two trees in parallel and matches corresponding nodes
by the same label in the same syntactic position in the trees.

2. In-Order Matching: This algorithm finds corresponding nodes in the same
level in order—it starts by examining each node in the left tree in order
and searching a node in the right tree with the highest similarity. This
algorithm has the same effect of using the Cottrell et al.’s AST matching
algorithm [12], which determines ordered correspondences between two sets
of descendant nodes by considering nodes in the left tree in turn and finding
the best corresponding node in the right tree using a linear search.

3. Greedy Weighted Bipartite Matching: Our algorithm finds corresponding
nodes in the same level using a weighted bipartite graph matching algo-
rithm [11].

Table 3 shows the comparison of the precision and recall of in-order match-
ing algorithms (column 1 and column?2) with our weighted bipartite matching,
which relaxes the constraint of linear search to prevent early selection of a
match that leads sub-optimal matching (column 3). As shown in Table 3, our
algorithm improved the precision by 41.4% and the recall by 29.8% compared
to the baseline (column 1) and improved the precision by 6.6% and the recall
by 5.9% compared to an in-order matching based on similar labels (column
2). This evaluation of 1097 differences from 210 file revisions in two real world
projects shows that the ordering of code actually matters in practice when it
comes to computing differences between program versions.

Based on the anonymous reviewers’ comments from ASE 2010, we com-
pared Vdiff with the EMF configurable program differencing framework [1]

Title Suppressed Due to Excessive Length 17

Table 3 Comparison between different algorithms for matching sibling nodes

Average Label In-Order ‘Weighted
Matching Matching Bipartite

Precision 56.1% 90.9% 97.5%

Recall ‘ 67.9% 91.8% 97.7%

by adapting it to work for Verilog. We also tried to compare Vdiff with Sid-
iff [28] but Sidiff was not available for an extension to target Verilog. We
mapped (1) modules in Verilog to classes in EMF, (2) always blocks and
continuous assignments to operations, (3) wires, registers, and ports to fields,
(4) and module instantiations to reference pointers in an EMF ecore model.
On the same UART data set, the EMF Compare tool reported the 47.04%
recall with the 80.84% precision because the EMF ecore modeling language
could not model the implementation of always blocks including blocking and
non-blocking statements.

4.3 Impact of Similarity Thresholds

Our algorithm uses th, (threshold for short text) and th; (threshold for long
text) to determine the similarity between two AST subtrees. If the similarity
is above an input threshold, then the difference will be classified as change;
otherwise, they are considered an ADD or a DELETE. We assessed the impact
of these similarity thresholds by incrementing ths by 0.05, from 0.5 to 0.95,
while setting th; to its default value 0.80. We also incremented th; by 0.05,
from 0.5 to 0.95, while setting ths to 0.65. Figures 7 and 8 show the resulting
accuracy of varying these thresholds on the uart_receiver.v file during its

entire revision history. The F-measure is also plotted to reason about precision

. 2X Precision X Recall
and recall together: (Precision-tRecall) -

Precision generally increases as thg increases due to more strict match-
ing requirements. If ths is too low, unrelated nodes are incorrectly matched
and reported as changes instead of additions and deletions, adversely affect-
ing accuracy. However, when thg reaches around 0.95, its precision and recall
measures decrease as the threshold requirement becomes too strict, and many
unmatched nodes are considered additions and deletions instead of expected
changes. The F-measure reaches the maximum when th is 0.65. Varying th;
follows a similar trend for similar reasons. However, matching large blocks
requires a more strict threshold for correct matching to occur as illustrated
by the increase in precision from 0.60 to 0.90. The F-measure reaches the
maximum when th; is around 0.8 and 0.85.

4.4 Performance

To measure the running time performance and scalability, we applied Vdiff
to the entire revision history of nine open source hardware design projects

18 Adam Duley et al.

1.00 1.00

0.90 0.90

085 085

080 0.80

0.75 ~—Precision 0.75 ~#—Precision
070 Recall 070 Recall

0.65 0.65
0.60 0.60
055 0.55
0.50 0.50
0.5 055 0.6 0.65 0.7 0.75 0.8 0.85 09 095 ths 0.5 055 0.6 065 0.7 075 0.8 0.85 09 095 th_|

Fig. 7 Precision and recall when varying Fig. 8 Precision and recall when varying
ths while keeping th; at 0.80 th; while keeping ths at 0.65

found in the OpenCores repository and the RAMP project repository.! These
projects are Amber ARM-compatible core for 3-stage pipeline, 5-stage pipeline,
and core system components; Ethernet MAC 10/100 Mbps; OpenMSC430 16-
bit micro-controller; OpenRISC OR1200 processor; RAMP GATELIB DRAM
controller; Secure Digital (SD) card host controller; and UART 16550 core.
We selected these nine projects because they are generally larger than other
projects in size. The size of the latest version of each project ranges from 1842
LOC to 31473 LOC. We measured the total number of added and deleted
lines over all revisions per each file using its SVN history. The cumulative
number of changed lines per each project during its evolution history ranges
from 265 CLOC to 17288 CLOC (Changed LOC). For these input programs,
running Vdiff on its entire revision history for all files takes only 0.08 min-
utes for Amber ARM-compatible core for 3-stage pipeline; 0.21 minutes for
Amber for 5-stage pipeline; 0.24 minutes for Amber system; 1.54 minutes for
Ethernet MAC 10/100 Mbps; 0.53 minutes for OpenMSC430 16-bit micro-
controller; 1.62 minutes for OpenRISC 0R1200 processor; 0.28 minutes for
RAMP GATELIB DRAM controller; 0.07 minutes for SD card host controller;
and 0.77 minutes for UART 16550 core.

The running time of Vdiff depends on both the size of input program
pairs and program differences. Thus Table 4 shows both the size of the latest
program version in LOC (lines of code), the sum of program differences over
all revisions in CLOC (}_ Changed LOC), and the time taken to run Vdiff in
milliseconds, and the total number of AST node additions or deletions over
all revisions produced by Vdiff (> AST edits).

Because most open source hardware design projects in the OpenCores
repository are moderate size up to 30 KLOC, to measure scalability, we com-
bined the evolution history of the above nine projects and measured the cumu-
lative running time for processing the entire revision history of each additional
file. Figures 9, 10, and 11 show the cumulative distribution of running time
in milliseconds vs. the size of the latest version in LOC, the total size of all
added and deleted lines, and the total size of Vdiff output in terms of AST
node edits respectively.

1 http://opencores.org and http://ramp.eecs.berkeley.edu

Title Suppressed Due to Excessive Length 19

Table 4 Vdiff running time for nine open source subject programs

Program Latest Z Time
Size CLOC (ms) AST
(LOC) edits
Amber ARM-compatible core 6455 265 4994 59
(3-stage pipeline)
Amber ARM-compatible core 10393 2142 12654 106
(5-stage pipeline)
Amber ARM-compatible core 5805 2154 14179 100
(system)
Ethernet MAC 10/100 Mbps 12320 17288 92889 597
OpenMSC430 16-bit 8661 6040 32141 638
micro-controller
OpenRISC OR1200 processor 31473 16409 97137 484
RAMP GATELIB DRAM controller 1842 1948 17000 244
Secure Digital (SD) card host 2924 4780 4391 50
controller
UART 16550 core 3616 2991 45853 448

The above projects are all downloaded from the OpenCores repository at
http://opencores.org.

Vdiff running time increases linearly as we increase the amount of added
and deleted code, as shown in Figures 11 and 10. The running time also in-
creases roughly linearly, as we increase the input program size, as shown in Fig-
ure 9. In summary, Vdiff processes the entire version history of 54017 modified
lines from the nine projects and produces 2726 AST node additions/deletions
all under 5.35 minutes.

5 User Study

To assess the utility of Vdiff during peer code reviews, we conducted a user
study with eight hardware design experts from a large multinational semicon-
ductor and processor company. The goal of this user study is to understand
how hardware designers identify and classify Verilog program differences dur-
ing peer code reviews and to assess how the experts’ change classification
matches the output of Vdiff. Furthermore, our goal is to understand and com-
pare the strengths and limitations of Vdiff against Tkdiff, a tool that visualizes
textual program differences in color in a side by side view. Tkdiff is widely used
among hardware design engineers in the same company [6].

We recruited participants by sending email invitations to engineers and
managers in the RTL (register-transfer level) design group in the company.
Eight engineers responded to our study invitation and participated in the
study. Table 5 summarizes the profile of study participants. The participants
had three to thirty years of experience in hardware design and all participants
used a textual program differencing tool, diff, and diff-based version control
systems. Six out of eight participants have participated in peer code reviews
before. In terms of their role in the company, P1, P2, P5, and P7 are RTL

20

Adam Duley et al.

Vdiff running time in seconds

Fig. 9 Program size

Vdiff running time in seconds

350

200 - g

150 /

100

0 : : : : : : :)
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Program size in LOC

in LOC vs. Vdiff running time in seconds
350 -

300 '

o] I

200 SO

150 /
L 4

100

P

0 10000 20000 30000 40000 50000 60000

Size of program differences in changed LOC

Fig. 10 The size of program differences in changed LOC vs. Vdiff running time in seconds

Vdiff running time in seconds

350
TS

S

s ¢¢

N

300 -
250 - Se®
200 O
150 - R PR

100 -

50

0 T T T T T d
0 500 1000 1500 2000 2500 3000

The number of changed AST nodes

Fig. 11 Vdiff output size, i.e., the number of AST node additions and deletions vs. Vdiff
running time in seconds

designers; P3 is a verification team lead; P4 and P8 are design team leads; and
P6 is an RTL team manager.

The study participants were given two code review tasks. For each task,
the participants inspected changes between the old and new version of a Ver-
ilog program and classified program differences explicitly as semantic or non-
semantic differences. The following paragraph shows the instructions provided
to the participants.

Title Suppressed Due to Excessive Length 21

Table 5 Background of User Study Participants

Background Questions
Q1 How many years of experience do you have in the hardware design industry?
Q2 What is your job title? (optional)
Q3 How many years of experience do you have for the following hardware descrip-
tion languages (HDLs)?
a. Verilog?
b. SystemVerilog?
c. VHDL?
Q4 Have you used the diff or svn diff tool before?
Q5 Have you used an integrated development environment (IDE) like Eclipse to
develop with HDLs before?
Q6 Have you participated in code reviews before?
Q7 Which version control systems have you used (such as SVN, bitkeeper, CVS,

Clearcase)?
Answers from Participants
Q1 Q2 Q3 System

(Years) (Job Title) Verilog Verilog ~ VHDL
P1 8 Staff design engineer 8 2 0.5
P2 30+ Principal design engineer 0.5 0 0
P3 14 Principal member of technical staff 14 10 2
P4 22 Consultant design engineer 6 0 9
P5 20 Consultant design engineer 18 0 0
P6 19 Principal design engineer 18 1 0
P7 15 Consultant design engineer 15 0 4
P8 3 Senior design engineer 5 1 7

Q4 (diff) Q5 (IDE) Q6 (Code Review) Q7 (Version control systems)
P1 Yes No Yes SVN, CVS, Synchromicity
P2 Yes No No CVS, SVN
P3 Yes No Yes SVN, Clearcase, Synchronocity
P4 Yes No Yes SVN, RCS, CVS
P5 Yes No Yes SVN, CVS, Synchronocity
P6 Yes No Yes SVN, RCS, CVS
P7 Yes No Yes CVS, SVN, Perforce
P8 Yes Yes No SVN, Mercurial

“The goal of this user study is to understand how hardware design engineers
interpret program differences between two versions of a Verilog file. After you
answer short questions about your background, you will be presented with two
sets of Verilog examples, each with an “original” version and a “changed”
version. Please identify each change you recognize and classify it (such as
“condition of IF statement changed”). Please also note whether the changes
that you have recognized are semantic changes or non-semantic changes.”

The code examples for the user study were taken from the uart_receiver.v
design, a part of the 16550 UART Open Cores (universal asynchronous re-
ceiver/ transmitter) project. The SVN revisions 44 and 45 were used to create
the examples. These examples were selected by the first two authors, who
have eleven and eight years of hardware design experience in industry re-
spectively, because these tasks involve fairly complex program differences in
Verilog. These tasks also require reviewing both semantic and non-semantic
changes, which are very common in Verilog programs, emulating realistic code
review tasks in hardware design firms. A few edits were made to condense the

22 Adam Duley et al.

code to fit in two pages and to partition the changes from multiple version of
the file into two sets of differences. This simplification was done not to favor
our Vdiff, which handles very large programs fast as shown in Section 4.4, but
to make the code review tasks completed within 30 minutes, which we ask from
the participants during our recruitment. Figures 12 and 13 show the Verilog
programs used for the code review tasks. The Verilog programs provided to
the user had syntax highlighting but did not have any change annotations such
as ‘) renaming rf_push pulse to pulse’ shown in the figures. These change
annotations are inserted later for presentation purposes for this article. None
of the participants have experience with developing or extending the UART
Open Cores project.

For the first code review task, the design in Figure 12 contains a simple set
of counters (b and t) and a pulse signal. The reset signal wb_rst_i sets the
counters and clears pulse. When enabled, the counters decrement. While it
contains many changes common during the evolution of Verilog design, some
of the changes have no effect on the semantics. For example, changes 2 and
@ reorganize the code; thus, the functionality is not affected by the changes.
Other changes that modify the Boolean algebra such as @ and © directly
affect the semantics of the hardware design. Finally, changes such as @), ©),
and (1) reflect signal name changes. In terms of semantics, these renamed
signals may affect other areas of the design. Furthermore, these renamings
many not be obvious to the code reviewer because the old and new signal
names are very similar.

For the second review task, the design in Figure 13 contains a state ma-
chine with an appropriate reset and the same pulse design as in Figure 12. The
differences noted in Figure 13 again contain both semantic and non-semantic
differences. D) and @) reflect code reordering with no semantic change. Sim-
ilarly, changes ® and (7) reflect an ordering change inside of always blocks
without semantic differences. Changes @ and @ modify an assignment and
add a new signal. Moreover, change 8 modifies an assignment. Finally, change
©) shows a new constant definition and its use.

After each code review task, the participants were presented with two sets
of program differencing outputs produced by Vdiff and Tkdiff respectively.
They were then asked to assess how the tools’ outputs match their change
classifications. Each study consists of an explanation of a study procedure (5
minutes), the first code review task (10 minutes), the second code review task
(10 minutes), assessment of Vdiff and Tkdiff outputs on the same code (5
minutes). Each user study session was audio-recorded.

Table 6 summarizes each participant’s classification of program differences.
It also shows Vdiff and Tkdiff’s outputs and whether each change is a se-
mantic difference or a non-semantic difference. / represents a change that a
participant explicitly noted as a semantic difference. V represents a change
that participants explicitly noted as a non-semantic difference. Empty cells
indicate that the participant did not make any comment about the change.
We computed an inter-rator agreement score by comparing each participant’s
classification against other participants. The inter-rator agreement score for

Title Suppressed Due to Excessive Length 23

(old program version) (new program version)
module uart_receiver (clk, wb_rst_i, module uart_receiver (clk, wb_rst_i,
rf_push, rf_pop, srx_pad_i, enable, rf_push, rf_pop, srx_pad_i, enable,
// inputs // inputs
counter_t, rf_count, rstate, counter_t, rf_count, rstate, (@Dpulse);
@Drf_push_pulse); // outputs
// outputs // Timeout condition detection
// Determine counter B value @reg [9:0] counter_t;
1 Q d 1k d,
3biji i) (posedge ¢ or posedge // counts the timeout condition clocks
’;egir_l // Determine counter T value
if (wb_rst_i) Palways @ (posedge clk or posedge
®counter_b <= 8°d159; wb_rst_i)
else begin
if (srx_pad_i) if (wb_rst_i)
®counter_b <= brc_value; counter_t <= 10°d639;
// character time length-1 é{sio bits for the default &l

else .
if (enable & (Bcounter_b != it @ (xi_pop)
// cntr reset if RX FIFO @

// only work on enable times // trigger level/accessed/empty
counter_t <= toc_value;

// break not reached. ,
else
®counter_b <= counter_b -1; if (®~enable && counter_t !=
// decrement break counter , -
- 10°b0)
end // always of break condition
// detection
// Timeout condition detection

87b0)

// we don’t want to underflow
counter_t <= counter_t - 1;

end
@reg [9:0] counter_t; // Determine counter B value
// counts the timeout condition clocks always @ (posedge clk or posedge
// Determine counter T value wb_rst_i)
@always @ (posedge clk or posedge begin
if (wb_rst_i)
wb_r;t_i) ®rcounter_b <= 8’d159;
begln . else
if (wb_rst_i) if (srx_pad_i)
counter_t <= 10’d639; -pac-
// 10 bits for the default 8N1 ®xrcounter_b <= brc_value;
else // character time length - 1
if @ (rf_push_pulse || rf_pop else
S = if (enable & (6 rcounter_b !=
rf_count ==
- 87b0)
/7 anr reset if RX FIFO © // only work on enable times
// trltg:gertli:x_/ei/acceisefl/empty // break not reached.
el::un er- = toc_value; ®rcounter_b <= rcounter_b -1;
if (®enable && counter_t != // decrement break counter
1070) end // always of break condition

// detection

// we don’t want to underflow always @ (posedge clk or posedge

counter_t <= counter_t-1;

wb_rst_i)
end begin
always @ (posedge clk or posedge if (wb_rst_i)
wb_rst_i) rf_push_q <= 0;
begin P - '

else

if (wb_rst_i) rf_push_q <= rf_push;

rf_push_q <= 0;
else
rf_push_q <= rf_push;

end
assign (Dpulse = rf_push

end & “rf_push_qg;
assign (Drf_push_pulse = rf_push endmodule
& “rf_push_q;
endmodule

Fig. 12 A Verilog program used for the code review task #1: an always block 3 and a
register allocation (2) are rearranged. IF conditions in @ and (® are modified. counter_b in
®) is renamed to rcounter_b. Variable rf_push_pulse is renamed to pulse in (D and (.

24

Adam Duley et al.

(old program version)

(new program version)

module uart_receiver (clk, wb_rst_i, lcr,
rf_pop, srx_pad_i, enable,
// inputs
counter_t, rf_count, rf_overrun,
rstate, rf_push_pulse);

// outputs
always @ (posedge clk or posedge
wb_rst_i)
begin
if (wb_rst_i)
begin
@ ®
rstate <= 1’b0;
rcounterl6 <= 0;
rbit_counter <= 0;
®rshift <= 0;
rf_push <= 1’b0;
®rf_data_in <= 0;
end
else
if (enable)
begin
case (rstate)
sr_idle : begin
®rcounter16 <= 4°b00000;
(rf_push <= 1°b0;
if (srx_pad_i==1’b0 &
“break_error)
begin
rstate <= sr_rec_start
end
end
sr_rec_prepare : begin
case (@ (ler[1:01)
// number of bits in a word
endcase
rcounterl6 <=
rcounter16_minus_1;
end
endcase
end
end

@always @ (posedge clk or posedge

wb_rst_i)
begin
if (wb_rst_i)
rf_push_q <= 0;

else
rf_push_q <= rf_push;
end
@assign rf_push_pulse = rf_push &
“rf_push_q;
endmodule

module uart_receiver (clk, wb_rst_i, lcr,
rf_pop, srx_pad_i, enable,
// inputs
counter_t, rf_count, rf_overrun,
rstate, rf_push_pulse);
// outputs

assign rf_push_pulse = rf_pus

ig; f_push_pul f_push &
“rf_push_gq;

(@assign sr_idle = 1°b0;

®always @ (posedge clk or posedge

wb_rst_i)
begin
if (wb_rst_i)
rf_push_q <= 0;
else
rf_push_q <= rf_push;
end
always @ (posedge clk or posedge
wb_rst_i)
begin
if (wb_rst_i)
begin
@rstate <=
rcounter16
rbit_counter

®rf_push <=

sr_idle;

1°b0;
rshift

®

end
else
if (enable)
begin
case (rstate)
sr_idle : begin

(@rf_push <= 1°b0;

®rcounteri6 <= 4°b1110;
if (srx_pad_i==1’b0 &
“break_error)
begin
rstate <= sr_rec_start;
end
end
sr_rec_prepare : begin

case (ler @L[/*[1:0]*/
‘UART_LC_BITS])

// number of bits in a word

endcase
rcounterl6 <=
rcounter16_minus_1;
end
endcase
end
end
endmodule

Fig. 13 A Verilog program used for the code review task #2: assign in () and an always
block in) are moved. A constant is replaced with a new variable @) and @. Non blocking
statements are reordered (® and (7) and dead code is removed ©). A non-blocking statement
had a semantic change). A new define statement is added.

Title Suppressed Due to Excessive Length 25

semantic differences is the percentage of cells marked as 1/ out of all cells for
the columus representing semantic differences (e.g., Columns @ and () for the
first task). Similarly, the inter-rator agreement score for non-semantic differ-
ences is the percentage of cells marked as V out of all cells for the columns
representing non-semantic differences (e.g., Columns ©), @, @, @, and @
for the first task). We also computed the agreement between the participants’
change classification and Vdiff and Tkdiff outputs respectively.

The inter-rator agreement about semantic changes is 93.75% for the first
task and 85.71% for the second task, indicating that designers could miss se-
mantic changes and they do not necessarily converge on semantic changes. The
inter-rator agreement about non-semantic differences is 71.42% and 66.66%
respectively. These numbers are conservative lower-bound estimates as the de-
signers did not enumerate all non-semantic changes even though they were
requested to articulate all semantic and non-semantic differences that they
recognize.

For both tasks, because Vdiff could detect register allocations and process
blocks despite two always blocks having identical interfaces, the participants’
change classifications were better aligned with Vdiff than Tkdiff. The agree-
ment scores between Vdiff and participants are 45.67% and 38.88% for the
first and second tasks respectively. There are two reasons why the agreement
scores are low: (1) Vdiff found a few false positives because it could not detect
renamed signals or a constant replacement with a new signal declaration. Such
refactoring were responsible for four textual differences in the first task and
two textual differences in the second task. (2) In case of non-semantic differ-
ences, the participants did not explicitly articulate all differences. Overall, it is
noteworthy that Vdiff’s output is better aligned with the experts’ classification
of Verilog program changes than Tkdiff.

When presented with the results of Vdiff and Tkdiff, the participants told
us that Tkdiff reports too many non-semantic changes and it does poor job
of recognizing re-arranged, semantically equivalent code. The following para-
graphs lists some quotes from the participants regarding Tkdiff.

‘Tkdiff is not smart enough to compare those two moved blocks.’

‘It does not understand syntactic units of code...’ ‘I use Tkdiff, and it
is a cave man’s solution. I like its coloring scheme, but it is very poor at rec-
ognizing blocks that have been moved.’

The participants reported that Vdiff does a good job at suppressing non-
semantic differences, making it easier for them to filter out non-semantic dif-
ferences. Verilog specific change-types in Vdiff help them to grasp a high level
structure of design changes.

‘The biggest problem that you are attacking (in Vdiff) is to ignore rear-
ranged code, (in other words) logically equivalent code that diff cannot recog-
nize ...’

‘Wow, gotcha.. I think a nice thing about it is that this gives you a very
high level structure of code... If I am looking at the code that I am not familiar
with, this (Vdiff) gives you a high level structure of the design change, before

26 Adam Duley et al.

getting down into details.’

‘It ignores things that you don’t really care about, which is, this block get-
ting re-positioned differently. That’s not something material. Vdiff gives you
material changes, logical changes that you as a designer cares about.’

“Yeah, I think this (Vdiff) is extremely useful. Tkdiff shows too much
changes, but this tool would put me exactly at the material changes that I
care about.’

Though most participants did not use integrated development environ-
ments before, it was surprising to see their openness to a new way of com-
paring a Verilog program—a common task that they do daily. Several users
described a few painful techniques they have adopted to compare Verilog pro-
grams, such as manually editing the changed file to line up code blocks prior
to running Tkdiff. After seeing Vdiff at the end of the session, the majority
of the participants thought it would be useful and several of them asked how
they can start using Vdiff today. A couple of users made a distinction in the
type of tasks that they would use Vdiff for. They said they may not use Vdiff
for comparing their own code, but would use it to comprehend changes made
by others or code that they are not already familiar with.

Several participants suggested ideas for improving Vdiff. They wanted to
see changed blocks highlighted in color, similar to Tkdiff, to make visual scan-
ning easier. They also thought it would be nice to see more context lines around
the change code—double-clicking on the change currently shows only a narrow
view of surrounding code. Finally, they wanted to see program differences in
conjunction with related signals, for example, tracing modified signals to their
source and destination signals.

6 Discussion

This section discusses our Vdiff algorithms’ limitations, threats to validity,
and extensions necessary for applying Vdiff to other hardware description lan-
guages.

Limitations. Though we use two different thresholds, our algorithm is still
sensitive to subtle changes to variable names or IF-conditions and requires
careful tuning of similarity thresholds. Further investigation of different name
similarity measures such as n-gram based matching [14] is required. Renaming
wires, registers and modules often causes cascading false positives and false
negatives by incorrectly matching AST nodes at a top-level. Renaming detec-
tion techniques [33,20] could be used to overcome this limitation. The current
algorithm cannot recover from mismatches at a top level as it matches parent
nodes before matching their descendants. The equivalence check using a SAT
solver is currently limited to only sensitivity lists due to VEditor’s coarse-
grained parsing algorithm, and we plan to extend this check to all types of
boolean expressions. VEditor struggled with parsing pre-processor directives;
consequently, we worked around IF-DEFs by creating a version where the
IF branch is true and another version where the ELSE branch is true. We

Title Suppressed Due to Excessive Length 27
Code Review Task 1. Figure 12
Vdiff Change Types
@ IF_CC ® IF.CC ® NB.CE ® IF-CC ® NB.CE (DASG.CE
Semantic? | Yes Yes No No No No
Tkdiff Yes Yes Yes Yes Yes Yes
Vdiff Yes Yes Yes Yes Yes Yes
P1 Vv VA v
P2 v VA v v v
P3 V4 V4 v v v
P4 Vv
P5 Vv VA v v v v
P6 v v v v v v
P7 va v v v v v
P8 Vi v \% v \ \
Change Types Found by Users
@ MOVE @ MOVE @ MOVE
Semantic? | No No No
Tkdiff Yes Yes Yes
Vdiff No No No
P1 v
P2 v v v
P3 v v
P4 v v
P5 v v
P6 v v
P7 v v
P8 v \4 v

Inter-rator Agreement about Semantic Changes: 93.75%
Inter-rator Agreement about Non-semantic Changes: 71.42%"
Agreement between Vdiff and Participants: 45.67%"
Agreement between Tkdiff and Participants: 20.98%"

Code Review Task 2. Figure 13

Vdiff Change Types
@ ASG_ADD ®NB_RMV ~ @NB_CE O@SW_CADD ®NB_CE
Semantic? No No No Yes Yes
Vdiff Yes Yes Yes Yes Yes
Tkdiff Yes Yes Yes Yes Yes
P1 v v Vv Vv
P2 v Vv Vv
P3 v v v V4 V4
P4 v v v Vv
P5 v \v Vv
P6 (unavailable)
pP7 v v v Vv v
P8 v \Y v 4
Change Types Found by Users
@ MOVE @ MOVE ® MOVE (MMOVE
Semantic? No No No No
Vdiff No No No No
Tkdiff Yes Yes Yes Yes
P1 v
P2 v v
P3 v \v v v
P4
P5
P6
pP7 v v v v
P8 \% \% \% v

Inter-rator Agreement about Semantic Changes: 85.71%
Inter-rator Agreement about Non-semantic Changes: 66.66%"
Agreement between Vdiff and Participants: 38.88%"
Agreement between Tkdiff and Participants: 16.66%"

Table 6 ./ indicates a change that participants explicitly noted as a semantic difference
and V represents a change that participants explicitly noted as a non-semantic difference.
* The agreement scores are conservative lower bound estimates because most participants
did not explicitly enumerate all non-semantic differences.

28 Adam Duley et al.

first computed differences for these two versions separately and later merged
the results to help programmers understand syntactic differences under two
possible circumstances. Our results on precision, recall and frequent change-
types are limited to UART and GateLib and do not necessarily generalize
to other projects. In addition, the construction and manual identification of
change-types are subject to experimenter bias as they are done by the first
two authors of this paper, who have eleven and eight years of hardware design
experience in industry respectively.

Application of Vdiff to Other HDLs. While Verilog is the most widely
used HDL, two other HDLs are also prevalently used: SystemVerilog and
VHDL. SystemVerilog [27] extends the Verilog-2005 standard to include sev-
eral features commonly found in modern object oriented programming lan-
guages: multi-dimensional arrays, enum data types, struct, union, strings,
classes with inheritance, assertions, and synchronization primitives. Many of
these features in SystemVerilog cannot be directly mapped to hardware cir-
cuitry but could be used for verification and simulation. VHDL [9] was initially
developed in the 1980s, around the same time Verilog was created, and it has
features similar to Ada. Vdiff could be easily extended to other HDLs by plug-
ging in a different parser and handling new change types such as changes to
struct or enum in System Verilog.

7 Related Work

Matching corresponding code elements between two program versions is a
fundamental building block for version merging, regression testing selection
and prioritization, and profile propagation. Existing differencing techniques
often match code elements at a particular granularity based on closeness in
name and structure, such as: (1) lines and tokens [18,26,10], (2) abstract
syntax tree nodes [12,13,16,22,25,35], (3) control flow graph nodes [8], etc. In
the context of hardware development with HDLs, the state-of-the-practice in
comparing two versions of Verilog program is to use GNU diff [21] or a graphic
front end to diff, which provides a side-by-side visualization that highlights
deleted or added lines with different colors and provides navigation capability
to review particular differences [6]. These line-based differencing tools use the
longest common subsequence algorithm that aligns program lines in sequence
[18].

For software version merging, Yang [35] developed an AST differencing al-
gorithm. Given a pair of functions (fr, fr), the algorithm creates two abstract
syntax trees 7" and R and attempts to match the two tree roots. Once the two
roots match, the algorithm aligns 7’s subtrees t1,t2,...,t; and R’s subtrees
T1,72,...7; using the LCS algorithm and maps subtrees recursively. This type
of tree matching respects the parent-child relationship as well as the order
between sibling nodes, but is very sensitive to changes in nested blocks and
control structures because tree roots must be matched for every level. For dy-
namic software updating, Neamtiu et al. [22] built an AST-based algorithm

Title Suppressed Due to Excessive Length 29

that tracks simple changes to variables, types, and functions. Neamtiu’s algo-
rithm assumes that function names are relatively stable over time. It traverses
two ASTSs in parallel, matches the ASTs of functions with the same name,
and incrementally adds one-to-one mappings, as long as the ASTs have the
same shape. In contrast to Yang’s algorithm, it cannot compare structurally
different ASTs. Cottrell et al.’s Breakaway [12] automatically identifies de-
tailed structural correspondences between two abstract syntax trees to help
programmers generalize two pieces of similar code. Its two-pass greedy algo-
rithm is applied to ordered child list properties (e.g., statements in a block),
and then to unordered nodes (e.g., method declarations). Their subsequent
work, Jigsaw [13] improves Breakaway’s AST matching algorithm. Jigsaw is
different from ours in that Jigsaw leverages seed AST matches given by the
developer in the context of copy and paste in an Eclipse IDE and also employs
customized matching heuristics for different AST node types such as variable
declarations, conditionals, loops, expressions, etc. It is not possible to compare
our algorithm directly with Jigsaw because it uses semantically-based heuris-
tics for different Java AST node types and the details are not provided in their
paper.

Change Distiller [16] takes two abstract syntax trees as input and com-
putes basic tree edit operations such as insert, delete, move or update of tree
nodes. It uses bi-gram string similarity to match source code statements such
as method invocations, and subtree similarity to match source code structures
such as if-statements. After identifying tree edit operations, Change Distiller
maps each tree-edit to an atomic AST-level change-type such as parameter or-
dering change. Vdiff uses an approach similar to Change Distiller, in that we
identify similar subtrees by computing similarity measures and find the best
matching among similar subtrees by selecting matches with the highest simi-
larity one at a time. In addition, we also report AST-level matching results in
terms of Verilog specific change-types. Raghavan et al.’s Dex [25] compares two
ordered ASTs using both top-down matching and bottom-up matching. This
algorithm gives preferences to AST node matches in the same level that do not
results in moving or reordering nodes. Dex defines edit cost using fixed numbers
instead of similarity between AST node labels. Yu et al.’s MCT detects mean-
ingful program differences by leveraging programmer-provided annotations. It
transforms input programs into a normalized form and remove clones across
different normalized programs to detect non-trivial, relevant differences [36].
On the other hand, Vdiff does not require annotations.

The main difference between our AST comparison algorithm and existing
AST matching algorithms is that our algorithm identifies syntactic differences
robustly, even when multiple AST nodes have similar labels and when they
are reordered.

In addition to these, several differencing algorithms compare model ele-
ments [34,23,29]. For example, UMLAiff [34] matches methods and classes be-
tween two program versions based on their name. However, these techniques
assume that no code elements share the same name in a program and thus
use name similarity to produce one-to-one code element matches. Our algo-

30 Adam Duley et al.

rithm differs from these by not relying on one-to-one matching based on name
similarity.

As different language semantics lead to different program differencing re-
quirements, some have developed a general, meta-model based, configurable
program differencing framework [28,1]. For example, SiDiff [28,32] allows tool
developers to configure various matching algorithms such as identity-based
matching, structure-based matching, and signature-based matching by defin-
ing how different types of elements need to be compared and by defining the
weights for computing an overall similarity measure.

Sudakrishnan et al. [30] studied the types of bugs that occur in Verilog and
compared those findings to a similar study in Java. They presented a catego-
rization of change-types that caused bugs and how often they occurred, and
found that the most common bug pattern was changes to assignment state-
ments and if-statements. In our work, we extended Sudakrishnan’s change-
types by adding 25 change-types to comprehensively describe code changes
in two open source Verilog projects that we studied. While Sudakrishnan’s
change-type analysis is largely manual, our program differencing tool automat-
ically identifies change-type level differences between two program versions.

8 Conclusion

Most program differencing algorithms implicitly assume sequential ordering
between code elements or assume that code elements can be matched based
on their unique names regardless of their positions, such as reordered Java
methods. This limitation leads to poor accuracy when these techniques are
applied to languages such as Verilog, where it is common to use non-blocking
statements and there is a lack of unique identifiers for process blocks. This
paper presented a position-independent AST matching algorithm that is ro-
bust to reordering of code elements even when their labels are not unique.
Based on this algorithm, we developed Vdiff, a program differencing tool for
Verilog. Our evaluation shows that Vdiff is accurate with a precision of 96.8%
and a recall of 97.3% when using manually classified differences as a basis of
evaluation. Our user study with eight hardware design experts shows that the
experts’ change classification is better aligned with Vdiff than Tkdiff and that
Vdiff has potential to improve hardware designer productivity during peer
code reviews.

Acknowledgements We thank Greg Gibeling and Derek Chiou for providing accesses to
the RAMP repository and Adnan Aziz and anonymous reviewers for their detailed comments
on our draft.

References

1. Eclipse EMF Compare Project description: http://wwuw.eclipse.org/emft/projects/compare.
2. Opencore. http://opencores.org.

Title Suppressed Due to Excessive Length 31

PN OE

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Ramp. http://ramp.eecs.berkeley.edu.

Sat4J. http://www.satdj.org/.

Subclipse. http://subclipse.tigris.org.

Tkdiff. http://sourceforge/projects/tkdiff.

Veditor. http://veditor.sourceforge.net.

T. Apiwattanapong, A. Orso, and M. J. Harrold. A differencing algorithm for object-
oriented programs. In ASE ’04, pages 2—13, Washington, DC, USA, 2004. IEEE Com-
puter Society.

P. J. Ashenden. Vhdl-200x: The next revision. IEEE Design and Test of Computers,
20(3):112-113, 2003.

G. Canfora, L. Cerulo, and M. D. Penta. Tracking your changes: A language-independent
approach. IEEFE Software, 26:50-57, 2009.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-
Hill Science/Engineering/Math, 2001.

R. Cottrell, J. J. C. Chang, R. J. Walker, and J. Denzinger. Determining detailed
structural correspondence for generalization tasks. In ESEC-FSE ’07, pages 165-174,
New York, NY, USA, 2007. ACM.

R. Cottrell, R. J. Walker, and J. Denzinger. Semi-automating small-scale source code
reuse via structural correspondence. In Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of software engineering, SIGSOFT ’08/FSE-16,
pages 214-225, New York, NY, USA, 2008. ACM.

L. R. Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297-302, 1945.

A. Duley, C. Spandikow, and M. Kim. Vdiff download, http://users.ece.utexas.edu/
~miryung/software/Vdiff.html.

B. Fluri, M. Wiirsch, M. Pinzger, and H. C. Gall. Change distilling—tree differenc-
ing for fine-grained source code change extraction. IEEE Transactions on Software
Engineering, 33(11):18, November 2007.

V. Gupta and V. Pratt. Gates accept concurrent behavior. Foundations of Computer
Science, Annual IEEE Symposium on, 0:62-71, 1993.

J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common
subsequences. Communications of the ACM, 20(5):350-353, 1977.

S. K. Lahiri, K. Vaswani, and C. A. R. Hoare. Differential static analysis: opportunities,
applications, and challenges. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, FoSER 10, pages 201-204, New York, NY, USA, 2010.
ACM.

G. Malpohl, J. J. Hunt, and W. F. Tichy. Renaming detection. Automated Software
Engineering, 10(2):183-202, 2000.

E. W. Myers. An o(nd) difference algorithm and its variations. Algorithmica, 1:251-266,
1986.

I. Neamtiu, J. S. Foster, and M. Hicks. Understanding source code evolution using
abstract syntax tree matching. In MSR’05, pages 2—-6, 2005.

D. Ohst, M. Welle, and U. Kelter. Difference tools for analysis and design documents.
In ICSM ’03, page 13, Washington, DC, USA, 2003. IEEE Computer Society.

S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pasareanu. Differential symbolic exe-
cution. In SIGSOFT ’08/FSE-16, pages 226237, New York, NY, USA, 2008. ACM.
differential symbolic execution.

S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine. Dex: A semantic-
graph differencing tool for studying changes in large code bases. In ICSM ’04, pages
188-197, Washington, DC, USA, 2004. IEEE Computer Society.

S. P. Reiss. Tracking source locations. In ICSE ’08, pages 11-20, New York, NY, USA,
2008. ACM.

D. I. Rich. The evolution of systemverilog. IEEE Design and Test of Computers,
20(4):82-84, 2003.

M. Schmidt and T. Gloetzner. Constructing difference tools for models using the sidiff
framework. In ICSE Companion ’08, pages 947-948, New York, NY, USA, 2008. ACM.
M. Soto and J. Miinch. Process model difference analysis for supporting process evolu-
tion. Lecture Notes in Computer Science, Springer Berlin, Volume 4257/2006:123-134,
2006.

32

Adam Duley et al.

30.

31.

32.

33.

34.

35.

36.

S. Sudakrishnan, J. Madhavan, E. J. Whitehead, Jr., and J. Renau. Understanding bug
fix patterns in verilog. In MSR ’08, pages 39-42, New York, NY, USA, 2008. ACM.
D. Thomas and P. Moorby. The Verilog Hardware Description Language. Kluwer
Academic Publishers, 2002.

C. Treude, S. Berlik, S. Wenzel, and U. Kelter. Difference computation of large models.
In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the FEuropean software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 295-304, New York, NY, USA, 2007. ACM.

P. Weifigerber and S. Diehl. Identifying refactorings from source-code changes. In ASE
06, pages 231-240, Washington, DC, USA, 2006. IEEE Computer Society.

Z. Xing and E. Stroulia. Umldiff: an algorithm for object-oriented design differencing.
In ASE 05, pages 54-65, New York, NY, USA, 2005. ACM.

W. Yang. Identifying syntactic differences between two programs. Software — Practice
& Experience, 21(7):739-755, 1991.

Y. Yu, T. T. Tun, and B. Nuseibeh. Specifying and detecting meaningful changes in
programs. In ASE, pages 273-282, 2011.

