ASE 2014

An Empirical Study on Reducing
Omission Errors in Practice

Jihun Park*, Miryung Kim?, Doo-Hwan Bae!

1. KAIST, South Korea
2. University of California, Los Angeles (UCLA), USA

Predicting co-changed entities

4 .)
.Java
.Java
.Java
\ : /
Revision 7365 Version history

Can we predict an additional change location in
a transaction?

« Change coupling (mining SW repositories): Zimmermann et al.,
Ying et al., Hassan and Holt, Herzig and Zeller

e Structural dependency: Robillard, Saul et al.

 Cloning-based relationship: Nguyen et al.

Predicting omission errors

Initial change Supplementary change
4 . I 4 . I
A.Java A.Java
B.java D.java
C.java E.java
\ : % _ : %
Revision 101 Revision 125 Version history
Log: Fix bug #10000 Log: Patch bug #10000

\ //"

A developer missed to update D and E (omission error)

How can we predict the supplementary change
location, given the initial change location?

Key contributions

* To systematically investigate a real-world supplementary
patch data set, we suggest a graph representation
change relationship graph (CRG).

1. While a single trait is inadequate, combining multiple
traits is limited as well.

2. A boosting approach does not significantly improve the
accuracy.

3. There is no package or developer specific pattern.
4. Thereis no repeated mistake.

Change Relationship Graph (CRG)

Study subjects: Eclipse JDT core, Eclipse SWT, and Equinox p2

* Graph Nodes

* Classes
* Methods
« Graph Edges Class Class
* Extends . .
° Conta|ns contalns contalns
* Method invocation L “~_ Code clone
(calls, called by) ‘ Method 4 > Method
7/
* Historical S~ -7
co-change An initial change location /calls
 Code clone P AN
T \
* Name similarity { Method
\\ ’/
The supplementary change location
* M.K. Ripon Saha et al. A graph-based framework for reasoning about 5

relationships among software modifications. TR 2014

Observation 1: While a single trait is inadequate,

combining multiple traits is limited as well.

* Only 10% to 20% of supplementary change locations
can be connected with one edge from initial change
location.

 Combining multiple traits as a prediction rule shows
at most 10% accuracy

- Code clone X calls Supplem

Initial (arbitrary) ' entary

Combining multiple traits does not predict
supplementary change locations accurately

Observation 2: A boosting approach does not

improve the accuracy.

* We desigh a boosting approach that sums up trained
accuracy of rules connecting initial and supplementary
change locations to calculate prediction score

Sums up trained accuracy of these rules.

calls, called by

===~ Tmom T TS

\
\ / e .o
{ method 1 ethed 2y Prediction score
~ ~ o = fk_/ - =
Initial Supplementary Predict locations which have

Co-change high prediction scores

 This approach cannot accurately predict supplementary
change location (at most 7% precision).

Boosting approach based on the past prediction accuracy also
cannot accurately predict supplementary change locations.

Observation 3: There is no package or developer

specific pattern.

* Package or developer specific rules might improve
the prediction accuracy.

]
Package A

Accuracy of code clone: 40%
Accuracy of co-change: 10%

* We make boosting approaches based on package
and developer specific prediction rules.

* The improvements is negligible; the highest accuracy
improvementis only 1.2%

No package or developer specific pattern between initial and
supplementary change locations exists.

Observation 4: There is no repeated mistake.

* There might be an uncovered relationship which can
result in repeated patterns.

Initial Supplementary Initial
. Vo[, .)
.| A.java B.java | - | A.java o P
[Sl B U S
Rev. 100 Rev. 109 Rev. 200 Version history

* The majority of patterns (78% ~ 96%) appear only once.
* 69% to 84% of initial change locations appear only once.

Developers rarely make repeated
mistakes at the same location

Conclusion

We systematically study omission errors using a real-
world supplementary patch data set.

Version history based pattern mining cannot be
accurate at finding supplementary change locations.

Past prediction accuracy, and package or developer
specific information does not help.

We share our skepticism that reducing real-world

omission errors is inherently challenging. .

ASE 2014

An Empirical Studyron'Reducing
Omission Errors in Practice

Jihun Park?, Miryung Kim?, Doo-Hwan Bae*

1. KAIST, South Korea
2. University of California, Los Angeles (UCLA), USA

! Type 1 bug Type 2 bug !
Supplementary
Bug reports ! Mhes

F|x H#22 Fix #31 Fix #31 Fix #31
Fix commits |
|
An initial j Development
(incomplete) history
patch

* We use Eclipse JDT core, Eclipse SWT, and Equinox p2

* Total 16 years, 13259 bugs (24.8% are Type 2 bugs on
average) 12

Subject projects

Study period 2001/06 ~ 2007/12 | 2001/05 ~ 2008/12 | 2006/01~ 2009/12

Total revisions 17009 revisions 21530 revisions 6761 revisions
of bugs 1812 1256 1783
Type 1 bugs 2930 (77.04%) 3458 (74.00%) 1328 (74.48%)

Type 2 bugs 873 (22.96%) 1215 (26.00%) 455 (25.52%)

13

Evaluating a prediction method

* Precision, recall, and f-score
— Predicted set P and Suggested set S

PNS PNS
| l,Recall — [P0
|P| S|

— Precision =

— F — score = 2 x precision * recall /(precision + recall)

* Feedback

— What portion of initial changes can obtain at least one
suggestion?

— P} is derived using a prediction method m for bug b,

| { beTypellbugs |1<|{P}*}| } |

— Feedback = | {Typellbugs}|

14

