A Program Differencing Algorithm for Verilog HDL

Adam Duley
Intel Corporation
Austin, TX 78746 USA

adam.r.duley@intel.com

ABSTRACT

During code review tasks, comparing two versions of a hard-
ware design description using existing program differenc-
ing tools such as diff is inherently limited because exist-
ing program differencing tools implicitly assume sequential
execution semantics, while hardware description languages
are designed to model concurrent computation. We de-
signed a position-independent differencing algorithm to ro-
bustly handle language constructs whose relative orderings
do not matter. This paper presents Vdiff, an instantiation
of this position-independent differencing algorithm for Ver-
ilog HDL. To help programmers reason about the differences
at a high-level, Vdiff outputs syntactic differences in terms
of Verilog-specific change types. We evaluated Vdiff on two
open source hardware design projects. The evaluation re-
sult shows that Vdiff is very accurate, with overall 96.8%
precision and 97.3% recall when using manually classified
differences as a basis of comparison.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering

General Terms

Algorithms, Measurement, Experimentation

Keywords

Program differencing, change types, empirical study, hard-
ware description languages, Verilog

1. INTRODUCTION

Hardware description languages (HDLs) are pervasively
used by engineers to abstractly define hardware circuitry.
Verilog, one of the most widely used HDLs, uses a C-like syn-
tax to describe massively concurrent tasks—Verilog state-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASE’10, September 20-24, 2010, Antwerp, Belgium.

Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$5.00.

Chris Spandikow
IBM Corporation
Austin, TX 78758 USA

spandiko@us.ibm.com

Miryung Kim
The University of Texas at
Austin
Austin, TX 78712 USA

miryung@ece.utexas.edu

ments can represent parallel execution threads, propaga-
tion of signals, and variable dependency [28]. Hardware
projects are in a constant state of change during the de-
velopment process due to new feature requests, bug fixes,
and demands to meet power reduction and performance re-
quirements. During code review tasks, hardware engineers
predominantly rely on diff which computes line-level differ-
ences per file based on a textual representation of a program.

Using existing program differencing tools for Verilog pro-
grams has several limitations. First, line-based differencing
tools for Verilog programs report many false positive differ-
ences because the longest common sequence algorithm [16]
maps code in order and thus is too sensitive for languages
that model concurrent computation. This is not only the
problem with line-based differencing tools; abstract syntax
tree-based differencing algorithms such as Cdiff [32] often
match nodes in the same level in order, making it unsuit-
able for programming languages where concurrent execution
is common. Second, unlike Java methods or C functions,
processes such as always blocks (i.e., event handlers) do not
have unique labels. Thus, existing differencing algorithms
such as UMLAiff [31] cannot accurately handle position-
independent language constructs, when they do not have
unique labels that produce one-to-one matching based on
name similarity. Third, while Verilog programs frequently
use Boolean expressions to define circuitry, existing algo-
rithms do not perform equivalence between these Boolean
expressions, despite the availability of a mature technology
to solve a Boolean formula satisfiability problem.

To overcome these limitations, we have developed Vdiff
that uses an intimate knowledge of Verilog syntax and se-
mantics. Our differencing algorithm takes two versions of
a Verilog design file and first extracts abstract syntax trees
(ASTs). Traversing the trees top-down, at each level, it uses
the longest common sequence algorithm to align nodes by
the same label and uses a weighted bipartite graph match-
ing algorithm to find out-of-order matching between simi-
lar subtrees to handle position-independent language con-
structs. To complement syntactic differencing, we use an
off-the-shelf SAT solver to compare two Boolean expressions
in the process interface description (i.e., the sensitivity list of
Verilog’s always block). Furthermore, to help programmers
better understand AST matching results, it outputs differ-
ences in terms of Verilog-specific change types (see Section
4.2 for a detail description on change-types). Vdiff is instan-
tiated as an Eclipse plug-in and available for download.!

We applied Vdiff to two open source project histories and

"http://users.ece.utexas.edu/ miryung/software/Vdiff.html

compared its accuracy with manually labeled differences.
We also compared our algorithm with three existing AST
matching algorithms, measured the types of changes com-
mon in Verilog, and assessed the impact of using similar-
ity thresholds in matching AST nodes. In summary, Vdiff
makes the following contributions:

e Vdiff uses a position-independent differencing algorithm
to robustly handle language constructs whose relative
orderings do not matter such as statements with con-
current execution semantics.

e Vdiff produces accurate differencing results with 96.8%
precision and 97.3% recall when using manually clas-
sified differences as a basis of evaluation.

e Vdiff outputs syntactic differencing results in terms
of Verilog-specific change types to help programmers
better understand the differences.

Vdiff has several implications for the software engineering
research community. First, the hardware design industry is
facing challenges in evolving existing design artifacts, just
as the software industry is facing the problems of evolv-
ing software. Yet, support for evolving hardware designs
is very limited compared to evolving software. Our goal
is to develop a foundation for reasoning about differences
in hardware design descriptions to enable various hardware
evolution research, such as regression analysis of hardware
designs, change impact analysis, etc. Second, the algorithm
in Vdiff could be applied to any language that provides
ordering-independent language constructs.

The rest of this paper is organized as follows. Section 2
presents a motivating example for Verilog-specific program
differencing. Section 3 discusses related work. Section 4
presents our algorithm and Section 5 describes our evalua-
tion methods and results. Section 6 discusses Vdiff’s limi-
tations and threats to validity. Section 7 concludes with a
discussion of future work.

2. MOTIVATING EXAMPLE

Verilog is a hardware description language, in which state-
ments and structures map directly to hardware circuitry and
its behavior. Because gates operate concurrently [15], Ver-
ilog models concurrency explicitly by providing language
constructs such as always blocks, continuous assignments
(assign), or non-blocking assignments (<=).

To illustrate the key features of Verilog, Figure 1 provides
a simple example extracted from the uart_rfifo.v file in the
OpenCores Uart 16550 project. This code is a simple im-
plementation of a FIFO queue in Verilog. The key items to
note in this example are the module, the always blocks, the
continuous assignments (assign), and the non-blocking as-
signments. The module uart rfifo()’s input and output
declarations define which inputs are required for the module
and which output signals it produces. Registers and wires
(reg and wire) can be considered to be field declarations in
the module.

Functional specifications can be written either as an ini-
tialization block (initial), a procedure block (always), or
continuous assignments (assign). Always blocks are pro-
cess definitions that are re-evaluated when specified event
conditions become true. For example, always @(posedge
clk or posedge wb_rst_i) is evaluated when either the c1k

or wb_rst_i signal transitions from 0 to 1 due to posedge.
Verilog provides two different types of assignments, = and
<=. The blocking assignment (=) is similar to an assignment
statement in C with sequential execution semantics, while
the non-blocking assignment (<=) denotes a non-blocking
operation that executes simultaneously. In Verilog, non-
blocking assignments are generally more common than block-
ing assignments. Thus, inside the first always block, the
registers top, bottom, and count are all set to 0 simulta-
neously, unlike C. In other words, the order in which top,
bottom, and count are declared does not matter as long as
they are in the same control hierarchy. An ideal program dif-
ferencing tool for Verilog must not detect such reordering of
non-blocking statements, as it does not change the execution
semantics. Similarly, the order of the always blocks does
not matter because all always blocks are executed simul-
taneously. Likewise, all continuous assignments (assign)
in a module operate concurrently. To draw an analogy be-
tween C-like languages and Verilog, one may claim that each
always block is treated like a function. This idea, however,
falls short since multiple blocks can be triggered by the same
event list, meaning that one cannot assume that each always
block has a unique label.

Figure 1 contrasts what a human would consider to be dif-
ferences and line-level differences computed by diff: added
lines are marked in red text with +, and deleted lines are
marked in blue text with -. In this code example, the
always blocks are reordered, the two non-blocking state-
ments are reordered, and the arguments in the first always
block’s sensitivity list are reordered. A human will recog-
nize that, despite textual differences, there are no semantic
differences between the two versions. However, diff will re-
port several false positives: (1) addition and deletion of the
second always block, (2) additions and deletions of two non-
blocking assignments, and (3) addition and deletion of the
second always block’s sensitivity list. Furthermore, as diff
cannot recognize Verilog syntax, it will report differences
that do not respect the boundaries of each always block.

The following list summarizes the unique characteristics
of Verilog from a program differencing perspective.

e Verilog models concurrent executions by using con-
structs such as non-blocking assignments, processes,
and continuous assignments. Thus, ordering-sensitive
differencing algorithms designed for sequential execu-
tion semantics will report many false positive differ-
ences.

In Verilog, processes do not necessarily have unique
labels, even though it is thought to be a bad practice
to use the same name for multiple processes. Thus,
differencing algorithms cannot rely on mapping code
elements solely based on name similarity.

e Frequent usage of Boolean expressions in Verilog pro-
vides an opportunity to leverage a SAT solver to com-
pare process interface descriptions (i.e., sensitivity lists).

3. RELATED WORK

Matching corresponding code elements between two pro-
gram versions is a fundamental building block for version
merging, regression testing selection and prioritization, and
profile propagation. Existing differencing techniques often
match code elements at a particular granularity based on

‘include "uart_defines.v"
module uart_rfifo (clk, wb_rst_i, data_in,
push, pop, data_out, overrun);
input clk;
output [fifo_width-1:0] data_out;
reg [fifo_counter_w-1:0] count;
wire [fifo_pointer_w-1:0] top_plus_1 = top + 1’bl;

always @(posedge clk or posedge wb_rst_i)
begin

top <= #1 0;

bottom <= #1 0;

count <= #1 0;

fifo[1] <= #1 0;
- fifo[2] <= #1 O;

end // always
- always @(posedge clk or posedge wb_rst_i)

- begin

- if (wb_rst_i)

- overrun <= #1 1°b0;

- else

- if (fifo_reset | reset_status)
- overrun <= #1 1°b0;

- else

- if (push & “pop & (count==fifo_depth))
- overrun <= #1 1°bl;

- end // always

assign data_out = fifo[bottom];
endmodule

‘include "uart_defines.v"
module uart_rfifo (clk, wb_rst_i, data_in,
push, pop, data_out, overrun);
input clk;
output [fifo_width-1:0] data_out;
reg [fifo_counter_w-1:0] count;
wire [fifo_pointer_w-1:0] top_plus_1 = top + 1’bil;

always Q@(posedge clk or posedge wb_rst_i)

+ begin

+ if (wb_rst_i)

+ overrun <= #1 1°b0;

+ else

+ if (fifo_reset | reset_status)

+ overrun <= #1 1°b0;

+ else

+ if (push & “pop & (count==fifo_depth))
+ overrun <= #1 1°b1;

+ end // always

+ always @(posedge wb_rst_i or posedge clk)
begin

top <= #1 0;

bottom <= #1 0;

count <= #1 0;
+ fifo[2] <= #1 0;

fifo[1] <= #1 0;

end // always
assign data_out = fifo[bottom];
endmodule

Figure 1: Line-level diff results and expected differences between two versions of a Verilog program

[V] wart_rfifo_verl.w (@ vart_rfifo_ver2.v

£ Compare (uart_rfifo_verl.v' - 'uart_rfifo_ver2.v') &2 =0

[¥] Verilog Structure Diff

v M uart_rfifo
v o iftwb_rst_i)
o fifo[2] <= 1'b0 [fifo[2] <= 1'b1
o Text Compare

v o always @(posedge wb_rst_i or posedge clk) //11 / always @{posedge clk or posedge wb_rsc_i) //8

Sl B <& | A k23R

[V] VerTest/uart_rfifo_verl.v

VerTest/uart_rfifo_ver2.v

%},—{.-always @(posedge whb_rst_1i or posedge clk) |

bottom == #1 1'b@;
count == #1 @;
24 fifo[1] <= 1'bl;
25 fifo[2] <= 1'bl;
& end

Zend

1 7always @(posedge clk or posedge wh_rst_i) “ibegin

libegin 21 1f (wb_rst_1i)

19 if (wb_rst_i) 1. begin

20 begin top <= #1 8;

Sl top == #1 O bottom == #1 1'b@;

25 count == #1 8;
36 fifo[2] <= 1'b0O;
© fifa[l] == 1'b1;
end

1end
1

|2 Problems |El Consaole 53 El Historﬂ@ Progresq

veditor

line 28, AL_SE, Sensitivity list changes, but Boolean Egquivalent "
line 36, WBE_CE, Change of expression for non_blocking assignment

Figure 2: Vdiff’s output in Eclipse IDE

closeness in name and structure, such as: (1) lines and to-
kens [16, 23, 10], (2) abstract syntax tree nodes [12, 14, 19,
22, 32], (3) control flow graph nodes [8], etc. In the con-
text of hardware development with HDLs, the state-of-the-
practice in comparing two versions of Verilog program is to
use GNU diff [18] or a graphic front end to diff, which pro-
vides a side-by-side visualization that highlights deleted or
added lines with different colors and provides navigation ca-
pability to review particular differences [1]. These line-based
differencing tools use the longest common subsequence al-
gorithm that aligns program lines in sequence [16].

For software version merging, Yang [32] developed an AST
differencing algorithm. Given a pair of functions (fr, fr),
the algorithm creates two abstract syntax trees 7" and R and
attempts to match the two tree roots. Once the two roots
match, the algorithm aligns T”’s subtrees t1,t2,...,t; and R’s
subtrees 71,72, ...r; using the LCS algorithm and maps sub-
trees recursively. This type of tree matching respects the
parent-child relationship as well as the order between sib-
ling nodes, but is very sensitive to changes in nested blocks
and control structures because tree roots must be matched
for every level. For dynamic software updating, Neamtiu
et al. [19] built an AST-based algorithm that tracks sim-
ple changes to variables, types, and functions. Neamtiu’s
algorithm assumes that function names are relatively sta-
ble over time. It traverses two ASTs in parallel, matches
the ASTSs of functions with the same name, and incremen-
tally adds one-to-one mappings, as long as the ASTs have
the same shape. In contrast to Yang’s algorithm, it can-
not compare structurally different ASTs. Cottrell et al.’s
Breakaway [12] automatically identifies detailed structural
correspondences between two abstract syntax trees to help
programmers generalize two pieces of similar code. Its two-
pass greedy algorithm is applied to ordered child list prop-
erties (e.g., statements in a block), and then to unordered
nodes (e.g., method declarations).

Change Distiller [14] takes two abstract syntax trees as
input and computes basic tree edit operations such as in-
sert, delete, move or update of tree nodes. It uses bi-gram
string similarity to match source code statements such as
method invocations, and subtree similarity to match source
code structures such as if-statements. After identifying tree
edit operations, Change Distiller maps each tree-edit to an
atomic AST-level change-type such as parameter ordering
change. Vdiff uses an approach similar to Change Distiller,
in that we identify similar subtrees by computing similarity
measures and find the best matching among similar sub-
trees by selecting matches with the highest similarity one
at a time. In addition, we also report AST-level matching
results in terms of Verilog specific change-types. Ragha-
van et al.’s Dex [22] compares two ordered ASTs using both
top-down matching and bottom-up matching. This algo-
rithm gives preferences to AST node matches in the same
level that do not results in moving or reordering nodes. Dex
defines edit cost using fixed numbers instead of similarity
between AST node labels.

The main difference between our AST comparison algo-
rithm and existing AST matching algorithms is that our al-
gorithm identifies syntactic differences robustly, even when
multiple AST nodes have similar labels and when they are
reordered.

In addition to these, several differencing algorithms com-
pare model elements [31, 20, 26]. For example, UMLJifT [31]

matches methods and classes between two program versions
based on their name. However, these techniques assume
that no code elements share the same name in a program
and thus use name similarity to produce one-to-one code
element matches. Our algorithm differs from these by not
relying on one-to-one matching based on name similarity.
As different language semantics lead to different program
differencing requirements, some have developed a general,
meta-model based, configurable program differencing frame-
work [25, 3]. For example, SiDiff [25, 29] allows tool de-
velopers to configure various matching algorithms such as

identity-based matching, structure-based matching, and signature-

based matching by defining how different types of elements
need to be compared and by defining the weights for com-
puting an overall similarity measure.

Sudakrishnan et al. [27] studied the types of bugs that
occur in Verilog and compared those findings to a similar
study in Java. They presented a categorization of change-
types that caused bugs and how often they occurred, and
found that the most common bug pattern was changes to
assignment statements and if-statements. In our work, we
extended Sudakrishnan’s change-types by adding 25 change-
types to comprehensively describe code changes in two open
source Verilog projects that we studied. While Sudakrish-
nan’s change-type analysis is largely manual, our program
differencing tool automatically identifies change-type level
differences between two program versions.

4. APPROACH

Vdiff accepts two versions of a Verilog design file and out-
puts syntactic differences in terms of Verilog-specific change
types. It uses a hybrid program differencing approach that
performs a syntactic comparison of two abstract syntax trees
while checking semantic equivalence in limited cases using an
off-the-shelf SAT solver. Section 4.1 discusses our abstract
syntax tree matching algorithm that accounts for concur-
rent execution semantics such as non-blocking assignments.
Section 4.2 presents Verilog-specific change types, which are
designed to help programmers better understand AST-level
matching results. This section also describes when and how
our algorithm performs a semantic comparison using a SAT
solver. Section 4.3 describes our Vdiff Eclipse plug-in.

4.1 Position-Independent Abstract Syntax Tree
Differencing

Our algorithm shown in Algorithm 1 takes as input the
old and new versions of a Verilog module and two thresh-
olds used for determining text similarity. For each Verilog
module, it extracts an abstract syntax tree using the Ver-
ilog syntax parser module provided by the VEditor plug-
in [2]. Then it marks AST nodes that correspond to non-
blocking assignments, continuous assignments, and always
blocks. Marking these nodes allows for the matching algo-
rithm to carefully handle semantically equivalent reordering
of such nodes. The resulting abstract syntax tree allows
certain concurrent nodes to be arranged in any sequence
inside a module. Figure 3 shows an example AST, where
unordered children are marked with a dotted edge.

Once the trees, L and R, are built for each file, F;, and F,,
they are compared hierarchically from the top down using
compareTrees (). The initial comparison is done by aligning
nodes in the same level by the same labels, using the longest
common subsequence algorithm [16]. Any unmatched node

in R is added to ADD, and any unmatched node in L is
added to DEL. The step is recursively applied to all children
of the matching nodes.

Algorithm 1: Position-Independent AST Matching

Input: Fj,, Fy, /* old and new versions */
ths, th; /* similarity thresholds for short text and
long text */
Output: ADD /* a set of nodes added to F, */
DEL /* a set of nodes deleted from F */
MAP /* a set of mapped node pairs */

L := createAST (F,), R := createAST (Fy)

ADD := 0, DEL := (, MAP := (), Candidate := 0

compareTrees (L, R, MAP, ADD, DEL)

findCandidate (ADD, DEL, Candidate, thy, ths)

repeat

/* Identify a weighted bipartite matching by
selecting a candidate match with the highest
likeness value and updating ADD and DEL
accordingly */

Candidate = sort(Candidate)

foreach p € Candidate do

if p.a € ADD and p.d € DEL then
MAP := MAP U {(p.a, p.d)}
compareTrees (p.a, p.d, M’, A’, D)
ADD := ADD- {p.a}, DEL := DEL- {p.d}
removeMatches(Candidate, p) /* remove

candidate matches that include p.a or

p.d */
end
ADD := ADD U A’, DEL := DEL U D’, MAP :=
MAP U M’
end

findCandidate (ADD, DEL, Candidate, th;, ths)
until Candidate # 0 ;
interpret (MAP, ADD, DEL)

Function compareTrees(L, R, M, D, A)

/* align L and R’s subtrees using the longest common

subsequence algorithm based on their labels */
MAP := alignLCS (L’s first level subtrees, R’s first level
subtrees)

foreach [€ L’s first-level subtrees do

| if I ¢ MAP.Left then DEL := DEL U {1}
end
foreach r € R’s first-level subtrees do

| if » ¢ MAP.Right then ADD := ADD U {r}
end
foreach (I,r) € MAP do

| compareTree (1, r, MAP, DEL, ADD);
end

Once the initial ADD and DEL have been populated, the
algorithm then tries to match nodes from ADD and DEL
using a greedy version of a weighted bipartite graph match-
ing algorithm. First, for each pair in the Cartesian product
of ADD and DFEL, we compute the pair’s weight using the
text similarity algorithm in UMLJIff [31], which computes
how many common adjacent character pairs are contained
in two compared strings. The weight calculation is based on
the full content of the node’s subtree. For example, when
considering an always block node, the text of its block dec-
laration and its body is used. If the similarity value is above
a required threshold and the nodes are of the same syntactic
type, such as an always block mapping to an always block,
we add the pair to the set of potential matches, Candidate.

Function findCandidate(A, D, Candidate, th;, ths)

foreach a € ADD do
foreach d € DEL do
likeness := textSimilarity (a,d)
if ((a.text.length > 128 or d.text.length > 128) and
likeness > th;) or (a.text.length < 128 and
d.text.length < 128 and likeness > ths) then
| Candidate := Candidate U { (a,d,likeness) }
end
end
end

When computing text similarities, we use two different
thresholds. For text that is less then 128 characters a lower
threshold ths is used, because small changes have a relatively
larger effect on the similarity calculation. While most single
line statements are kept under 128 characters, process blocks
tend to be multi-line statements, requiring a larger threshold
value to ensure a quality match.

Once all pairs in {ADD x DEL} have been evaluated, the
potential match set C'andidate is sorted in descending order
based on the pair’s text similarity. Then we use a greedy
algorithm to select a subset of Candidate. In each iteration,
we take the highest weighted pair and add it to the set of
matched nodes, M AP, and update Candidate by removing
all candidate matches that include either the selected pair’s
left or right hand side. The children of the matched pair are
recursively compared to find any more additions, deletions,
or matches. At the end of the iterations, ADD, DEL, and
Candidate are updated to account for newly matched nodes.
This iteration continues until no new candidate matches are
found. For each pair, (a,d) in M AP, if the full text of a
matches the full text of d exactly, they share the same par-
ent, and their execution orders do not matter (i.e., always,
initial, generate, assign, and <=), then the pair is re-
moved from M AP and marked as unchanged.

4.2 Change-Types for Verilog

In order to provide differencing results at a higher ab-
straction level than simply listing ADD, DEL, and M AP,
we output syntactic differences in terms of change types.
This classification can potentially help users understand the
differences quickly by providing a set of categories that the
hardware designer can easily identify with. Furthermore,
change classification can enable quantitative and qualitative
assessments of frequent change types in Verilog by providing
a detailed uniform description of code changes.

The initial set of change types are motivated from Su-
dakrishnan’s change types [27]. By manually inspecting all
versions of OpenCores project Uart16550 and the DRAM
Memory Controller of the RAMP project (see Section 5), we
created a new change type if the change did not fit within
the classification list. The resulting list of change types is
shown in Table 1.

Each of the major categories in the list has to do with a
specific syntactic element in Verilog. For example, IF deals
with if statement; MD and MI deal with module declara-
tions and instantiations respectively; ASG focuses on assign-
ment statements; AL focuses on always blocks, etc. Figure
5 shows an example of IF_CC and IF_RMV changes.

As a part of a post processing step, where Vdiff interprets
the matching results between two abstract syntax trees as

Table 1: Change Types for Verilog Programs

Syntactic Pattern Description
Element
Always AL_ADD Always block added
AL_RMV Always block removed
AL_SE Changes in the sensitivity list
Assignment ASG_ADD Continuous assignment added
Statement ASG_CE Continuous assignment changed
ASG_.RMV Continuous assignment removed
Blocking B_-ADD Blocking assignment added
Assignment B_CE Blocking assignment changed
B_RMV Blocking assignment removed
Non-Blocking NB_ADD Non-blocking assignment added
Assignment NB_CE Non-blocking assignment changed
NB_RMV Non-blocking assignment removed
If Statement IF_.ABR Addition of else branch
IF_APC Addition of if branch
IF_.CC Change of if condition expr
IF_.RBR Removal of else branch
IF_RMV Removal of if branch
Switch SW_ABRP Changes to switch hierarchy
Statement SW_CADD Addition of a case branch
SW_CRMV Removal of a case branch
SW_CHG Changes to condition
Module MD_CHG Changes in port type/width
Declaration MD_DNP Different number of ports
Module MI_ADD Module instantiation added
Instantiation MI_RMV Module instantiation removed
MI_DCP Different ports values
MI_DNP Different number of ports
MI_DTYP Different types
Initialization INIT_ADD Initial block added
INIT_.RMV Initial block removed
Parameter PARAM_ADD Parameter added
PARAM_CHG Parameter changed
PARAM_RMV | Parameter removed
Register RG_-ADD Register added
RG_-CHG Register changed
RG_RMV Register removed
Wire WR_ADD Wire added
WR_CHG Wire changed
WR_RMV Wire removed
Pre-processor Pattern Description
Directives
Define DEFINE_.ADD | DEFINE added
DEFINE_.CHG DEFINE changed
DEFINE_RMV | DEFINE removed
Ifdef IFDEF_ADD IFDEF added
IFDEF_CHG IFDEF changed
IFDEF_RMV IFDEF removed
Include INC_ADD Include added
INC_.RMV Include removed
Generate GEN_ADD Generate block added
GEN_RMV Generate block removed
GEN_CHG Generate block changed
Others [
NC [Formatting Changes

rd

..‘..

O~

Figure 3: AST of uart_rfifo.v from Figure 1

Verilog-specific change types, it refines the results in limited
cases by extracting Boolean expressions from AST nodes
and checking their equivalence using a SAT solver. We used
the SAT4J public java library, which takes Boolean formula
in a conjunctive normal form (CNF) and proves whether
there exists a set of inputs that can satisfy the formula [6].
This is similar to Person et al.’s differential symbolic exe-
cution technique [21] in that syntactic differencing is com-
plemented by using a decision procedure for checking se-
mantic equivalence. While Person et al.’s technique com-
putes symbolic summaries at a method (or block) and check
equivalence between two methods, Vdiff checks equivalence
between sensitivity lists (i.e., Verilog’s process interface de-
scriptions written in Boolean logic) and does not perform
extensive symbolic execution like Person et al.’s technique.
For example, the first always block sensitivity list in Fig-
ure 1 was reordered between versions. From a syntactic
point of view, there has been a definite change to the sensi-
tivity list; however, the change has no effect on the operation
of the always block because the modified list is equivalent
to the original list for every possible set of input signals. We
currently focus on checking changes to an always block sen-
sitivity list (AL-SE) to see if the original and modified lists
are Boolean equivalent. In the future version of Vdiff, we
plan to extend our SAT solver-based semantic comparison
to include Boolean expressions in blocking and non-blocking
assignments, continuous assignments, and IF conditions.

4.3 Vdiff Eclipse Plug-In

We implemented our differencing algorithm as an Eclipse
plug-in. The plug-in is available for download. Vdiff plug-
in compares program revisions retrieved from a Subversion
repository using the Subclipse interface [7]. Figure 2 shows
the screen snapshot of our Vdiff plug-in. Its tree view vi-
sualizes AST matching results hierarchically; its text view
presents textual differences between two program versions
using the Eclipse compare plug-in and its console outputs
change-type level differences with a pointer to word level
differences. For example, changes to the sensitivity list are
identified as textual differences in the side-by-side view, but
they are reported as AL_SE: sensitivity list changes. As re-
ordering input signals in the sensitivity list does not lead to
any semantic differences, the change is marked as Boolean
equivalent.

S. EVALUATION

Our evaluation addresses the following research questions:

e RQ1: What is the overall accuracy of Vdiff in comput-
ing change-type level differences?

e RQ2: How does Vdiff’s AST matching algorithm com-
pare to existing AST matching algorithms?

e RQ3: What is the impact of using similarity thresholds
in matching AST nodes?

Subject Programs. To evaluate Vdiff, we acquired data
from two Verilog projects: UART16550 [4] and GateLib’s
DRAM controller project [5]. The UART16550 project con-
tains the design for the core logic of a serial communication
chip, which provides communication capabilities with a mo-
dem or other external devices. We also analyzed the RAMP
project’s GateLib DRAM controller. RAMP is an infras-
tructure used to build simulators using FPGAs. To be able

Table 2: Subject Programs

UART16550 GateLib
LOC 2095 [3616 | 286 | 1843
Files 8 | 12 1 [5
Check-ins 56 49
Avg. Modified Lines 42.12 27.98
Avg. Modified Files 1.92 1.35

to access memory uniformly independent of a chosen plat-
form, GateLib’s DRAM controller provides an abstract in-
terface which includes a standard DRAM interface, arbiter,
asynchronous adapter and remote memory access.

To evaluate the accuracy of Vdiff output, we created an
evaluation data set through manual inspection. We exam-
ined the individual svn diff’s outputs and manually classified
them into change-types. Vdiff ran on the same version his-
tories and produced change-type level differences. Running
Vdiff took 0.080 second per revision on average (in compar-
ison to 0.059 second on average when running GNU diff) on
Intel Core 2 Duo Thinkpad 2 GHz with 1.96 GB of RAM
running Windows XP. Vdiff’s output was then compared to
the manually created evaluation data set.

5.1 Precision and Recall

Suppose that V is a set of change-type level differences
identified by Vdiff, and E is a set of manually identified
change-type level differences. Precision and recall are de-
fined as follows:

Precision: the percentage of Vdiff’s change-type level
differences that are correct, |V‘Q‘E‘

Recall: the percentage of correct change-type level dif-
ferences that Vdiff finds, |V‘gf‘ .

Figure 4 shows the results on UART16550 project’s 56
check-ins and GateLib project’s 49 check-ins. Each row re-
ports the number of revisions per file, the size of an evalu-
ation data set (i.e., manually inspected change-types |E|),
the number of change-type level differences reported by Vd-
iff (]V]), the number of correct differences reported by Vdiff
(IV N EJ), and precision and recall per file. Our evaluation
shows that Vdiff is extremely accurate for most modules—its
precision and recall are 97.5% and 97.7% on UART16550
and 96.2% and 96.9% on GateLib’s DRAM controller.

The inability to match nodes due to low text similarity
led to false positives (incorrect differences found by Vdiff,
V — E) and false negatives (correct differences that Vdiff
could not find, F — V). Figure 5 shows an example of
both false positives and false negatives. In this example,
three changes were made: (1) an extra condition (rstate
== sr_idle) was added before setting counter_b (IF_.CC), (2)
the condition for decrementing count_b was modified by re-
moving counter b != 8’hff (IF_.CC), and (3) the else block
with the rx_1sr_mask condition was removed (IF_RBR). Since
the text similarity algorithm used by Vdiff considers the first
IF condition different enough from its original, the change is
actually classified as a removal of an IF statement (IF.RMV)
with an addition of a new IF statement (IF_.APC). Thus, Vdiff
reports two incorrect change-type level differences (IF_-RMV,
IF_.APC) and misses three expected differences as a result
(IF_CC, IF_CC, IF_RBR).

To understand the types of changes common in Verilog, we
plotted the distribution of identified change-types in Figure
6. The two projects we analyzed had very different charac-

teristics: UART16550 had a significant number of core logic
changes during its development, whereas GateLib’s DRAM
project evolved its abstract interface while hiding the actual
implementation of the platform-specific DRAM implemen-
tation. In the UART16550 design, changes were frequently
made to non-blocking assignments, registers, and always
blocks. GateLib project had many changes to generate
blocks and parameters. Ubiquitous changes observed across
both projects were wire additions, changes to module in-
stantiation ports, and changes to assignments.

We hypothesize that by producing accurate syntactic dif-
ferences in terms of change-types, Verilog developers can
better understand differences at a high level of abstraction.
We demonstrated Vdiff to an engineer with 14 years of ex-
perience in Verilog. The designer told us, “I can see a use
for [the change-types] right away. It would be great for team
leads because they could look at this log of changes and under-
stand what has changed between versions without having to
look at the files [textual differences].” We plan to study how
engineers use Vdiff on their codebase, measure its accuracy
with respect to the differences expected by the engineers,
and improve Vdiff’s algorithm based on their suggestions.

5.2 Comparison of AST Matching Algorithms

To assess the effectiveness of our weighted bipartite graph
matching algorithm in matching AST nodes in the same
level, we constructed two alternative algorithms by borrow-
ing ideas from existing AST matching algorithms [12, 19].

1. Exact Matching: This is the most naive version of AST
matching algorithm that finds corresponding nodes in
the same level using the exact same label. It has the
same effect of using Neamtiu et al.’s AST matching
algorithm [19] that traverses two trees in parallel and
matches corresponding nodes by the same label in the
same syntactic position in the trees.

2. In-Order Matching: This algorithm finds correspond-
ing nodes in the same level in order—it starts by exam-
ining each node in the left tree in order and searching a
node in the right tree with the highest similarity. This
algorithm has the same effect of using the Cottrell et
al.’s AST matching algorithm [12], which determines
ordered correspondences between two sets of descen-
dant nodes by considering nodes in the left tree in turn
and finding the best corresponding node in the right
tree using a linear search.

3. Greedy Weighted Bipartite Matching: Our algorithm
finds corresponding nodes in the same level using a
weighted bipartite graph matching algorithm [11].

Table 3 shows the comparison of the precision and recall
of in-order matching algorithms (column 1 and column2)
with our weighted bipartite matching, which relaxes the con-
straint of linear search to prevent early selection of a match
that leads sub-optimal matching (column 3). As shown in
Table 3, our algorithm improved the precision by 41.4% and
the recall by 29.8% compared to the baseline (column 1)
and improved the precision by 6.6% and the recall by 5.9%
compared to an in-order matching based on similar labels
(column 2). This evaluation of 1097 differences from 210
file revisions in two real world projects shows that the or-
dering of code actually matters in practice when it comes to
computing differences between program versions.

File Revisions LOC Evaluation | Vdiff | |V N E]| Precision Recall
(min:max) |E| V| [V E|/|IV] | [VNE|/|E|
raminfr.v 3 05:111 3 3 3 100% 100%
timescale.v 3 3:64 3 3 3 100% 100%
uart_debug_if.v 6 98:126 9 9 9 100% 100%
uart_defines.v 10 177:247 25 25 25 100% 100%
uart_receiver.v 25 341:482 94 103 92 89.3% 97.9%
uart_regs.v 35 531:893 282 276 272 98.6% 96.5%
uart_rfifo.v 5 267:320 37 37 37 100% 100%
uart_sync_flops.v 2 122:122 2 2 2 100% 100%
uart_tfifo.v 3 227:243 3 3 3 100% 100%
uart_top.v 11 170:340 38 38 38 100% 100%
uart_transmitter.v 13 288:351 39 39 39 100% 100%
uart_-wb.v 25 125:317 65 63 63 100% 96.9%
Total (UART) 141 600 601 586 97.5% 97.7%
DRAM.v 14 286:297 22 23 21 91.3% 95.5%
DRAMArbiter.v 15 286:429 214 224 214 95.5% 100.0%
DRAMArbiterlnner.v 5 392:396 5 5 4 80.0% 80.0%
DRAMExaminer.v 29 180:450 249 244 238 97.5% 95.6%
DRAMRouter.v 6 397:397 7 6 5 83.3% 71.4%
Total (GateLib) 69 497 502 482 96.2% 96.9%
| Total [210 | [1097 | 1103 | 1068 | 968% | 973% |

Figure 4: Precision and recall of Vdiff on subject programs (th,=0.65 and th;=0.80)

Expected differences

Vdiff outputs

counter_b <= #1 counter_b - 8’dil;

old
if (!srx_pad_i) /* IF.CC*/ if (!srx_pad_i) /* IF.RBR */
counter_b <= #1 8’°d191; counter_b <= #1 8°d191;
else
if (counter_b != 8°b0 && counter_b != 8’hff) /* IF.CC */| else
counter_b <= #1 counter_b - 8’dl; if (counter_b != 8’b0 && counter_b != 8’hff)
else if (rx_lsr_mask) counter_b <= #1 counter_b - 8’dl;
<= 2 i * IF_LRMV *
T #1 8hif; |/ / else if (rx_lsr_mask)
counter_b <= #1 8’hff;
new
if (!srx_pad_i || rstate == sr_idle) /*IF_.CC*/ if (!srx_pad_i || rstate == sr_idle) /*IF_.APC*/
counter_b <= #1 8’d191; counter_b <= #1 8°d191;
else
if (counter_b != 8°b0) /* IF.CC*/ else

if (counter_b != 8’b0)

counter_b <= #1 counter_b - 8’dl;

Figure 5: Vdiff reported IF.APC and IF.RMV when two IF_CCs and one IF_RBR were expected. Code with red
shade represents removal, code with gray shade represents modification, and code with blue shade represents

addition.

80

70

60

50

40

30

20

10

INIT_RMV

INIT_ADD *
PARAM_ADD

PARAM_CHG

PARAM RMV (e —

RG_CHG

RG_RMV

RG_ADD
DEFINE_RMV
IFDEF_CHG
INC_RMV

WR ADD | e——

WR CHG —————
WR_RMY _e——

DEFINE_ADD

DEFINE_CHG
INC_ADD

GEN ADD e——

GEN CHG e—————

IFDEF_ADD
IFDEF_RMV

Figure 6: Frequency of change-types

Table 3: Comparison between different algorithms
for matching sibling nodes

Average Label In-Order | Weighted
Matching | Matching | Bipartite

Precision 56.1% 90.9% 97.5%

Recall 67.9% 91.8% 97.7%

In addition, we also compared Vdiff with the EMF con-
figurable program differencing framework [3] by adapting it
to work for Verilog. We mapped (1) modules in Verilog to
classes, (2) always blocks and continuous assignments to
operations, (3) wires, registers, and ports to fields, (4) and
module instantiations to reference pointers in an EMF ecore
model. On the same UART data set, the EMF Compare
tool reported the 47.04% recall with the 80.84% precision
because the EMF ecore modeling language could not model
the implementation of always blocks including blocking and
non-blocking statements.

5.3 Impact of Similarity Thresholds

Our algorithm uses th, (threshold for short text) and th,
(threshold for long text) to determine the similarity between
two AST subtrees. If the similarity is above an input thresh-
old, then the difference will be classified as change; other-
wise, they are considered an ADD or a DELETE. We as-
sessed the impact of these similarity thresholds by incre-
menting ths by 0.05, from 0.5 to 0.95, while setting th; to
its default value 0.80. We also incremented th; by 0.05,
from 0.5 to 0.95, while setting ths to 0.65. Figures 7 and 8
show the resulting accuracy of varying these thresholds on
the vart_receiver.v file during its entire revision history.
The F-measure is also plotted to reason about precision and

. 2XPrecision X Recall
recall together. (Precision+Recall) *

Precision and recall generally increase as ths increases due
to more strict matching requirements. If ths is too low, unre-
lated nodes are incorrectly matched and reported as changes
instead of additions and deletions, adversely affecting accu-
racy. However, when th, reaches around 0.95, its precision
and recall decrease as the threshold requirement becomes
too strict, and many unmatched nodes are considered ad-
ditions and deletions instead of expected changes. The F-
measure reaches the maximum when th; is 0.65. Varying th;
follows a similar trend for similar reasons. However, match-
ing large blocks requires a more strict threshold for correct
matching to occur as illustrated by the increase in precision
from 0.60 to 0.90. The F-measure reaches the maximum
when th; is around 0.8 and 0.85.

6. DISCUSSION

This section discusses our Vdiff algorithms’ limitations,
threats to validity, and extensions necessary for applying
Vdiff to other hardware description languages.
Limitations. Though we use two different thresholds, our
algorithm is still sensitive to subtle changes to variable names
or IF-conditions and requires careful tuning of similarity
thresholds. Further investigation of different name similar-
ity measures such as n-gram based matching [13] is required.
Renaming wires, registers and modules often causes cascad-
ing false positives and false negatives by incorrectly match-
ing AST nodes at a top-level. Renaming detection tech-
niques [30, 17] could be used to overcome this limitation.
The current algorithm cannot recover from mismatches at a

top level as it matches parent nodes before matching their
descendants. The equivalence check using a SAT solver is
currently limited to only sensitivity lists, and we plan to
extend this check to all types of boolean expressions. VEd-
itor struggled with parsing pre-processor directives; conse-
quently, we worked around IFDEFs by creating a version
where the IF branch is true and another version where the
ELSE branch is true. We first computed differences for
these two versions separately and later merged the results
to help programmers understand syntactic differences un-
der two possible circumstances. Our results on precision,
recall and frequent change-types are limited to UART and
GateLib and do not necessarily generalize to other projects.
In addition, the construction and manual identification of
change-types are subject to experimenter bias as they are
done by the first two authors of this paper, who have nine
and six years of hardware design experience in industry re-
spectively.

Application of Vdiff to Other HDLs. While Verilog is
the most widely used HDL, two other HDLs are also preva-
lently used: SystemVerilog and VHDL. SystemVerilog [24]
extends the Verilog-2005 standard to include several fea-
tures commonly found in modern object oriented program-
ming languages: multi-dimensional arrays, enum data types,
struct, union, strings, classes with inheritance, assertions,
and synchronization primitives. Many of these features in
SystemVerilog cannot be directly mapped to hardware cir-
cuitry but could be used for verification and simulation.
VHDL [9] was initially developed in the 1980s, around the
same time Verilog was created, and it has features similar
to Ada. Vdiff could be easily extended to other HDLs by
plugging in a different parser and handling new change types
such as changes to struct or enum in System Verilog.

7. CONCLUSION

Most program differencing algorithms implicitly assume
sequential ordering between code elements or assume that
code elements can be matched based on their unique names
regardless of their positions, such as reordered Java meth-
ods. This limitation leads to poor accuracy when these tech-
niques are applied to languages such as Verilog, where it is
common to use non-blocking statements and there is a lack
of unique identifiers for process blocks. This paper presented
a position-independent AST matching algorithm that is ro-
bust to reordering of code elements even when their labels
are not unique. Based on this algorithm, we developed Vd-
iff, a program differencing tool for Verilog. Our evaluation
shows that Vdiff is accurate with a precision of 96.8% and
a recall of 97.3% when using manually classified differences
as a basis of evaluation.

Acknowledgment

We thank Greg Gibeling and Derek Chiou for providing ac-
cesses to the RAMP repository and Adnan Aziz and anony-
mous reviewers for their detailed comments on our draft.

8. REFERENCES

[1] http://sourceforge.net/projects/tkdiff.

[2] http://veditor.wiki.sourceforge.net.

[3] Eclipse EMF Compare Project description.
[4] Opencore. http://opencores.org.

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50

05 055 0.6 0.65 0.7 075 0.8 0.85 0.9 095 th_s

= Precision
Recall

=>&=F measure

Figure 7: Precision and recall when varying ths while
keeping th; at 0.80

[5
[6
[7
8

[10]

[11]

[12]

[15]

[16]

Ramp. http://ramp.eecs.berkeley.edu.

Sat4J. http://www.satdj.org/.

Subclipse. http://subclipse.tigris.org.

T. Apiwattanapong, A. Orso, and M. J. Harrold. A
differencing algorithm for object-oriented programs. In
ASE 04, pages 2—13, Washington, DC, USA, 2004.
IEEE Computer Society.

P. J. Ashenden. Vhdl-200x: The next revision. I[EEE
Design and Test of Computers, 20(3):112-113, 2003.
G. Canfora, L. Cerulo, and M. D. Penta. Tracking
your changes: A language-independent approach.
IEEE Software, 26:50-57, 2009.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. McGraw-Hill
Science/Engineering/Math, 2001.

R. Cottrell, J. J. C. Chang, R. J. Walker, and

J. Denzinger. Determining detailed structural
correspondence for generalization tasks. In ESEC-FSE
07, pages 165-174, New York, NY, USA, 2007. ACM.
L. R. Dice. Measures of the amount of ecologic
association between species. Ecology, 26(3):297-302,
1945.

B. Fluri, M. Wiirsch, M. Pinzger, and H. C. Gall.
Change distilling—tree differencing for fine-grained
source code change extraction. IEFE Transactions on
Software Engineering, 33(11):18, November 2007.

V. Gupta and V. Pratt. Gates accept concurrent
behavior. Foundations of Computer Science, Annual
IEEE Symposium on, 0:62-71, 1993.

J. W. Hunt and T. G. Szymanski. A fast algorithm for
computing longest common subsequences.
Communications of the ACM, 20(5):350-353, 1977.

G. Malpohl, J. J. Hunt, and W. F. Tichy. Renaming
detection. Automated Software Engineering,
10(2):183-202, 2000.

E. W. Myers. An o(nd) difference algorithm and its
variations. Algorithmica, 1:251-266, 1986.

1. Neamtiu, J. S. Foster, and M. Hicks. Understanding
source code evolution using abstract syntax tree
matching. In MSR’05, pages 2-6, 2005.

D. Ohst, M. Welle, and U. Kelter. Difference tools for
analysis and design documents. In ICSM ’03, page 13,
Washington, DC, USA, 2003. IEEE Computer Society.
S. Person, M. B. Dwyer, S. Elbaum, and C. S.
Pasareanu. Differential symbolic execution. In
SIGSOFT ’08/FSE-16, pages 226-237, New York,
NY, USA, 2008. ACM. differential symbolic execution.

Figure 8: Precision and recall when varying th; while

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50

0.5 055 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 th_|

~H—Precision
Recall

~¥=F measure

keeping ths at 0.65

22]

23]
[24]

(25]

(26]

(28]

29]

(30]

(31]

(32]

S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and
V. Augustine. Dex: A semantic-graph differencing tool
for studying changes in large code bases. In ICSM 04,
pages 188-197, Washington, DC, USA, 2004. IEEE
Computer Society.

S. P. Reiss. Tracking source locations. In ICSE 08,
pages 11-20, New York, NY, USA, 2008. ACM.

D. I. Rich. The evolution of systemverilog. [EEFE
Design and Test of Computers, 20(4):82-84, 2003.

M. Schmidt and T. Gloetzner. Constructing difference
tools for models using the sidiff framework. In ICSE
Companion 08, pages 947-948, New York, NY, USA,
2008. ACM.

M. Soto and J. Miinch. Process model difference
analysis for supporting process evolution. Lecture
Notes in Computer Science, Springer Berlin, Volume
4257/2006:123-134, 2006.

S. Sudakrishnan, J. Madhavan, E. J. Whitehead, Jr.,
and J. Renau. Understanding bug fix patterns in
verilog. In MSR 08, pages 39-42, New York, NY,
USA, 2008. ACM.

D. Thomas and P. Moorby. The Verilog Hardware
Description Language. Kluwer Academic Publishers,
2002.

C. Treude, S. Berlik, S. Wenzel, and U. Kelter.
Difference computation of large models. In ESEC-FSE
’07: Proceedings of the the 6th joint meeting of the
FEuropean software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, pages 295-304, New York, NY,
USA, 2007. ACM.

P. Weifigerber and S. Diehl. Identifying refactorings
from source-code changes. In ASE ’06, pages 231-240,
Washington, DC, USA, 2006. IEEE Computer Society.
Z. Xing and E. Stroulia. Umldiff: an algorithm for
object-oriented design differencing. In ASE ’05, pages
54-65, New York, NY, USA, 2005. ACM.

W. Yang. Identifying syntactic differences between
two programs. Software — Practice & Experience,
21(7):739-755, 1991.

