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Abstract—Over the past few years, several quantum software
stacks (QSS) have been developed in response to rapid hardware
advances in quantum computing. A QSS includes a quantum
programming language, an optimizing compiler that translates a
quantum algorithm written in a high-level language into quantum
gate instructions, a quantum simulator that emulates these
instructions on a classical device, and a software controller that
sends analog signals to a very expensive quantum hardware based
on quantum circuits. In comparison to traditional compilers
and architecture simulators, QSSes are difficult to tests due to
the probabilistic nature of results, the lack of clear hardware
specifications, and quantum programming complexity.

This work devises a novel differential testing approach for
QSSes, named QDIFF with three major innovations: (1) We
generate input programs to be tested via semantics-preserving,
source to source transformation to explore program variants.
(2) We speed up differential testing by filtering out quantum
circuits that are not worthwhile to execute on quantum hardware
by analyzing static characteristics such as a circuit depth, 2-
gate operations, gate error rates, and T1 relaxation time. (3)
We design an extensible equivalence checking mechanism via
distribution comparison functions such as Kolmogorov–Smirnov
test and cross entropy.

We evaluate QDIFF with three widely-used open source QSSes:
Qiskit from IBM, Cirq from Google, and Pyquil from Rigetti. By
running QDIFF on both real hardware and quantum simulators,
we found several critical bugs revealing potential instabilities
in these platforms. QDIFF’s source transformation is effective
in producing semantically equivalent yet not-identical circuits
(i.e., 34% of trials), and its filtering mechanism can speed up
differential testing by 66%.

I. INTRODUCTION

Quantum computing is an emerging computing paradigm
that promises unique advantages over classical computing.
However, quantum programming is challenging. Quantum
computation logic is expressed in qubits and quantum gates,
and the states of quantum registers are measured probabilis-
tically. Due to the physical properties of quantum mechanics,
qubits and quantum gates are fundamentally different from
classical bits and gate logic. For example, quantum indeter-
minacy dictates that the same quantum program can produce
different results in different executions.

To this end, many quantum software stacks such as Google’s
Cirq [1], Rigetti’s Pyquil [2], and IBM’s Qiskit [3] have
been developed to provide user-friendly high-level languages
for quantum programming, abstracting away the underlying
physical and mathematical intricacies.

A quantum software track (QSS) includes (1) APIs and
language constructs to express quantum algorithms, (2) a
compiler that transforms and optimizes a given input quantum
algorithm at the circuit level, and (3) a backend executor that
either simulates the resulting gates on classical devices or
executes directly on quantum hardware. Consider Qiskit [4],
which consists of four components: QiskitTerra that com-
piles and optimizes programs, QiskitAer that supports high-
performance noisy simulations, QiskitIgnis for error cor-
rection, noise characterization, and hardware verification, and
QiskitAqua that helps a developer to express a quantum
algorithm or an application. Other QSSes [2] such as Pyquil
have a similar set of components—e.g., Pyquil uses quilc as
a compiler and qvm as a quantum simulator.

As with any compiler framework, a QSS could be error-
prone. Developers and users often report bugs on popular
QSSes [3], [5], [6], and a simple search on StackOverflow
with the keyword “quantum error” would bring up over 500
posts on various QSS components, ranging from compiler
settings, simulation, and the actual hardware [7]. These posts
often reveal deeper confusion that developers face due to
inherent probabilistic nature of quantum measurements—if a
program produces a result that looks different from what is
expected, is it due to a bug or the non-determinism inherent
in quantum programs? Is there divergence beyond expected
noise coming from an input program, a compiler, a simulator,
and/or hardware?

Challenges. There are three technical challenges that make it
difficult to test QSSes.

The first challenge is how to generate semantically equiva-
lent programs for testing quantum compilers [8], [9]. Though
existing compiler testing techniques generate equivalent pro-
grams by manipulating code in dead regions or unexecuted
branches [10], a quantum program usually does not have many
unexecuted branches. Therefore, we must design a technique
that can produce a large number of semantically-equivalent
variant circuits that may induce divergence on hardware.

The second challenge is that compilers are not the only
source of bugs in a QSS. For example, in a line of recent
work [11], [12] on verified quantum compilers, compilers are
guaranteed to be correct with respect to their optimization
and transformation rules. However, the overall correctness of



QSSes goes beyond compiler optimization rules. We must
reason about subsequent execution on quantum simulators and
hardware, which are often the major sources of instabilities.
In fact, Rigetti or Cirq’s Github histories indicate that bugs
may come from its various backends due to improper initial-
ization [13], problematic APIs [14], or inappropriate synthesis
options [15].

The third challenge is how to interpret measurements from
quantum simulators or hardware, since quantum measurement
operations by definition are probabilistic in nature due to
quantum indeterminacy [11]. Therefore, when we execute
logically equivalent program variants, comparing their mea-
surement results is not straightforward, as we must take into
account inherent noise (e.g., hardware gate errors, readout
errors, and decoherence errors) and must determine whether
the observed divergence is significant enough to be considered
as a meaningful instability.

This Work. QDIFF is a novel differential testing technique for
QSSes. QDIFF takes as input a seed quantum program and
reports potential bugs with a pair of witness programs (i.e.,
logically equivalent programs that are supposed to produce
identical behavior) but triggers divergent behavior on the target
QSS (i.e., meaningful instabilities beyond expected noise).
QDIFF overcomes the aforementioned challenges with three
technical innovations below.

First, QDIFF generates logically equivalent quantum pro-
grams using a set of equivalent gate transformation rules.
This is based on the insight that each quantum gate can be
represented mathematically as a unitary matrix; a sequence
of gates essentially corresponds to the multiplication of their
unitary matrices, which also yields a unitary matrix. As such,
one sequence of gates is semantically equivalent to another
if the two sequences yield the same unitary matrix. We
leverage seven gate transformation rules to generate different
gate sequences that are guaranteed to yield the same unitary
matrix. These sequences essentially define logically equivalent
program variants that are supposed to yield identical behavior.
Such variants are then executed on a simulator or hardware
and their measurements are compared.

Second, with multiple logically equivalent variants gener-
ated after optimization, QDIFF selects a subset of those circuits
that are worthwhile to run on a noisy simulator or quantum
hardware. This selection and filtering process is crucial for
both speedup and potential cost saving, because there are
only a very few quantum hardware devices in the world, and
they are extremely expensive resources—D-wave’s quantum
computer is reported to be $15 million in 2017 [16]. IBM
Qiskit allows public hardware access up to 5 qubits, but
a higher number of qubit usage is strictly restricted. Noisy
simulators are extremely compute-intensive to run on classical
computers as well, taking on more than 4 minutes to do
3000 measurements on a simple four-qubit circuit. This noisy
simulation cost becomes extremely unmanageable with the
higher number of qubits.

To achieve speed up, QDIFF analyzes the static characteristic

of logically equivalent circuits such as the circuit depth (i.e.,
moments), the number of 2-qubit gates, the known error
rates of each gate kind, and T1 relaxation time for quantum
hardware. QDIFF obviates the need of executing certain circuits
on hardware or noisy simulators, if the logically equivalent
circuits are incapable of revealing meaningful instabilities in
QSS.

Third, in order to compare executions of logically equivalent
circuits, QDIFF first identifies how many measurements are
needed for reliable comparison. Based on the literature of
distribution sampling, QDIFF adapts closeness testing in L1
norm [17] to estimate the required number of measurements
given confidence level p = 2/3. Using either a noisy simulator
or directly on hardware, it then performs the required number
of measurements. To compare two sets of measurements,
QDIFF uses distribution comparison methods. Two methods
based on Kolmogorov-Smirnov (K-S) test [18], [19] and
Cross Entropy [20], [21] are currently supported. This com-
parison method is easily extensible in QDIFF, as a user can
define a new statistical comparison method [17] in QDIFF.

Results. We evaluated QDIFF with the latest versions of three
widely-used QSSes: Qiskit, Cirq, and Pyquil. With six seed
quantum algorithms, QDIFF generates 730 variant algorithms
through semantics-modifying mutations. Starting from the
generated algorithms, it generates a total of 14799 program
variants using semantics-preserving source transformations.
This generation process took QDIFF 14 hours. With the filtering
mechanism, QDIFF reduces its testing time by 66%. Using
QDIFF, we determined total 6 sources of instabilities. These
include 4 software crash bugs in Pyquil and Cirq simulation,
and 2 potential root causes that may explain 25 out of 29 cases
of divergence beyond expected noise on IBM hardware.

The main contributions of this work include:
• We present the first differential testing framework for

QSSes. This framework is integrated with three widely
used QSSes from Google, IBM, and Rigetti.

• We embody three technical innovations in QDIFF to make
differential testing fast and to increase the chance of
finding meaningful instabilities beyond the usual expected
noise: (1) auto-generation of logically equivalent variants,
(2) auto-filtering of circuits that are worthwhile to run
on hardware (or a noisy simulator), and (3) pluggable
methods of comparing measurements in terms of statis-
tical distribution. QDIFF obviates the need of invoking
quantum back-ends by 66%. Using QDIFF, we determined
6 sources of instabilities in three widely used QSSes:
4 crash bugs and 2 root causes for divergences beyond
expected noise on IBM hardware.

We provide access to the artifacts of QDIFF at
https://github.com/wjy99-c/QDiff.

II. BACKGROUND

Quantum Computing. Quantum computing emerges as a
promising technology for many domains where quantum com-
puters have been demonstrated to outperform classical com-



TABLE I: Different layers that bugs appear
Layers Percentage Example

Compiler (optimizations & settings) 53.9% MergeInteractions() returns different results for the same circuit [22].
Backend (simulators & hardware) 19.7% Simulators change a global random state on Cirq [23].
API and quantum gate 11.8% PhasedXPowGate raised to a symbol power fails the is parameterized protocol [24].

puters by a large margin. For example, Grover’s algorithm [25]
can find a given item in an unsorted database with a

√
N -times

speedup when running on a quantum computer, compared
to a classical computer. Similar to programs executed on
heterogeneous devices such as FPGAs, a quantum application
is comprised of host code that runs on CPU and quantum code
that runs on quantum hardware. Generally, quantum computers
work as accelerators to execute the compute-intensive parts of
the original application. For example, the Shor algorithm [26]
can achieve an exponential speedup by decomposing integer
factorization into a reduction to be executed on a classical
computer and an order finding problem to be executed on
quantum hardware.

Quantum Software Stack. Currently, three most widely used
QSSes are Qiskit, Cirq, and Pyquil [27].

• Qiskit [3] is an open-source framework developed by
IBM. Qiskit provides a software stack that is easy
to use quantum computers and facilitates quantum
computing research. Qiskit consists of Qiskit Terra

(compiler), Qiskit Aer (several quantum simulators),
Qiskit Ignis (which supports error correction and
noise characterization), and Qiskit Aqua (APIs to help
developers write applications).

• Cirq [28] is an open-source Python framework from
Google. It enables a developer to create and simulate
Noisy Intermediate-Scale Quantum (NISQ) circuits. Cirq
consists of an optimization component to compile and
transform circuits, a simulator component for emulat-
ing quantum computation on classical devices, and other
development libraries for application development.

• Pyquil [29] is an open-source Python framework devel-
oped by Rigetti. It builds on Quil, an open quantum
instruction language for near-term quantum computers,
and uses a combined classical/quantum memory model.
PyQuil is the main component of Forest, the overarching
platform for Rigetti’s quantum software. Pyquil consists
of: quilc (compiler), qvm (quantum virtual machine with
several kinds of simulators), and pyquil (a library to
help users write and run quantum applications).

All three QSSes are similar to one another in that each
includes a quantum programming language, an optimizing
compiler that outputs quantum gate instructions, a quantum
simulator that emulates these instructions on a classical device,
and a software controller that executes gate instructions on
quantum hardware.

Quantum Bit. A quantum bit, or qubit for short, is the basic
unit of quantum computation. Unlike a classical bit that is
either 0 or 1, a qubit’s state is a probabilistic function of |0〉

and |1〉, represented as:

|ψ〉 = α|0〉+ β|1〉,where |α|2 + |β|2 = 1 (1)

The state of a qubit is unknown until a measurement is
completed, resulting in |α|2 to be 0 and |β|2 to be 1. Naturally,
the sum of the probabilities (i.e., the modulus squared of
amplitudes) is 1: |α|2 + |β|2 = 1.
Quantum Gate. Classical computers use logic gates to trans-
form signals from input wires. For example, a NOT gate, also
known as an inverter, takes a single signal as input and outputs
the opposite value. The quantum gate analogous to NOT is an
X gate, which transforms a qubit α|0〉+ β|1〉 to β|0〉+ α|1〉.

An X gate has the following matrix-based representation:

X =

[
0 1
1 0

]
(2)

Using a vector to represent the quantum state α|0〉 + β|1〉,
applying an X gate has the following effect:

X

[
α
β

]
=

[
β
α

]
=

[
α′

β′

]
(3)

Other commonly-used quantum gates include H , T , CNOT ,
Z, CZ , S , U1 , and U3 ; a full explanation of these gates is
elsewhere [30].

Since all quantum gates can be represented as matrices,
we can transform a sequence of gates to another logically
equivalent sequence without altering its outcome, as long as
the multiplication of the matrices for gates in each sequence
produces the same result. As an example, a SWAP gate, a two-
qubit gate that swaps the two qubits’ states, is semantically
equivalent to a sequence of three CNOT gates.

SWAP(q1, q2) = CNOT(q1, q2)CNOT(q2, q1)CNOT(q1, q2) (4)

This observation forms the foundation of QDIFF’s program
variant generation procedure, detailed in Section IV.
Quantum Circuit. A quantum circuit consists of a set of
connected quantum gates. Since quantum gates can be rep-
resented as unitary matrices, a quantum circuit is essentially
the multiplication of the matrices.

Figure 1a shows a program in IBM’s Qiskit [3]. It first
registers two qubits and initializes them to |0〉. Next, an H
gate sets the first qubit into state 1√

2
|0〉+ 1√

2
|1〉 and an X gate

flips the second qubit from |0〉 to |1〉. Finally, a measurement is
performed and stored in a classical array. The function returns
this circuit as a function-type value.

Figure 1b shows host code that calls this quantum circuit.
Users can execute this circuit on different backends such as
real quantum hardware or simulators. The circuit is executed
on qasm simulator for a thousand times (shots=1000). Since
the first qubit state is 1√

2
|0〉+ 1√

2
|1〉 and the second qubit state



1 def make_circuit() -> QuantumCircuit:
2 qubit = QuantumRegister(2,"qc")
3 bit = ClassicalRegister(2, "qm")
4 prog = QuantumCircuit(qubit, bit)
5 prog.h(qubit[0])
6 prog.x(qubit[1])
7 for i in range(2):
8 prog.measure(qubit[i], bit[i])
9 return prog

(a) A quantum circuit with an H gate and an X gate.

1 prog = make_circuit()
2 backend = BasicAer.get_backend(’qasm_simulator’)
3 info = execute(prog, backend=backend, shots=1000).

result().get_counts()

(b) The host code using the circuit in (a).
Fig. 1: An example Qiskit program.

is |1〉, each run produces a result of either |01〉 or |11〉 with
the equal probability of 0.5 = ( 1√

2
)2.

T1 relaxation time. In quantum computing, a qubit can retain
data for only a limited amount of time, referred to as relaxation
Time because a qubit in a high-energy state (state |1〉) naturally
decays to a low-energy state (state |0〉). The time span for this
decay is referred to as T1 Relaxation Time. For a physical
circuit, its measurement results are unreliable if its execution
time is longer than T1.

III. MOTIVATION

To understand real-world QSS bugs, we collected 76 latest
issues reported on Github Pyquil, Cirq, and Qiskit. After
excluding 11 issues related to installation and other tools, we
cagegorized the remaining 65 issues by the layer where each
issue appears: compilers, backends, and APIs.

Table I summarizes the percentage of the correspond-
ing layer and a representative example. Most bugs appear
at the compiler level—compiler optimizations and settings.
For example, Cirq produces incorrect circuits when using
MergeInteractions() [22]. The second most common
bugs appear at the backend level—simulators and hardware
execution, e.g., the initial state is unexpectedly modified by
the Cirq simulator in [23]. The other issues are with respect
to the API implementation of high-level gates. For example,
in Cirq, when cirq.PhasedXPowGate is invoked with an
input argument exponent, invoking is_parameterized on
the resulting gate should return true but returns false due
to a bug in cirq.PhasedXPowGate.

The aforementioned bugs are hard to find due to quantum
indeterminacy. The following excerpt illustrates a concrete
example of how one google tutorial user is confused whether
a problem is a bug or due to inherent non-determinism.
Cirq’s VQE (Variational-Quantum-Eigensolver) tutorial had a
mistake—the orders of mix layer and cost layer were described
in a wrong order. The tutorial user D (shortened) posted a
question on StackExchange [31] with the embedded code from
Cirq’s VQE tutorial. A Cirq developer C (shortened) noticed
that “The strange thing is the example output shows the output
probabilities varying with gamma (the CZ parameter)”, where

Fig. 2: QDIFF Overview
gamma should not have any effect on the measurement re-
sults.” D actually believed the disagreement is due to quantum
indeterminacy, until C explicitly labeled it as a compiler bug.

Key Takeway. This study of Github issues shows that QSS
bugs are not just traditional compiler bugs and may come
from various sources at different layers: API implementation
of high-level gates, backend simulators, or hardware execution.
This problem of detecting QSS bugs is further complicated by
the probabilistic and noisy nature of quantum indeterminacy.

IV. QDIFF APPROACH

QDIFF contains three novel components to detect meaning-
ful instabilities in QSSes. Figure 2 shows program variant
generation using equivalent gate transformation and mutations
(Section IV-A); backend exploration leveraging selective in-
vocation of quantum simulators and hardware (Section IV-B);
and equivalence checking via distribution comparison (Sec-
tion IV-C). Starting from a seed program, QDIFF iterates these
steps until a time limit is reached. Our key insight is that
(1) we can generate semantically equivalent but syntactically
different circuits, and (2) we can speed-up the differential
execution process by filtering out certain circuits, because they
will definitely lead to unreliable divergence and thus are not
worthwhile to run on hardware or noisy simulators.

A. Program Variant Generation

Prior work [10] finds that testing compilers with equivalent
programs is highly effective. QDIFF adapts this idea to the
domain of quantum compiler testing by creating logically
equivalent gate sequences. It then checks whether the cor-
responding equivalent circuits produce the same results (in
this case, a similar statistical distribution with some noise)
on quantum simulators or hardware. For this purpose, QDIFF

generates program variants by repeating the two-fold process
of applying semantics-preserving gate transformation to each
generated program in each iteration and applying semantics-
modifying mutations to diversify the pool of input programs
in the next iteration.

Equivalent Gate Transformation (EGT). As discussed earlier



TABLE II: Explored Compiler Configurations
Framework Options Description

BasicSwap, LookaheadSwap, Specify how swaps should be inserted to make the circuit compatible with the
StochasticSwap coupling map. QDIFF checks if BasicSwap has the most SWAP gates.

Qiskit Optimization_level=0,1,2,3 Specify the optimization level—the higher the level, the simpler the resulting circuit.
QDIFF checks if a higher-level optimization generates a more complex circuit.

DropEmptyMoment() Remove empty moments from a circuit. QDIFF checks empty moments in the circuit.
Cirq MergeInteractions() Merge adjacent gates; QDIFF checks the applicability of G6 in Table III.

PointOptimizationSummary() User-defined optimization.
PRAGMA INITIAL_REWIRING {"NAIVE" Change the optimization/mapping style
,"GREEDY", "PARITIAL"}

Pyquil PRAGMA {COMMUTING_BLOCKS Change the optimization style for certain part of the code.
,PERSERVE_BLOCKS}

TABLE III: QDIFF generates program variants based on EGT
rules G1-G7.

Rule ID Original Construct Equivalent Construct
CNOT(q1,q2)

G1 SWAP(q1,q2) CNOT(q2,q1)
CNOT(q1,q2)

G2 H(q1)H(q1) Merged to Identity Matrix
G3 X(q1) H(q1)S(q1)S(q1)H(q1)
G4 Z(q1) S(q1)S(q1)
G5 CZ(q1,q2) H(q2)CNOT(q1.q2)H(q2)
G6 CZ(q1,q2)CZ(q1,q2) Merged to Identity Matrix
G7 CCNOT(q1,q2,q3) 6 CNOT gates

with 9 one-qubit gates

in Section II, one quantum gate sequence is semantically
equivalent to another sequence, if they both yield the same
unitary-matrix representation. In fact, complex quantum gates,
without altering the outcome, can be described as a combi-
nation of basic quantum gates. QDIFF leverages seven gate
transformation rules to map complex gates into sequences of
simple gates, as shown in Table III. In G7, a Toffoli gate
(i.e. CCNOT ) can be replaced with 6 CNOT gates and 9
one-qubit gates. To explore the alternative representation of a
given gate sequence, QDIFF finds the applicable transformation
rules by matching the gate names. For an example circuit
S(q2)Z(q1), QDIFF identifies the complex gate Z(q1), applies
rule G2 to construct gate Z(q1) as a sequence S(q1)S(q1),
and generates a final variant S(q2)S(q1)S(q1). As opposed
to an optimizing compiler that applies transformation rules to
reduce the number gates or the total gate depth [3], [11], QDIFF

aims to diversify the pool of input programs through source
to source transformation.

Seed Diversification via Mutations. While generation of
logically equivalent programs can find bugs through observing
disagreements, they are unlikely to exercise various program-
ming constructs. To diversify the seed input programs and
to explore hard-to-reach corner cases in quantum compilers.
QDIFF borrows the idea of mutation-based fuzz testing [32]
and designs a set of semantics-modifying mutations.

After generating multiple logically equivalent programs
in each iteration, QDIFF calculates the average distributions
among the equivalent programs as the reference distribution,
then picks the variant that leads to the largest comparison
distance (e.g., K-S distance) from the reference distribution,
and randomly applies one of the following four mutation
operations to the variant in order to generate a new algorithm.

This is based on the insight that the program with the most
deviating results has a higher chance to expose unseen behav-
ior [10], [33]. Please note that these mutations do not preserve
semantics; instead, the goal of mutations is to resume the next
round of differential testing with a different algorithm. We start
with four mutation operators listed below, used in quantum
mutant generation [34], [35].
• Gate Insertion/ Deletion (M1) inserts/deletes random

quantum gates: e.g., insert prog.x(qubit[1]);
• Gate Change (M2) changes a quantum gate to another

gate: e.g., from prog.x(qubit[1]) to prog.h(qubit[1]);
• Gate Swap (M3) swaps two quantum gates;
• Qubit Change (M4) changes the qubits: e.g., from
prog.x(qubit[1]) to prog.x(qubit[2]).

B. Quantum Simulation and Hardware Execution

Compiler Configuration Exploration. QDIFF automatically
explores different compiler configurations. In Qiskit, com-
piler settings can be specified by the arguments passed to
the backends e.g., users can apply optimization level=1

to collapse adjacent gates via light-weight optimization,
while optimization level=3 does heavy-weight optimiza-
tion to resynthesize two-qubit blocks in the circuit. In
Cirq, compiler settings must be specified using API invo-
cations: e.g., users can write their own optimization with
PointOptimizationSummary(). In Pyquil, compiler set-
tings are specified using inlined pragmas similar to how
FPGA developers specify high level synthesis options using
pre-processor directives, e.g., a region denoted by PRAGMA

PRESERVE_BLOCK will not be modified by a compiler. There
are in total 2, 3, and 2 configuration types for Qiskit, Cirq,
and Pyquil respectively, as shown in Table II. When executing
a variant with a specific compiler setting, QDIFF records both
thrown exceptions and program timeouts.
Backend Exploration. Backend exploration runs the same
input program on different backends, shown in Table V. In
terms of real hardware execution, QDIFF uses the free version
of IBM hardware only, because other platforms are currently
proprietary. QDIFF is extensible by specifying a different
backend configuration. Noisy simulators and state-vector sim-
ulators are both included in QDIFF’s backend exploration.
Filtering and Selective Invocation on Hardware. QDIFF

is focused on isolating software defects, not hardware de-
fects. Because hardware imperfections such as decoherence



TABLE IV: IBM quantum hardware’s gate-level error rates, gate time, and T1 relaxation (decoherence) time.

IBM quantum computer T1 time /µs Gate time /ns 2-qubit gate error rate tm δ2qubit
ibm santiago 155.19 408.89 1.79% 379 5
ibm yorktown 56.81 476.44 2.03% 119 5

ibm 16 melbourne 53.37 928.71 3.29% 57 3
ibm belem 74.45 552.89 1.07% 135 11
ibem quito 85.35 353.78 1.03% 241 11

TABLE V: Explored Backends (Simulators and Hardware)
Framework Backends Description

statevector_simulator noiseless sim.
qasm_simulator noiseless sim.

Qiskit FakeSantiago
FakeYorktown noisy sim.
FakeMelbourne
ibmq_santiago
ibmq_yorktown quantum hardware
ibmq_16_melbourne
Simulator noiseless/noisy sim.

Cirq DensityMatrixSimulator noiseless/noisy sim.
Aspen-x-yQ-noisy-qvm noisy sim.

Pyquil WavefunctionSimulator noiseless sim.
Aspen-x-yQ-qvm,Pyqvm noiseless sim.

is present, it is important to filter out circuits that would
invoke errors due to the inherent hardware limitations. With the
above observations, QDIFF filters out unnecessary circuits in
two steps. First, QDIFF examines the final gate sequences after
all compiler optimizations and logical-to-physical mappings,
filtering out exactly identical physical circuits by moment-by-
moment comparison. Second, QDIFF analyzes the static char-
acteristics of circuits to remove those that certainly produce
unreliable executions (i.e. results dominated by hardware-level
noise such as gate errors and relaxation errors and hence
unreliable), while leaving those that may produce meaningful
divergences using Definition IV.1.

As discussed in Section II, for a physical circuit, its mea-
surement results are unreliable if its execution time is longer
than T1, implying that the number of circuit moments nm
(the depth of the circuit) in any circuit should not exceed
a threshold tm. Moreover, different kinds of quantum gates
have different inherent error rates. For publicly available IBM
quantum computers, error rates of single-qubit operations are
in the order of 10−3, while error rates of 2-qubit gate oper-
ations are in the order of 10−2. A typical quantum program
contains a significant number of 2-qubit gates, whose errors
contribute the most to the overall error rate because such
gates are more error-prone than 1-qubit gates [36]. Taking
this into consideration, d2qubit (the difference in the number
of 2-qubit gates from the original circuit) should not exceed
an application-specific threshold δ2qubit to avoid unreliable
results. Leveraging the above observations, we define the
worthiness of invoking a quantum circuit.

Definition IV.1. A circuit is worth invoking on quantum hard-
ware or noisy simulator, if it satisfies the following condition:
nm < tm and d2qubit < δ2qubit.

The threshold tm is determined empirically by two factors:
(1) IBM computers’ average T1 time, and (2) the average
gate execution time for all gates, as listed in Table IV. QDIFF

TABLE VI: Cumulative probability of KS test

Measurement State Cumulative State
Distribution ‘0’ ‘1’ Probability ‘0’ ‘1’

A1 464 546 EDFA1 0.464 1
A2 500 500 EDFA2 0.500 1

computes tm by dividing T1 by the average gate execution
time. It then filters out those whose nm is greater than tm. Take
ibm_16_melbourne as an example: with T1 = 53.57µs and
the average gate execution time = 928ns , tm is 53570/928=57.
A circuit whose total number of moments is above 57 is
filtered out for ibm_16_melbourne.

The threshold δ2qubit is determined in the following way.
Suppose a user is willing to tolerate an addition error rate of t
for the entire quantum program’s final measurements (with 0.1
as the default). Using t, we compute δ2qubit as the maximum
number of 2-qubit gates to be added or deleted from the
number of 2-qubit gates in the original circuit. Suppose that
CNOT’s error rate for this IBM computer is 1.07%. If CNOT
is used d2qubit times in a row additionally, its updated error
rate would be by 1 − (1 − e)(1 − 0.0107)d2qubit , where e is
the original error rate. Since both e and (1 − 0.0107)d2qubit

are relatively small, we can regard the error rate change as
1− (1−0.0107)d2qubit . Therefore |d2qubit−δ2qubit| should be
less than log(1−0.0107)(1− t). δ2qubit is 11 when t is 0.1. The
above thresholds and filtering condition in Definition IV.1 are
customizable according to hardware’s published error rates,
supported gate types, and T1 relaxation time.

C. Equivalence Checking via Distribution Comparison

Nondeterministic nature of quantum programs makes it
difficult for equivalence checking. Developers usually reason
about the output of a quantum circuit by executing it multiple
times to obtain a distribution. While numerous distribution
comparison methods are well studied in statistics, one conse-
quent yet over-looked question for quantum computing is that
how many measurements do we need for a reliable evaluation
to ensure the relative error between two distributions is
within a given threshold t with confidence p? We design a
novel equivalence checking component, which consists of: (1)
a particular distribution comparison method C, and (2) an
estimation of the required number of measurements for C,
given a threshold t and confidence p. QDIFF is equipped with
K-S test and Cross Entropy, but is also extensible to other
comparison methods by providing a new comparison-specific
measurement estimation.

K-S Test [18] has been used to check the equality of dis-
tributions by measuring the largest vertical distance between
empirical distribution functions (EDFs) in two steps. First,



1 backend = BasicAer.get_backend(’qasm_simulator’)
2 info = execute(prog, backend=backend, shots=1024).result

().get_counts()

Result: {‘0’: 475, ‘1’: 549}

(a) Quantum simulator.

1 backend = BasicAer.get_backend(’statevector_simulator’)
2 info = execute(prog, backend=backend).result().

get_statevector()

Result: [0.70710678+0.j, 0.70710678+0.j]

(b) State-Vector simulator.

Fig. 3: A quantum circuit in Qiskit with two backends:
quantum simulator and state-vector simulator.

it creates the EDF for a given distribution by calculating
the cumulative probability of different outcome states with
respect to the total number of samples. In Table VI, A1 and
A2 are two state distributions for 1000 samples. A1 has 464
samples in state ‘0’ while 546 samples in state ‘1’. Thus, the
consequent EDFA1 indicates that the cumulative probability
of A1 samples in state ‘0’ and state ‘1’ are 0.464 (464/1000)
and 1 ((464+546)/1000) respectively. Next, K-S test calculates
the largest distance D of EDFs for each state, and uses such
distance to quantify the difference of the original distributions
under comparison. In Table VI, the largest distance is 0.06
(|0.464− 0.500|) for state ‘0’.

QDIFF evaluates this K-S distance with a user-defined
threshold t. If the K-S distance of two results is less than
t, QDIFF regards them as similar results. QDIFF provides a
statistical guarantee on this comparison by estimating the
required number of samples. For two distributions d1 and d2
over m outcome states, prior work [17] theoretically ensures
that, with n = Ω(m1/2 · t−2) samples, a sample-optimal tester
can check if the relative error of L1 distance is within a
threshold t when using a default confidence level of p=2/3.
QDIFF estimates n using Equation 5. This estimated number is
directly applicable to QDIFF because K-S distance is bounded
by L1 distance [18]. In other words, Equation 5 calculates
the number of measurements required, parameterized with
respect to p. We empirically set p as 2/3, as it is a commonly
used default in quantum volume measurement [37], [38],
bioinformatics, and other statistics comparison.

n = A · 1√
1− p

·m1/2 · t−2 (5)

where A is a platform-related constant and m is the number
of qubit states. In Figure 3, 2828 measurement samples are
needed, when we empirically set t = 0.1, p = 2/3, and A =
12 for Qiskit. In our evaluation, we empirically measure the
constant A for each platform by repeatedly running the same
programs and compare the results.

Cross Entropy measures the difference between distributions
via the total entropy. It represents the average number of bits
needed to encode data coming from an underlying distribution
q1 when we use an estimated target distribution q2.

H(q1, q2) = −
max∑
x=0

q1(x) log q2(x) (6)

Prior work ensures that, with n = Ω(m2/3 · t−4/3) samples,
the expected cross entropy of two similar distributions over
m outcome states can be bounded with t [17], [39]. t is the
difference from H(q1, q1). Similar to K-S test, QDIFF estimates
the number of required samples to reliably satisfy this bound,
as shown in Equation 7.

n = A · 1√
1− p

·m2/3 · t−4/3 (7)

For Figure 3, we need 420 measurements with t = 0.1,
p = 2/3, and A = 7 for Qiskit. This measurement trials
are different from K-S test, because we are using different
distance metrics.

Comparison with Reference Distribution. After generating
a group of equivalent programs and filtering out worthless
circuits, QDIFF executes the remaining circuits and calculates
the average distribution from their results. QDIFF will regard
this average distribution as the reference distribution. With the
distribution comparison methods (eg. K-S Test, Cross-entropy,
etc), QDIFF compares this reference distribution with each
result distribution and reports divergence when the distance
is larger than the threshold t.

Reporting Divergence Explanation. QDIFF reports the poten-
tial source of the divergence in program P :

1) If P finds divergence when using different backends
while keeping a frontend’s options unchanged, QDIFF

reports this as a potential backend source;
2) If P finds divergence when using a specific backend

while varying a frontend’s options, QDIFF reports this as
a potential frontend source;

3) Otherwise, QDIFF reports this as other sources, such as a
potential bug in the API gate implementation.

V. EVALUATION

We evaluate following research questions:
RQ1 How many syntactically different programs can be

generated by QDIFF’s mutation and equivalent gate
transformation?

RQ2 How much speedup can we achieve via filtering and
obviating the need of invoking a quantum simulator or
hardware?

RQ3 What has QDIFF found via differential testing of the
widely-used QSSes?

Benchmarks. QDIFF starts differential testing with five well
known quantum algorithms as seed programs [25], [26],
[40]–[42] (Deutsch-Jozsa, Berstein-Vazira, VQE–Variational-
Quantum-Eigensolver, Grover, and QAOA–Quantum Approx-
imate Optimization Algorithm) and one additional program X
Gate listed in Table VII. We do not use the relatively large
algorithms like Shor’s [26] because IBM’s public access can
support up to 16 qubits only. Large algorithms also require
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Fig. 4: Statistics of QDIFF-generated circuits.

many moments and 2-qubit gates, often producing unreliable
results on quantum hardware.
Experimental Environment. We evaluate QDIFF with three
widely-used QSSes: Pyquil 2.19.0 with Quilc 1.19.0, Qiksit
0.21.0, and Cirq 0.9.0. We run the circuits on five differ-
ent hardware versions based on their availability, including
ibmq_santiago, ibmq_yorktown, ibmq_16_melbourne,
ibmq_belem. and ibmq_quito. The details of hardware can
be found on IBM’s quantum computing website [3]. We use
K-S test with t = 0.1 as the distribution comparison method.

A. RQ1 Variant Generation via S2S transformation

As shown in Figure 4a, for all six seed algorithms together,
QDIFF generates 730 program variants through semantics-
modifying mutations and generates the total of 14799 circuits
with equivalent gate transformation to each generated variant.
This total circuit generation process takes around 14 hours.

Take P2 Deutsch-Jozsa algorithm as an example. 95 dif-
ferent program variants are generated through semantics-
modifying mutations. For each variant program, QDIFF gen-
erates 20 logically equivalent circuits. For P2, the total gen-
eration for 2103 circuits takes around 2 hours, while the rest
of differential execution via simulation or hardware execution
takes around 2 days. This implies that the bottleneck of testing
is not about input program generation but the execution of
the generated programs, which justifies our approach to select
which circuits are worthwhile to run.

B. RQ2 Speed Up

As shown in Figure 4b, after filtering, only 19%-42% of
the generated circuits are retained for differential execution on
quantum hardware, leading to a 66% reductions in quantum
hardware or noisy simulator invocations. QDIFF finishes the
entire testing process within around 17 days by leveraging
its circuit selection process, which means QDIFF would have
saved additional 30 days of testing time by filtering.

Take QAOA as an example, when running on IBM quantum
hardware, the experiment would take around 7 minutes to
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1 qc = get_qc(’Aspen-0-3Q-
A-qvm’)

2 result_rm = qc.
run_and_measure(p)

(a) run_and_measure mea-
sures all 16 qubits in device
Aspen-0 when a simulator al-
locates 3 qubits, resulting in an
exception.

1 p = Program(X(0), X(1).
controlled(0))

2 qvm = PyQVM(n_qubits=2)
3 qvm.execute(p)

(b) Controlled X gate raises an
error when 2 qubits are allo-
cated for simulation.

Fig. 6: Bugs in Pyquil found by QDIFF.

wait in line on average (as launching a quantum job uses a
shared web service for a few IBM computers in the world)
and 10 seconds to execute on hardware. If users run all 3546
circuits, the total clock time would be 17 days. With filtering,
QDIFF removes 68% circuits that are not worthwhile to run
and finishes the execution in 7 days.

C. RQ3: What has QDIFF found?

From the 730 sets of semantically equivalent circuits, QDIFF

found 33 differing outcomes out of 730. 4 out of 33 are
crashes in simulators. The remaining 29 cases are divergence
beyond expected noise on IBM hardware. By inspecting all 33
cases carefully, we determined total 6 sources of instabilities: 4
simulator crashes and 2 potential root causes that may explain
25 out of 29 cases of divergence on IBM hardware. For the
remaining 4 divergence cases, we could not easily determine
their underlying root causes.

1) Crash bugs in simulators: QDIFF reports four crashes
during differential testing with both noiseless and noisy simu-
lators. All divergences involve clear failure signals. All are due
to bugs in compiler or simulator implementations, summarized
in Table VIII. 2 out of 4 crashes were already reported by
developers [43], [44] and 2 out of 4 crashes were confirmed
by developers, when we filed crash reports [45], [46].

Compiler option error: Given an arbitrary program in Cirq,
when the compiler option clear_span is set to a negative
number or clear_qubits is set to an unregistered qubit,
the execution does not terminate. Cirq does not check the
boundary values of compiler options and attempts to reset non-
existing qubits. This bug was detected during explorations of
compiler settings. When these compiler options are set to the
aforementioned values, QDIFF notices that the execution does
not finish in a reasonable time, indicating a potential infinite
loop. QDIFF found this bug on the 74th iteration with P3.

Backend registers a wrong number of qubits: QDIFF found
that Pyquil’s measurement crashed on Aspen-0-xQ-A-qvm.



TABLE VII: Seed subject programs
ID Program # of Qubits Moments 2-qubit gate Description Iteration Number Measurement trial with t = 0.1
P1 X gate 1 1 0 one-qubit X gate 46 2000∼2828
P2 Deutsch-Jozsa 4 39 33 check if a function is balanced 95 5293∼7998
P3 Bernstein-Vazira 4 41 32 find a and b for f(x) = ax+b 121 5293∼7998
P4 Grover 5 84 53 find a unique input in a database 129 8000∼11312
P5 VQE 4 36 28 approximate the lowest energy level 171 5293∼7998
P6 QAOA 5 29 19 QAOA algorithm 168 8000∼11312

TABLE VIII: Bugs found by QDIFF when executing generated
programs with simulation only

Platform Bugs Description Source of Bugs
Cirq Program runs endlessly with some compiler settings Compiler Setting

pyquil
Simulator register wrong number of qubits Simulator Backends
Crashes on control gates on certain backends Gate implementation
Simulator stuck into a bad state Simulator Backends

In Pyquil, users can specify the quantum simulator to have the
same topology as a real 16 qubit device Aspen-0-16Q-A by
setting the backend to be Aspen-0-16Q-A-qvm (16Q refers
to using 16 qubits in simulation). However, QDIFF found that
when a user allocates to use 3 qubits in simulation (line 1
in Figure 6a) but attempts to conduct measurements at line 2
using run_and_measure, Pyquil simulator crashes due to a
wrong number of allocated qubits. This bug was found with
QDIFF’s backend exploration. Another user reported the same
issue on Pyquil’s Github [43].

Simulator is stuck into a bad state: Pyquil’s simulator raises
an exception when taking an empty circuit as input. Afterward,
all subsequent invocations to the simulator crash even when
the input circuit is valid and not empty. QDIFF detects this
bug by mutating an input program to an empty program
and executing it on both pyqvm simulator and state-vector
simulator. While the state-vector simulator runs this empty
circuit normally, pyqvm throws an exception. Then, QDIFF

generates an arbitrary non-empty program. In the next few
iterations, QDIFF finds this bug because pyqvm crashes, while
the state-vector simulator does not.

Wrong type of the controlled gate: Figure 6b shows a
scenario where Pyquil crashed when a control X gate was
used on pyqvm with 2 qubit allocation. The exception message
shows “ValueError: cannot reshape array of size 4 into shape
(2,2,2,2)”. A control X gate should be a 2-qubit gate (which is
4 × 4 matrix), but the gate was represented as 1 × 4 by pyqvm,
which is a bug. This bug was found in the 15th iteration with
P1 as a seed.

2) Divergences on real hardware: Figure 5 reports the
total numbers of circuits executed on quantum hardware and
those that exhibit behavioral divergence. The rate of latter is
relatively low (0.3%-0.8%), which demonstrates the robustness
of the quantum software and hardware we tested—this is
not surprising since such software and hardware has been
widely used and continuously improved for a number of years.
On the other hand, these results also highlight the need of
a systematic testing framework such as QDIFF for quantum
developers—since quantum bugs are rare and hard-to-detect,
developers should test their programs/tools exhaustively with
a QDIFF-like approach before releasing them.
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Fig. 7: Divergence on IBM ibmq_yorktown: no operation on
qc4 for a long time.
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Fig. 8: Divergence detected on IBM hardware: bad connection
between qc 2 and qc 3.

For 29 divergence cases on IBM hardware, we manually
inspected the corresponding circuits. We then determined 2
root causes that may explain 25 out of 29 cases. For the
remaining 4 cases, we could not easily determine underlying
root causes. We discuss each root cause with examples in this
subsection.

Divergence due to 2 qubit gate errors We concluded that 1, 2,
6, and 7 divergences in P1, P3, P5, and P6 respectively—55%
of all divergences detected on hardware in total—can be
explained by placing many 2 qubit gates between so called
couplers qubits. IBM released the reliability of connection
between each qubit pair on their hardware [3]. For example,
in hardware santiago, mapping CX between physical qubits
{2, 3} is less reliable than mapping CX between qubits {1,
2} [3]. We found 16 out of 29 divergences could have the same
underlying cause of using CX between known, unreliable



qubit connections. These errors could be reduced through
improved mapping to 2-qubit gates or using other strategies
such as randomized compilation [47], [48].

Consider the two equivalent circuits shown in Figure 8,
generated from P6 QAOA. These two circuits generated di-
vergent measurements on santiago, although both circuits
have nearly the same moments and the same number of 2-
qubit gates. This is because the CX error rate of physical
qubits 2 and 3 is much higher than qubits 1 and 2 (77%
higher according to published information from IBM [3]).
It appears that Qiskit’s logical to physical qubit mapping
procedure does not always avoid the use of CX on qubits
2 and 3 in their compilation and qubit allocation steps. Thus,
Figure 8a produces divergence from Figure 8b.
Divergence due to qubit dephasing & decoherence: 9 of 29
divergences—2, 3, 2, and 2 divergences in P2, P4, P5, and
P6—could have the same underlying cause of qubit dephasing
& decoherence. Qubits that remain idle for long periods tend
to dephase and decohere [49]. Figure 7 shows a pair of
circuits with a similar depth and a similar number of 2-
qubit gates. However, when run on hardware ibm_belem,
the pair produces divergences beyond expected noise. We
speculate that, when no operation is applied to physical qubit
4 for 18 moments, it may increase dephasing and decoherence
possibilities. This can by fixed by adding two successive Pauli
Y gates [30] on idle qubits during the compilation phase [49].
Others: For other 4 divergence, we could not easily determine
underlying root causes. Because the circuit moments and
the number of CX gate are roughly the same with their
equivalent groups, stochastic errors in hardware can mostly be
ruled out. The problem could be low-level quantum control
software bugs that emerge from different combinations of
gates, resulting in different control / coherent errors introduced
at the pulse level.

D. Threats to Validity

Lack of Error Correction: The number of divergences on
quantum hardware found by QDIFF would depend on the
reliability of hardware and its error correction capability. If
it were to run on an error-corrected quantum hardware, which
does not exist yet, it may report fewer divergences and it would
be easier to disambiguate whether divergences are caused by
software-level defects as opposed to hardware-level defects.

Similarly, 2-qubit gate errors depend on which qubit con-
nections that the gates are applied to, Therefore, it may be
necessary to adjust the divergence threshold t based on the
empirical 2 qubit error rates for each connection and how
many times the 2 qubit gates are used on that connection. Such
impact of 2 qubit error rates must be investigated further.
Time Out: In fuzz testing, longer experimentation periods tend
to expose more errors or new program execution paths [50].
The total time taken for all our experiments was limited to
seven days.
Number of Qubits: The maximum number of qubits that
we used for our experiment was 5 qubits, because the only

publicly available hardware limits public access up to 16
qubits and the waiting time tends to increase significantly, as
you request more qubits. Running experiments on Google’s
sycamore processor with 53 qubits and 1000+ 2q gates may
produce different results [51].

VI. RELATED WORK

Compiler and Framework Testing. Random differential test-
ing (RDT) [52], [53] is a widely-used technique that compiles
the same input program with two or more compilers that
implement the same specification. Equivalence modulo inputs
(EMI) [10] is such an example that tests compilers by gener-
ating equivalent variants. Many random program generators
are used for compiler testing [54]. Csmith [55] randomly
generates C programs and checks for inconsistent behaviors
via differential testing. Quest [56] focuses on argument passing
and value returning, while testing with randomly generated
programs. Different from Csimth-like tools, refactoring-based
testing systematically modifies input programs with refactor-
ings, as opposed to random program generation. Orion [10]
adapts EMI to test GCC and LLVM compilers. Christopher
et al. [33] combine random differential testing and EMI-based
testing to test OpenCL compilers. Orison [57] uses a guided
mutation strategy for the same purpose.

Such classical compiler testing is not directly applicable to
quantum software stacks due to the three challenges: (1) how
to generate variants, (2) how to test simulators and hardware
together with compilers, and (3) how to interpret quantum
measurements for differential testing.

Quantum Testing and Verification. Zhao [58] introduces
a quantum software life cycle and lists the challenges and
opportunities we face. Ying et al. [59] formally reason about
quantum circuits by representing qubits and gates using
matrix-valued Boolean expressions, and verify them using a
combination of classical logical reasoning and complex matrix
operations. Huang et al. [60] introduce quantum program
assertions, allowing programmers to decide if a quantum
state matches its expected value. They define a logic to
provides ε-robustness to characterize the possible distance
between an ideal program and an erroneous one. Proq [61]
is a runtime assertion framework for testing and debug-
ging quantum programs. It transforms hardware constraints
to executable versions for measurement-restricted quantum
computers. QPMC [62] applies classical model checking on
quantum programs based on Quantum Markov Chain. Ali et
al. [35] propose a new testing metric called quantum input
output coverage, a test generation strategy, and two new test
oracles for testing quantum programs. Two test oracles include
wrong output oracle that checks whether a wrong output
has been returned, and output probability oracle that checks
whether the quantum program returns an expected output with
its corresponding expected probability. However, their work
targets at quantum program testing and the measurement they
used might not be sufficient enough. While all these techniques
find errors in quantum programs, QDIFF aims to find errors in
quantum software stacks.



Verified quantum compilers guarantee gate transformation
and circuit optimization is correct by construction. CertiQ [12]
is a verified Qiskit compiler by introducing a calculus of quan-
tum circuit equivalence to check the correctness of compiler
transformation. VOQC [11] provides a verified optimizer for
quantum circuits by adapting CompCert [63] to the quantum
setting. Smith and Thornton [64] present a compiler with built-
in translation validation via QMDD equivalence checking. As
discussed in Section I, these tools ensure correctness in quan-
tum gate optimizations. However, QDIFF is a complimentary
technique based on testing and its scope includes both quantum
backends and frontends.
Differential Testing. Differential testing [52] has been used
to test large software systems and to find bugs in various
domains such as SSL/TLS [65], [66], machine learning appli-
cations [67], JVM [68], and clones [69], etc. Mucerts [70] ap-
plies differential testing to check the correctness of certificate
validation in SSL/TLS. It uses a stochastic sampling algorithm
to drive its input generation while tracking the program
coverage. DLFuzz [67] does fuzz testing of Deep Learning
systems to expose incorrect behaviors. Chen et al. [68] perform
differential testing of JVM with input generated from Markov
Chain Monte Carlo sampling with domain-specific mutations
with the knowledge of Java class file formats.
Mutation-Based Fuzz Testing. Fuzz testing mutates the seed
inputs through a fuzzer to maximize a specific guidance
metric, such as branch coverage. It has been shown to be
highly effective in revealing a diverse set of bugs, including
correctness bugs [71]–[73], security vulnerabilities [74]–[76],
and performance bugs [77], [78]. For example, AFL [32]
mutates a seed input to discover previously unseen coverage
profiles. MemLock [77] employs both coverage and memory
consumption metrics to find abnormal memory behavior.

Instead of flipping several bits or bytes in each muta-
tion, several techniques support domain-specific mutations.
SDF [79] uses seed properties to guide mutation in web-
browser fuzz testing. BigFuzz [80] designs mutations for
dataflow-based big data applications. QDIFF is similar to this
line of work by adapting mutation testing to a new domain.
However, different from traditional fuzzing, QDIFF re-invents
the notion of a test oracle by re-designing a quantum measure-
ment comparison method in a noisy, probabilistic domain.

VII. CONCLUSION

Quantum computing has emerged to be a promising com-
puting paradigm with remarkable advantages over classical
computing. QDIFF is the first to reinvent differential testing
for quantum software stacks. It adapts the notion of equiva-
lence checking to the quantum domain, redesigns underlying
program generation and mutation methods, and optimizes
differential testing to reduce compute-intensive simulation or
expensive hardware invocation. It is effective in generating
variants, reduce 66% unnecessary quantum hardware or noisy
simulator invocations, and uses divergence to isolate errors
in both the higher and lower levels of the quantum software
stack.
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