ASE 2014

An Empirical Study on Reducing Omission Errors in Practice

Jihun Park¹, Miryung Kim², Doo-Hwan Bae¹

- 1. KAIST, South Korea
- 2. University of California, Los Angeles (UCLA), USA

Predicting co-changed entities

Can we predict an additional change location in a transaction?

- Change coupling (mining SW repositories): Zimmermann et al.,
 Ying et al., Hassan and Holt, Herzig and Zeller
- Structural dependency: Robillard, Saul et al.
- Cloning-based relationship: Nguyen et al.

Predicting omission errors

A developer missed to update D and E (omission error)

How can we predict the supplementary change location, given the initial change location?

Key contributions

• To systematically investigate a real-world supplementary patch data set, we suggest a graph representation change relationship graph (CRG).

- 1. While a single trait is inadequate, combining multiple traits is limited as well.
- 2. A boosting approach does not significantly improve the accuracy.
- 3. There is no package or developer specific pattern.
- 4. There is no repeated mistake.

Change Relationship Graph (CRG)

Study subjects: Eclipse JDT core, Eclipse SWT, and Equinox p2

- Graph Nodes
 - Classes
 - Methods
- Graph Edges
 - Extends
 - Contains
 - Method invocation (calls, called by)
 - Historical co-change
 - Code clone
 - Name similarity

The supplementary change location

⁵

Observation 1: While a single trait is inadequate, combining multiple traits is limited as well.

- Only 10% to 20% of supplementary change locations can be connected with <u>one edge</u> from initial change location.
- Combining multiple traits as a prediction rule shows at most 10% accuracy

Combining multiple traits does not predict supplementary change locations accurately

Observation 2: A boosting approach does not improve the accuracy.

 We design a boosting approach that sums up trained accuracy of rules connecting initial and supplementary change locations to calculate prediction score

 This approach cannot accurately predict supplementary change location (at most 7% precision).

Boosting approach based on the past prediction accuracy also cannot accurately predict supplementary change locations.

Observation 3: There is no package or developer specific pattern.

 Package or developer specific rules might improve the prediction accuracy.

- We make boosting approaches based on package and developer specific prediction rules.
- The improvements is negligible; the highest accuracy improvement is only 1.2%

No package or developer specific pattern between initial and supplementary change locations exists.

Observation 4: There is no repeated mistake.

 There might be an uncovered relationship which can result in <u>repeated patterns</u>.

- The majority of patterns (78% ~ 96%) appear only once.
- 69% to 84% of initial change locations appear only once.

Developers rarely make repeated mistakes at the same location

Conclusion

- We systematically study omission errors using a realworld supplementary patch data set.
- Version history based pattern mining cannot be accurate at finding supplementary change locations.
- Past prediction accuracy, and package or developer specific information does not help.
- We share our skepticism that reducing real-world omission errors is inherently challenging.

10

ASE 2014

Thank you for

An Empirical Study on Reducing Omission Errors in Practice

Jihun Park¹, Miryung Kim², Doo-Hwan Bae¹

- 1. KAIST, South Korea
- 2. University of California, Los Angeles (UCLA), USA

Supplementary Data Set

- We use Eclipse JDT core, Eclipse SWT, and Equinox p2
- Total 16 years, 13259 bugs (24.8% are Type 2 bugs on average)

Subject projects

	Eclipse JDT core	Eclipse SWT	Equinox p2
Study period	2001/06 ~ 2007/12	2001/05 ~ 2008/12	2006/01 ~ 2009/12
Total revisions	17009 revisions	21530 revisions	6761 revisions
# of bugs	1812	1256	1783
Type 1 bugs	2930 (77.04%)	3458 (74.00%)	1328 (74.48%)
Type 2 bugs	873 (22.96%)	1215 (26.00%)	455 (25.52%)

Evaluating a prediction method

- Precision, recall, and f-score
 - Predicted set P and Suggested set S

$$-Precision = \frac{|P \cap S|}{|P|}, Recall = \frac{|P \cap S|}{|S|}$$

-F-score = 2 * precision * recall/(precision + recall)

Feedback

- What portion of initial changes can obtain at least one suggestion?
- $-P_b^m$ is derived using a prediction method m for bug b,

$$-Feedback = \frac{|\{b \in TypeIIbugs | 1 \le |\{P_b^m\}|\}|}{|\{TypeIIbugs\}|}$$