
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

JShrink: In-depth Investigation into Debloating Modern Java
Applications

Bobby R. Bruce
University of California, Los Angeles

Computer Science Department
b.bruce@cs.ucla.edu

Tianyi Zhang
University of California, Los Angeles

Computer Science Department
tianyi.zhang@cs.ucla.edu

Jaspreet Arora
University of California, Los Angeles

Computer Science Department
jasa92@g.ucla.edu

Guoqing Harry Xu
University of California, Los Angeles

Computer Science Department
harryxu@cs.ucla.edu

Miryung Kim
University of California, Los Angeles

Computer Science Department
miryung@cs.ucla.edu

ABSTRACT
Modern software is bloated. Demand for new functionality has
led developers to include more and more features, many of which
become unneeded or unused as software evolves. This phenome-
non, known as software bloat, results in software consuming more
resources than it otherwise needs to. How to effectively and auto-
matically debloat software is a long-standing problem in software
engineering. Various software debloating techniques have been
proposed since the late 1990s. However, many of these techniques
are built upon pure static analysis and have yet to be extended
and evaluated in the context of modern Java applications where
dynamic language features are prevalent.

To this end, we develop an end-to-end bytecode debloating frame-
work called JShrink and conduct an in-depth analysis of bytecode
transformations for debloating modern Java applications. JShrink
augments traditional static reachability analysis with dynamic pro-
filing and type dependency analysis and renovates existing byte-
code transformations to account for new language features in mod-
ern Java. We highlight several nuanced technical challenges that
must be handled properly to debloat modern Java applications and
further examine behavior preservation of debloated software via re-
gression testing. Our study finds that (1) JShrink is able to debloat
our real-world Java benchmark suite by up to 47% (14% on average);
(2) accounting for dynamic language features is indeed crucial to
ensure behavior preservation for debloated software—reducing 98%
of test failures incurred by a purely static equivalent, Jax, and 84%
for ProGuard; and (3) compared with purely dynamic approaches,
integrating static analysis with dynamic profiling makes the de-
bloated software more robust to unseen test executions—in 22 out
of 26 projects, the debloated software ran successfully under new
tests.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States
© 2020 Association for Computing Machinery.
ACM ISBN 000-0-0000-0000-0/00/00. . . $15.00
https://doi.org/00.0000/0000000.0000000

KEYWORDS
Java bytecode, size reduction, reachability analysis, debloating
ACM Reference Format:
Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, GuoqingHarry Xu, andMiryung
Kim. 2020. JShrink: In-depth Investigation into Debloating Modern Java
Applications. In Proceedings of The 28th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE 2020). ACM, New York, NY, USA, 12 pages. https:
//doi.org/00.0000/0000000.0000000

1 INTRODUCTION
The size and complexity of software has grown tremendously in
recent decades. Though largely beneficial, this has led to unchecked
bloat issues that are especially severe for modern object-oriented
applications due to their excessive use of indirection, abstraction,
and ease of extensibility. This problem of customizing and tailoring
modern applications to only used components, in an automated
fashion, is a long standing problem [25, 28, 32, 42, 43, 45, 49, 56, 58,
60, 64, 65].

Prior work on code size reduction focuses primarily on C/C++
binaries [25, 32, 42, 43, 49, 65], motivated by the long-held belief
that C/C++ programs are easier to attack and are often choices for
software development for embedded systems. However, with the
rise of cloud computing, Android-based smart-phones, and smart-
home internet-of-the-things, a managed, object-oriented language
such as Java is making its way into all important domains and
machines of all sizes. Although reducing the size of Java bytecode,
which is the main goal of our effort, may not ultimately lead to
a significant improvement in a traditional stand-alone machine
setting, its benefit becomes orders of magnitude more significant in
many modern small and large-scale computing scenarios—smaller
bytecode size directly translates to reduced download size and
loading time in smartphones and reduced closure serialization time
in big data systems such as Apache Spark; these are all important
performance metrics for which companies are willing to spend
significant resources in optimizing.

However, past work has not given much attention to Java, espe-
cially debloating modern Java applications. Of particular interest
to us is Tip et al.’s work [58] in the late 1990s that proposes various
bytecode transformations for software debloating, which have since
been utilized by other researchers [4, 13, 28]. In surveying the liter-
ature, we find that their effectiveness has yet to be systematically

1

https://doi.org/00.0000/0000000.0000000
https://doi.org/00.0000/0000000.0000000
https://doi.org/00.0000/0000000.0000000

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

evaluated on a real-world benchmark of modern Java applications.
All previous implementations of those bytecode transformations
relied on pure static analysis to identify reachable code, hereby ig-
noring code reachable through reflection, dynamic proxy, callbacks
from native code, etc. Recent studies find that dynamic language
features are prevalent in modern Java applications and they pose
direct challenges in the soundness of static analysis [31, 37]. This
unsoundness subsequently makes debloating unsafe—removing
dynamically invoked code and inducing subsequent test failures.
Furthermore, evaluations in prior work focus mostly on size reduc-
tion rather than behavior preservation, which raises a big safety
concern for adopting debloating techniques in practice.

Therefore, we undertake the ambitious effort of modernizing and
evaluating Java bytecode debloating transformations to account for
new Java language features, e.g., dynamic proxy, pluggable anno-
tation, lambda expression, etc., and quantify the tradeoff between
size reduction and debloating safety. We augment static reachabil-
ity analysis with dynamic profiling to handle dynamic language
features. We incorporate a new type dependency analysis to ac-
count for a variety of ways to reference types in modern Java, like
annotations and class literals to ensure type safety after debloat-
ing. We replicate and extend four kinds of debloating transforma-
tions—method removal, field removal, method inlining, and class
hierarchy collapsing into a fully automated, end-to-end debloating
framework called JShrink. JShrink allows for the utilization of
these transformations either individually or en-masse.

To effectively evaluate those bytecode transformations, we built
an automated infrastructure to construct a benchmark of real-world,
popular Java applications. We applied a rigorous set of filtering cri-
teria: (1) reputation score based on the GitHub Star rating system,
(2) executable tests, (3) a Maven build script [39], which provides
a standardized interface for obtaining library dependencies and
regression testing, and (4) compatibility with the underlying byte-
code analysis framework, Soot [61]. The availability of runnable
test cases enables us to examine to what extent the behavior of
original software is preserved after debloating via regression test-
ing. Currently, the resulting benchmark includes 22 projects with
SLOC ranging from 328 to 99,779 and with up to 69 library depen-
dencies. We then apply JShrink to this benchmark to quantify size
reduction, the degree to which test behavior could be preserved,
and the impact of Java dynamic language features by answering
the following research questions:

RQ1 How much Java byte code reduction is achievable when
applying different kinds of transformations?

RQ2 To what extent, does JShrink preserve program correctness
when debloating software?

RQ3 What are the trade-offs in terms of debloating potential and
semantic preservation?

RQ4 How robust is the debloated software to unseen test execu-
tions such as new test cases?

JShrink reduces a project’s size (application and included library
dependencies) by up to 46.8% (14.2% on average). The method re-
moval component reduces the application by the most (11.0% on
average) followed bymethod inliner (2.1% on average), field removal
(1.0% on average), and class hierarchy collapser (0.1% on average).
A hybrid static and dynamic reachability analysis is necessary for

improving behavior preservation of debloated software. JShrink
does not break any existing tests for 22 out of 26 Java projects after
debloating, while three existing techniques, Jax [58], JRed [28], and
ProGuard [4] that rely on pure static analysis preserve behavior
for only 9, 11, and 15 projects respectively. While this comparison
in terms of the number of projects may look marginal, 98% of test
failures encountered in Jax (83% for ProGuard) can be actually re-
moved by JShrink’s enhancements. This result implies the effort of
handling new language features is absolutely necessary and worth-
while for improving behavior preservation, which justifies the need
to address the long-standing debloating problem in the modern con-
text. We find that size reduction potential is minimally impacted by
this incorporation of dynamic reachability analysis. In other words,
we only sacrifice size reduction by 2.7% on average, while provid-
ing much stronger behavior preservation guarantees. In order to
achieve 100% behaviour transformation we enable checkpointing—a
feature of JShrink where transformations are reverted if they are
found to break the semantics of a target program. Though this
stategy incurs marginal losses in size reduction (0.9% on average),
we believe checkpointing to be a practical solution for balancing
semantic preservation and code size reduction benefits.

Our work makes the following contributions:
• We present JShrink, an end-to-end Java bytecode debloat-
ing framework that replicates and modernizes four distinct
bytecode transformations to handle new language features
in the modern context.

• We find bytecode reduction of up to 46.8% is possible, where
reachability-based method removal plays a dominant role in
size reduction. JShrink ensures that debloated software still
passes 98% of existing tests.

• We demonstrate the necessity of handling dynamic features
and ensuring type safety. JShrink removes 98% and 83% of
test case failures incurred by Jax [58] and ProGuard [4].

• We put forward an automated infrastructure of constructing
real-world Java applications with test cases, a build script,
and library dependencies for assessing debloating potential
and checking behavior preservation using tests.

The main research contribution of this paper is on systematiza-
tion of the community’s knowledge of Java debloating in the modern
era. As a reference point, several top conferences [12, 18, 47] have
already started to have a “systematization of knowledge” track,
with the goal to address the concern that “the community seems
to lose memory of things that have been done in the past.” With
this paper, we hope to bring existing debloating techniques into a
contemporary context where dynamic features are prevalent and
where behavior preservation must be ensured and checked using
tests. We make publically available the JShrink source code and
additional resources necessary to replicate our results at https:
//doi.org/10.6084/m9.figshare.12435542.

2 BACKGROUND
Scope: Java Bytecode. The problem of software bloat has been a
center of research studies for more than a decade in the area of
performance tuning and optimization. Recently, there is a revived
interest—partly due to the need of cyber defense (e.g., US Navy’s
Total Platform Cyber Protection (TPCP) program [2])—in extending

2

https://doi.org/10.6084/m9.figshare.12435542
https://doi.org/10.6084/m9.figshare.12435542

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JShrink: In-depth Investigation into Debloating Modern Java Applications ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

traditional debloating techniques to reduce code size, improve run-
time performance, and remove attack surfaces for a wide spectrum
of software applications, including JavaScript programs [64], native
applications [43], and Docker containers [44].

In this paper, we focus on code size reduction as opposed to run-
time memory bloat that was the target of a large body of prior
work [40, 67, 69–71]. While code bloat exists commonly in a broad
range of applications, we focus on object-oriented programs (specif-
ically Java bytecode) as our scope for two reasons.

First, the culture of object orientation encourages developers to
use frameworks, patterns, and libraries even for extremely simple
tasks, resulting in a large number of classes and methods, which,
though not used at all during execution, still need to be loaded by
JVM due to type-induced dependencies. These classes and methods
consume extra space and memory, thereby negatively impacting
the performance of resource-constrained systems such as smart
phones or IoT devices. Furthermore, they can potentially contain
security vulnerabilities (e.g., gadgets in return-oriented program-
ming [11]), which can be exploited by remote attackers to execute
code segments that could not have been reached otherwise.

Second, many recent techniques [25, 42, 43, 49] on code bloat
target native x86 programs, aiming to reduce the size of executable
binaries. Native programs are significantly different from object-
oriented programs in terms of compilation and execution. Native
programs are statically compiled and linked, with most libraries
statically loaded. In many cases, a compiler can already remove
much of dead code. On the contrary, object-oriented programs
are often dynamically compiled and loaded; the ubiquitous use of
dynamic features such as dynamic class loading and reflection
dictates that a compiler would not know which classes to load until
the moment they are needed.

History: Static Bytecode Debloating. In the late 1990s, Tip et al. de-
veloped Jax, which included, so far, the most comprehensive set of
transformations to reduce Java bytecode, includingmethod removal,
field removal, method inlining, class hierarchy transformation, and
name compression [58]. They later introduced two more transforma-
tions, class attribute removal and constant pool compression in their
2002 journal paper [59]. Recent techniques are based on a subset
of these transformations to debloat new types of applications, e.g.,
Android [27] and Maven libraries in continuous integration [13].
JRed [28] and RedDroid [27] only support the method removal and
class removal transformations, while Molly [13] supports field re-
moval as well. These above mentioned techniques are outdated or
not publicly available. Furthermore, their evaluations did not quan-
tify the degree to which debloated software preserves semantics by
running existing tests. Behavior preservation is crucial for these
techniques to be adopted in practice.

Motivation for Modernizing Software Debloating and Assessing Be-
havior Preservation. Java offers a number of dynamic features widely
used in real-world programs [31]—reflection, dynamic class loading,
dynamic proxy, etc., which are highly challenging to model through
pure static analysis. Livshits et al. first investigated this problem in
2005 using points-to-analysis to statically resolve dynamic method
invocation targets [38]. Other attempts focused on a specific scope
of dynamic features such as reflection [36, 51], dynamic proxy [20],
etc. Most static analysis tools tolerate and encourage some level of

unsoundness to keep the analysis usable and scalable [37]. Land-
man et al. conduct a systematic literature review and an empirical
study to assess the effectiveness of 24 different static analysis tools
in the presence of real-world Java reflection usage [31]. They find
that static analysis is inherently incomplete and reflection cannot
be ignored for 78% of projects. This finding motivates our effort
to evaluate the safety of debloating techniques in the context of
dynamic language features. In Section 5.3, we quantify this benefit
of handling dynamic features—debloated software based on pure
static analysis would fail 3327 more tests in 26 projects.

Profile-Augmented Static Debloating and Checking of Behavior
Preservation. Existing debloating techniques only assess the code re-
duction and performance improvement achieved by different kinds
of bytecode transformations [4, 27, 28, 59]. None of them assess
the correctness of reduced programs by running existing test cases.
Furthermore, these techniques only perform static call graph anal-
ysis to approximate used code, and are incomplete in the presence
of various dynamic language features discussed in Section 3. Ergo,
test failures are inevitable, as dynamically invoked code could be
removed by debloating. In this paper, we take a profile-augmented
static debloating approach—we augment static reachability analysis
with dynamic reachability analysis using existing tests; we remove
code through static bytecode transformations; and we check behav-
ior preservation by running existing tests after debloating.

3 JSHRINK
We build an end-to-end bytecode debloating framework called
JShrink. Given the bytecode of a Java program and a set of test
cases, JShrink takes three phases to debloat bytecode and verify its
correctness. In Phase I, JShrink performs profile-augmented static
analysis to determine used and unused code. In Phase II, JShrink
applies four kinds of debloating transformations. Finally, JShrink
reruns the given test cases to check behavior preservation between
the original and the debloated version.

3.1 Profile Augmented Static Analysis
We apply three types of analyses—static reachability analysis, dy-
namic profiling, and type dependency analysis—to capture method
invocation, field access, and class reference relationships between
class entities. This is essential to determine unused code in the
presence of dynamic language features and ensure type safety of
debloated bytecode, especially in class hierarchy merging.
Static Reachability Analysis. Static call graph analysis is a stan-
dard method used by previous bytecode debloating techniques [27,
28, 59] to decide unused methods. Given a set of methods (e.g., main
methods, test cases, etc.) as entry points, it analyzes the body of
each method and identifies call sites in the method body. Call graph
analysis then constructs a directed graph for each entry method
and adds edges from the entry method to its callee methods. Those
callee methods are then treated as new entry points and the process
continues until no additional methods are found, reaching a fix
point.

Due to polymorphism in object-oriented languages, multiple
call targets could be invoked from a call site via dynamic dispatch-
ing, depending on the runtime type of the receiver object. Various
techniques have been proposed to approximate possible targets

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

of a dynamic dispatch, e.g., class hierarchy analysis (CHA) [15],
0-CFA [24, 50], rapid type analysis (RTA) [7], points-to analy-
sis [35, 48], etc. Specifically, JShrink leverages CHA to construct
call graphs, which identifies all corresponding method implementa-
tions of a callee in the subclasses of the declared receiver object type
and considers them as potential call targets. We perform a whole-
program analysis, including application code, imported third-party
libraries, and JRE, to build call graphs. In addition, we use ASM [10]
to analyze field accesses in each method and extend the call graphs
with field access information.
Dynamic Reachability Analysis.We initially considered using a
lightweight dynamic analysis approach called TamiFlex [9], as it is
a well known technique for addressing unsoundness caused by Java
reflection. Tamiflex instruments Java reflection call sites to capture
method calls and field accesses via reflection at runtime. However,
TamiFlex is designed for reflection APIs only and thus lacks support
for other dynamic features, which leads to many test failures, evi-
denced by our comparison results in Section 5.4. To systematically
account for dynamic features, we define a comprehensive list of
dynamic features based on Sui et al. [55].

(1) Reflection is a dynamic feature that enables users to dynami-
cally instantiate classes, access fields, and invoke methods. It
is widely used in modern Java context and is the foundation
for many frameworks such as Spring and JUnit [31].

(2) Reflection with ambiguous resolution refers to a special case
where multiple potential targets exist (e.g., overloadingmeth-
ods with different return types) for a dynamic invocation
via reflection. Such bytecode is often generated by bytecode
manipulation instead of by standard compilers.

(3) Dynamic classloading involves classes loaded through custom
class loaders.

(4) Dynamic proxy refers to the proxy feature that dynamically
creates invocation handlers for a class and its methods.

(5) Invokedynamic is a new bytecode instruction introduced in
Java 7 that enables dynamic method invocation via method
handles. It is often used to support lambda expressions.

(6) Serialization refers to dynamically loaded classes via class
deserialization.

(7) Java Native Interface (JNI) is a framework that enables Java
to call and be called by native code. This benchmark includes
two programs that have callbacks from native code via JNI.

(8) sun.misc.Unsafe is a low-level Java API that can be used to di-
rectly manipulate JVM memory at runtime, e.g., dynamically
loading classes, throwing exceptions, swapping instances,
allocating new instances, etc.

We develop our own native profiling agent called Jmtrace, which
instruments method invocations using JVM TI APIs1 to inject log-
ging statements at the entry and exit of each method in a class
during class loading. Table 1 compares the capability of handling
different kinds of dynamic features between static call graph analy-
sis, TamiFlex, and Jmtrace. JShrink runs given test cases and iden-
tifies dynamic method calls that do not exist in static call graphs
but are invoked during test execution. Then JShrink initiates an-
other round of static reachability analysis using those dynamically

1https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/

Table 1: Capability of Handling Different Dynamic Features

Static Tamiflex Jmtrace

Reflection #
Reflection-ambiguous # G#
Dynamic class loading #
Dynamic proxy # #
Invokedynamic G# G#
JNI # #
Serialization #
Unsafe # G#

invoked methods as entry points. Note that we only use dynamic
profiling to augment static analysis, instead of replacing static analy-
sis with dynamic analysis. In case of low test coverage from existing
tests, this augmentation lets JShrink retain functionality statically
reachable from user-specified entry points, such as public methods,
main methods, and method entries from existing test cases.

JVM TI APIs only permit instrumentation of method modies.
As such Jmtrace is not capable of identifying fields dynamically
accessed via reflection. Therefore, we customize TamiFlex to in-
strument only reflection calls related to field accesses and use it
together with Jmtrace. Instrumentation to other reflection calls is
disabled to avoid redundant profiling.
Type Dependency Analysis. Traditional reachability analysis only
keeps track of invoked methods and accessed fields, which is suffi-
cient for method and field removal. Previous debloating techniques
consider a class unused if none of its methods or fields are reachable
from entry points [27, 28, 58]. However, we find this definition of
unused classes is problematic in practice.Modern Java allows de-
velopers to reference classes in various waysi, not just limited to
variable and method declaration or class inheritance, but through
pluggable annotations, class literals, throws clauses, etc. A program
can thereby reference a class without instantiating it, or directly
access any of its methods of field members. In such a case, removing
reference-only classes that do not have any method or field usage
will cause a bytecode verification failure during class loading in the
JVM or lead to a ClassNotFoundException at runtime. It is crucial to
ensure type safety during class removal and class hierarchy collaps-
ing. Therefore, JShrink builds type dependency graphs by scanning
through Java bytecode using ASM. If a class A is referenced by a
class B, we add an edge from B to A in the graph.

Based on static analysis, profiling of dynamic features, and type-
dependency analysis, JShrink determines unused code at four gran-
ularities, listed below. We use “class” as a general term for concrete
classes, abstract classes, and interfaces in Java.

• Unused Method: A method is unused if it is not reachable
from any given entry point in the call graphs.

• Unused Field: A field is unused if it is not accessed by a
used method in a call graph or dynamically accessed via
reflection.

• Unused Class: A class is considered unused if none of the
following three conditions are satisfied: (1) A method in the
class is reachable from given entry points; (2) A field in the
class is reachable from given entry points; (3) A descendant
of this class in the class hierarchy is used.

4

https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

JShrink: In-depth Investigation into Debloating Modern Java Applications ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

• Reference-only Class: A class is not used but referenced
by another used or reference-only class based on given type
dependency graphs. This is a special category of classes not
handled safely by existing debloating techniques [27, 28, 58].
In prior work, unused classes are completely removed if none
of their classmembers are reachable. However, when replicat-
ing class-level bytecode transformations, we find that this is
an unsafe choice, causing many ClassNotFoundErrors at run-
time. Therefore, JShrink partially debloats reference-only
classes to ensure type safety, as explained in class hierarchy
collapsing.

3.2 Bytecode Debloating Transformations
Inspired by Tip et al. [58], JShrink provides the following bytecode
debloating transformations.
Unused Method Removal. JShrink provides three method re-
moval options for a user to choose from—(1) completely remove
the definition of an unused method, (2) only remove the body of
an unused method but keep the method header, and (3) replace the
method body with a warning statement indicating the method is
removed. To safely wipe a method body, JShrink injects bytecode
instructions to return dummy values if the return type is not void.
The first option could achieve maximum code size reduction at
the cost of safety, as it may lead to NoSuchMethodError if a removed
method is triggered in future usages. With the second and the third
options, unused methods are still defined in bytecode and thus
programs will fail gracefully without catastrophic program crashes.
The third option is the most informative, as it lets a user know
which method is invoked at runtime but not captured by static
analysis or given test cases. Our results in Section 5 uses the first
option as default, but a user may choose the other two options in
JShrink.
Unused FieldRemoval.Given an unused field, JShrink completely
removes its definition. Note that this transformation should be used
in pair with method removal. If those unused methods accessing an
unused field are not removed, JVM will report FieldNotFoundError
that crashes the debloated software. Enabling this transformation
alone requires fine-grained transformation within a method body,
e.g., removing all field access instructions and subsequent instruc-
tions with data dependencies to the field.
Method Inlining. JShrink inlines a method if the method has only
one call site in the call graph and the method is the only call target
the callsite. The former ensures that JShrink does not introduce
code duplication during inlining, while the latter is crucial for
semantic preservation in case of polymorphism.

Type safety of method inlining is widely discussed in the com-
piler literature [22, 23]. To ensure type safety, JShrink applies three
constraints. First, JShrink does not inline class constructors. Sec-
ond, JShrink does not inline native methods, abstract methods,
and interface methods as they do not have method bodies. Third,
JShrink does not inline a method if it accesses other class mem-
bers that become invisible after inlining (detailed in Section 3.3).
JShrink also does not inline synchronized methods.
Class Hierarchy Collapsing. JShrink performs two basic trans-
formations to collapse class hierarchy. The first, more sophisticated,

transformation is to merge a base class X and a subclass Y , if Y
is the only used subclass of X . JShrink checks if, for any over-
ridden method m′ in Y , and the corresponding original method
m, only one of eitherm andm′ is used. If both are used, JShrink
does not collapse the classes. If this rule was not enforced, JVM
would not delegate an invocation onm to its overridden method,m′,
based on the real type of the receiver object at runtime. The second
transformation is to remove unused classes. For a reference-only
class, JShrink removes its class members and only retains the class
header to avoid ClassNotFoundError. If a reference-only class is a
concrete class, JShrink injects a default constructor as enforced by
JVM. If a reference-only class is an interface, JShrink keeps those
method declarations whose implementations in a subclass are used.

To implement the first transformation of merging a subclass Y
into a base classX , JShrink takes three steps. First, it moves all used
method and field members ofX intoY while removing unused class
members in Y . Secondly, it updates all references to the merged
subclasses, their method and field members, to their new locations
after merging. During the merging and updating process, name
conflicts may occur due to method overloading rules enforced by
Java. For instance, class B may have overloaded methods void m(A

a) and void m(SubA a). After merging SubA to A and updating the
parameter type of the second method in B, the signatures of the
two methods become identical. Therefore, to handle name conflicts,
JShrink renames methods and further updates references to those
renamed methods as needed. Since class constructors cannot be
renamed, in instances where naming conflicts with them, JShrink
adds a new dummy integer parameter to “rename” a constructor
and update all call sites of the renamed constructor by pushing an
integer value, 0, on the stack.
Checkpointing.While experimentingwith real-world Java projects,
we note that test failures may still occur due to rare but challeng-
ing corner cases caused by known limitations of JVMTI and Soot
(Section 5.3). Therefore, JShrink implements an additional strategy
of checkpointing to ensure safety. It checkpoints each type of de-
bloating transformation, runs tests, and reverses failure-inducing
transformations.

3.3 Implementation and Nuanced Extensions
We implement those bytecode debloating transformations using
Soot [61]. We use the CHA implementation in Soot for static analy-
sis, and ASM [10] to gather field accesses. We implement Jmtrace
using JVM TI APIs. We highlight several nuanced extensions that
we designed to ensure type safety and behavior preservation.

(1) Co-variant return type. From Java 5 onward, JVM supports co-
variant return types, which allow an overridden method to
have a return type different to the original. Therefore, instead
of simply comparing whether two method signatures are
the same, JShrink accounts for co-variant return types to
determine overridden methods when merging two classes.
Otherwise, JVM will throw a verification error.

(2) Class member visibility. When inlining a method or merg-
ing a class, it is important not to break access controls. If
methodm from class A is to be inlined into class B, JShrink
enforces that m does not call other private methods in A.
Otherwise, JVM will raise IllegalAccessError since those

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

private methods are not visible to B. Similarly, if subclass
A is in a different package compared with its superclass B
and A contains a protected method that is called by another
class C in the same package as A, merging A into B will
cause IllegalAccessError since A.m becomes invisible to C
after moving to a different package. Before merging a class
to a different package, JShrink checks whether a protected
method or field will become invisible after merging.

(3) Lambda expression. Lambda expressions are introduced in
Java 8. They are anonymous functions that can be passed as
parameters to method calls. For example, in v.forEach(x ->

A.foo()), the lambda x -> A.foo() is passed to the forEach

method and could be executed at runtime. Therefore, the
method call foomust be captured by call graph analysis. This
expression can be rewritten to v.forEach(A::foo(x)) using
the new method reference operator “::”. JShrink checks for
both cases and adds missing edges between the caller and
method calls in a lambda expression to call graphs.

(4) Class literals. Class literals such as X.class are compiled to
string constants in Java bytecode. It is critical to identify class
references via class literals and add them to type dependency
graphs to avoid ClassNotFoundError. JShrink identifies class
literals by matching “*.class” against string constants used
in a class. JShrink also updates the class literal of a merged
class to its superclass to avoid ClassNotFoundError.

(5) Method inheritance. Merging classes in presence of both
method overriding and inheritance could be problematic.
Suppose a base class A inherits a method m from its super
class B and its subclass C overrides m. If A.m is reachable from
an entry point, it is hard to decide whether A.m is actually in-
voked on A objects or B objects due to polymorphism. If A.m is
only invoked on A objects, we can safely merge class C into B

even when the overridden method C.m is also used. However,
if A.m is invoked on B objects, moving C.m into Bwill alter the
dynamic patching behavior. In such a case, JShrink make
a conservative choice of not merging a subclass to its base
class, if (1) the base class inherits a used method from its
superclass or an ancestor, (2) the subclass also overrides the
same method, and (3) the overridden method is also used.

In summary, compared with prior work, JShrink makes the fol-
lowing major extensions to handle modern Java: (1) augmenting
static reachability analysis with JVM TI based dynamic profiling,
(2) incorporating type dependency analysis, (3) extending method
inlining and class hierarchy collapsing transformations to ensure
type safety, and (4) all nuanced extensions in Section 3.3 to handle
new language features properly.

4 BENCHMARK
We build an automated infrastructure to construct a benchmark.
It uses the Google BigQuery API to query GitHub projects and
automatically applies a rigorous set of filtering criteria listed below
to include real-world, popular Java projects on GitHub.2

• Popular Java projects. We are interested in high-quality Java
projects, widely used by software developers. Therefore, our

2Google BigQuery API and GitHub Dataset, https://cloud.google.com/bigquery/public-
data/.

infrastructure chooses projects with at least 100 GitHub stars
from other developers. The star rating ranges from 188 to
16205 on our benchmark, with an average of 3145.

• Automated build system. Our infrastructure requires a stan-
dardized API to automatically resolve library dependencies,
compile target projects, and run test cases. The current im-
plementation supports Maven [39], a popular build system
used in Java, but could be easily extended to support other
build systems such as Graddle.

• Compilable. After downloading those projects, we exclude
those that induce build failures in our environment (an Ama-
zon r5.xlarge instance with Ubuntu 18.04 and JDK 1.8.0),
due to specific hardware or library configurations.

• Executable tests. We rely on test cases to evaluate to what
extent debloated software preserves its original behavior.
Therefore, after compiling a project, our infrastructure runs
the Maven test command and parses generated test reports
to identify the number of test cases and test failures. Projects
with no test or any test failure are excluded.

• No JVM verification errors. Note that, when Soot writes code
from its intermediate language, Jimple, back to bytecode, it
automatically applies several optimizations such as constant
pool compression. Therefore, we first pre-process all Java
bytecode using Soot to fairly measure code size reduction
achieved by JShrink. In this preprocessing step, fatal JVM
verification errors could occur in some Java projects. We
discard those projects due to JVM verification errors.

• No Timeout. Our infrastructure enforces a timeout constraint
on the profile-augmented static analysis, since generating
call graphs for some projects may take an excessively long
time. We set this timeout to 10 hours.

Table 2: Project statistics

Stars Tests Libs SLOC (App Only) Size (KB: App+Libs)3

Max 16,209 1,081 69 99,779 114,312
Min 188 1 0 328 30
Mean 3,135 237 15 14,729 15,734
Median 2,000 60 9 5,863 3,193
Total 69189 5213 332 324,035 346,160
SD 3,595 370 17 22,288 30,766

The final benchmark shown in Table 3 covers a wide spectrum
of Java programs, including popular libraries, web applications,
development and testing frameworks, and desktop applications.
Table 2 summarizes the statistics for those 26 benchmark programs.
All are popular GitHub projects with a median of 2,000 stars, where
the average number of test cases and external library dependencies
are 237 and 15 respectively. The total size of the projects (inclusive
of library dependencies) range from 30KB to 112MB with a median
of 3MB. Cobertura [1] reports 34.1% statement coverage by their
existing tests, which we use for assessing behavior preservation
after debloating.

3The total size reported is that of project and library dependencies in their compiled
states.

6

https://cloud.google.com/bigquery/public-data/
https://cloud.google.com/bigquery/public-data/

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

JShrink: In-depth Investigation into Debloating Modern Java Applications ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

5 EXPERIMENTS
We run JShrink on the benchmark of 26 popular Java projects and
compare it with three existing bytecode debloating techniques to
answer the questions outlined in this paper’s introduction:

RQ1 How much Java byte code reduction is achievable when
applying different kinds of transformations?

RQ2 To what extent program semantics is preserved when de-
bloating software?

RQ3 What are the trade-offs between debloating potential and
preservation of software semantics?

RQ4 How robust is the debloated software to unseen executions
such as new test cases?

5.1 Experiment Setup and Baselines
Our experiments run on an Amazon r5.xlarge instance (3.1 GHz
4-core Intel Xeon Platinum processor, 32GB Memory) with Ubuntu
18.04 and JDK 1.8.0 installed. We choose this standard cloud-based
setup to ease the replication effort for other researchers. We com-
pare JShrink with Jax [58], JRed [28], and ProGuard [4]. Since both
Jax and JRed are not available, we faithfully re-implement them
based on their paper descriptions.
Jax includes the most comprehensive set of bytecode transforma-
tions. To replicate Jax, we adapt JShrink to use static call graph
analysis only and disable Section 3.3’s extensions. Jax imposes an
additional constraint that requires unused, to-be-removed classes
not to have any derived classes. So we modify the class collapsing
transformation accordingly.
JRed only supports method removal and class removal. Like Jax,
JRed relies on static call graph analysis only. To replicate JRed, we
adapt JShrink to use static call graph analysis exclusively, only
enable unused method removal and unused class removal, and
disable all extensions from Section 3.3.
ProGuard shrinks and obfuscates Java bytecode. Unlike Jax and
JRed, it is publicly available. It has been integrated into Android
SDK and is widely used to optimize Android applications. Similar
to Jax and JRed, ProGuard performs static analysis only. It does not
construct call graphs but instead traverses bytecode instructions
in a given method to calculate a transitive closure of all referenced
classes, methods, and fields. ProGuard has some static analysis
support for Java reflection but is not accurate, since it only analyzes
hardcoded strings passed into a pre-defined set of reflection APIs.
As ProGuard is publically available, we evaluate it directly. We use
version 6.3.

5.2 RQ1: Code Size Reduction
To answer RQ1, we apply the four transformations implemented
in JShrink on each project individually and en-masse. The evalua-
tions of Jax [58] and JRed [28] in their original papers only use main
methods as the entry points. However, we find that many projects
(such as gson and java-apns in our benchmark) are library projects
whose public classes and methods are potentially invoked by down-
stream client projects. Therefore, in our experiments, we make a
conservative choice of setting all public methods, main methods,
and test methods as entry points to maximally approximate possible
usage.

We report the size reduction of bytecode only, excluding resource
files. Column Transformations in Table 3 shows the size reduction
ratio achieved by each transformation. Compared with the other
three transformations, method removal (ColumnMR) is the most
effective in size reduction, achieving an average of 11.0% reduction
(up to 42.2%). Method inlining (Column MI) and field removal (Col-
umn FR) reduce bytecode by 2.1% and 1.0% respectively on average.
Class hierarchy collapsing (Column CC) only achieves a minimal
reduction of 0.1% on average (up to 0.6%).

Column Code Size Reduction in Table 3 shows the size reduc-
tion achieved by all transformations, compared with Jax, JRed, and
ProGuard. Specifically, Column JShrink-C shows the size reduc-
tion when enabling the checkpoint feature to automatically reverse
failure-inducing transformations. When applying all transforma-
tions together, JShrink can reduce a project by up to 46.8% (14.2%
on average). Checkpointing only has a minimal impact on size re-
duction (0.9% less reduction) while achieving 100% semantic preser-
vation. JRed has the smallest size reduction (13% on average). This is
because JRed only supports two kinds of transformations, method
removal and class removal. Though both Jax and JShrink support
the same set of transformations, Jax achieves a larger size reduc-
tion, 17.0% in comparison to 14.2% in JShrink for two reasons. First,
JShrink retains dynamically called methods and loaded methods.
Second, JShrink partially debloats reference-only classes, while Jax
completely removes them. ProGuard crashes on two projects due
to a known bug while performing partial evaluation on strings [3].
Compared with JShrink, ProGuard reduces code more aggressively
(33.8% on average) because it performs static reference-based anal-
ysis, producing a smaller set of reachable methods. However, Pro-
Guard causes 6X more test failures than JShrink, as elaborated in
the next section.

5.3 RQ2: Semantic Preservation
Code size reduction, however, is only meaningful if the semantics
of the target program is preserved. To assess how closely JShrink
preserves program semantics, we run existing test cases before and
after debloating. A program is considered to have broken semantics
if there exist any test failures after debloating. Column Test Failures
shows the semantic preservation capability of JShrink, Jax, JRed,
and ProGuard. “✓” denotes a project with no test failure after
debloating, while “×” denotes that test failures exist after debloating.
The numbers in brackets show the numbers of failing tests.

When checkpointing is enabled, JShrink achieves 100% behav-
ior preservation as expected. Disabling checkpointing leads to test
failures in 4 projects only. Checkpointing does not cause signifi-
cant loss in size reduction, because a single kind of transformation,
class hierarchy collapsing, leads to most test failures (75 of 81) while
contributing the least in size reduction (0.1% on average). The root
cause is due to existing bugs in Soot. Soot throws runtime excep-
tions when rewriting some classfiles, which interferes our ability
to update all classfiles that reference a merged class when collaps-
ing class hierarchies. By simply reverting failure-inducing class
collapsing transformations, JShrink avoids most test failures.

By contrast, JRed, Jax, and ProGuard cause test failures in 15,
17, and 11 projects respectively. Without checkpointing, only 81
of 5432 test cases fail after debloating using JShrink. This gives

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Results of debloating the benchmark projects.

Application Tests
Transformations Code Size Reduction Test Failures

MR FR CC MI JRed Jax ProGuard TamiFlex JShrink JShrink-C JRed Jax ProGuard TamiFlex JShrink JShrink-C
jvm-tools 102 1.7% 0.6% 0.0% 2.0% 2.2% 5.2% 12.2% 4.2% 4.2% 4.2% ✓ (0) × (102) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
bukkit 906 15.4% 1.2% 0.2% 1.9% 19.8% 24.0% 72.7% 18.5% 18.5% 18.5% × (906) × (906) × (3) × (39) ✓ (0) ✓ (0)
qart4j 1 42.2% 3.7% 0.2% 0.9% 58.0% 64.2% 84.8% 46.8% 46.8% 46.8% ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
dubbokeeper 1 13.8% 1.5% 0.2% 1.9% 17.2% 20.9% 73.1% 17.3% 17.3% 17.3% × (1) × (1) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
frontend-maven-plugin 6 18.7% 1.6% 0.2% 2.0% 24.3% 28.2% 65.8% 22.4% 22.4% 22.4% ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
gson 1050 0.3% 0.8% 0.0% 4.4% 0.4% 5.8% 2.3% 5.5% 5.5% 5.5% × (1) × (1) × (58) ✓ (0) ✓ (0) ✓ (0)
disklrucache 61 0.1% 1.3% 0.0% 0.2% 0.1% 1.9% 0% 1.7% 1.7% 1.7% ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
retrofit1-okhttp3-client 9 8.4% 0.9% 0.0% 2.2% 11.0% 14.5% 22.7% 12.3% 11.5% 11.5% × (9) × (9) × (3) × (3) ✓ (0) ✓ (0)
rxrelay 58 15.7% 1.1% 0.0% 0.7% 17.5% 19.3% 63.5% 17.5% 17.5% 17.5% × (28) × (58) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
rxreplayingshare 20 20.1% 0.9% 0.2% 0.9% 24.1% 27.5% 91.9% 22.1% 22.1% 22.1% × (20) × (20) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
junit4 1081 1.7% 0.5% 0.1% 4.8% 2.3% 8.0% 9.0% 6.5% 6.8% 1.4% × (1081) × (1081) × (43) × (17) × (13) ✓ (0)
http-request 163 0.2% 2.6% 0.0% 3.8% 0.3% 6.7% 0.1% 6.6% 6.6% 6.6% ✓ (0) ✓ (0) × (15) ✓ (0) ✓ (0) ✓ (0)
lanterna 34 0.2% 0.8% 0.6% 1.9% 0.2% 2.4% 0% 1.9% 2.0% 2.0% ✓ (0) × (34) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
java-apns 111 13.8% 1.3% 0.3% 3.4% 16.0% 21.9% 34.4% 18.9% 18.9% 18.9% × (9) × (107) × (18) ✓ (0) ✓ (0) ✓ (0)
mybatis-pagehelper 106 20.1% 1.4% 0.1% 2.3% 25.5% 28.6% 65.0% 24.7% 23.9% 21.6% × (106) × (106) × (83) × (100) × (55) ✓ (0)
algorithms 493 0.0% 0.3% 0.0% 5.1% 0.0% 5.6% 3.8% 5.5% 5.5% 5.5% ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
fragmentargs 15 8.9% 2.7% 0.0% 0.1% 11.0% 14.7% 16.8% 11.6% 11.6% 0.0% × (4) × (4) × (4) × (4) × (4) ✓ (0)
moshi 835 0.2% 0.0% 0.0% 0.0% 0.2% 0.3% 58.2% 0.2% 0.2% 0.2% × (835) × (835) × (52) ✓ (0) ✓ (0) ✓ (0)
tomighty 26 16.5% 1.5% 0.1% 2.2% 20.7% 24.7% 56.4% 20.2% 20.1% 20.1% ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
zt-zip 121 5.4% 2.4% 0.6% 2.9% 6.4% 13.3% 16.4% 11.3% 11.3% 11.3% × (110) × (110) × (115) ✓ (0) ✓ (0) ✓ (0)
gwt-cal 92 16.5% 0.7% 0.1% 0.3% 19.4% 20.8% 31.6% 17.5% 17.5% 17.5% × (3) × (3) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
Java-Chronicle 8 0.0% 1.1% 1.0% 1.4% 0.0% 3.5% 0.0% 3.5% 3.5% 3.5% ✓ (0) ✓ (0) ✓ (0) × (8) ✓ (0) ✓ (0)
maven-config-processor-plugin 77 25.4% 3.2% 0.3% 1.0% 31.5% 35.3% 82.0% 29.8% 29.8% 29.8% × (21) × (21) × (20) ✓ (0) ✓ (0) ✓ (0)
jboss-logmanager 42 11.1% 0.5% 0.04% 1.9% 11.7% 14.3% 17.0% 26.2% 13.6% 13.6% ✓ (0) ✓ (0) × (24) ✓ (0) ✓ (0) ✓ (0)
autoLoadCache 11 16.5% 1.5% 0.3% 1.9% 18.2% 21.9% Crash 20.2% 20.2% 16.5% × (10) × (10) Crash × (7) × (9) ✓ (0)
tprofiler 3 4.7% 4.1% 0.0% 1.4% 6.5% 13.5% Crash 10.2% 10.2% 10.2% ✓ (0) ✓ (0) Crash ✓ (0) ✓ (0) ✓ (0)
Total 5432 — — — — — — — — — — 3174 3408 496 170 81 0
Mean 209 11.0% 1.0% 0.1% 2.1% 13.0% 17.0% 33.8% 15.0% 14.2% 13.3% — — — — — —
Median 60 9.9% 1.23% 0.1% 1.9% 11.4% 14.6% 19.8% 14.8% 12.6% 12.5% — — — — — —

JShrink a test pass rate of 98.5%, in comparison to 41.6%, 37.3%,
and 91% by JRed, Jax, and ProGuard respectively. This indicates
that incorporating dynamic profiling, type-dependency analysis,
and those nuanced extensions are crucial to semantics preserva-
tion. The majority of test failures caused by JRed and Jax are due to
fatal JVM NoClassDefFoundError and ClassNotFoundException
verification errors that crash the entire test execution — for JRed,
10 of 26 projects fail with these fatal exceptions, while using Jax
results in 13 projects failing fatally. For ProGuard, most test failures
are caused by imprecise static analysis. Though ProGuard strives
to handle Java reflection by statically analyzing string arguments
passed into a predefined set of reflection APIs, such static analy-
sis is neither accurate nor complete, which justifies our choice of
augmenting static analysis with profiling for dynamic language
features.

5.4 RQ3: Trade-offs
To further understand the trade-offs between debloating potential
and semantic preservation, we vary entry points for JShrink’s
reachability analysis and compare with an alternative profiler called
TamiFlex [9].
Entry point analysis. As discussed in Section 3, JShrink functions
by running call-graph analysis on entry points. These entry points
are a union of two sets: the set of dynamically accessed methods
determined via runtime profiling, and the set of all public, main,
and test methods, determined via static analysis. While the former
is dependent on the test suite of each project, the latter can be set
manually. E.g., a user of JShrink may determine that only the main
entry point needsi to be processed as it is the only known entry
point to the application. Such decisions may result in a smaller

call-graph and thus increase the deboating potential of a target
project. On the other hand, selecting fewer entry points can make
the deloated software less robust without complete knowledge of
used methods. For example, a method may be removed despite
being used by the project via some unexplored entry point.

To understand this trade-off, we run JShrink on all our projects
using the main method as an entry point, the public methods, and
just the test methods alone as entry points. Table 4 shows the
experiment results with the baseline where all such methods are
considered as entry points. The size reduction is consistently larger
when we select a subset of entry points to the reachability analysis.
When targeting the test entry points, projects can be debloated
by 36.6% more than our conservative baseline. Though, in every
case where a subset of entry points are chosen, the number of test
failures increases. While only 1.5% of all tests fail when targeting
all entry points, this figure jumps to 3.4%, a 70% increase in test
case failures, when selecting a subset.

We therefore conclude that the size reduction and robustness
depend on what we choose as entry points. If preserving program
semantics is a hard constraint, we suggest the conservative choice
of setting all possible entry points.

Table 4: Entry Point Analysis.

Entry Point Size Reduction Test Failures
Main, Test, & Public 14.2% 81 (1.5%)
Main Only 18.6% 186 (3.4%)
App Public Only 18.3% 157 (2.9%)
Test Only 19.4% 187 (3.4%)

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

JShrink: In-depth Investigation into Debloating Modern Java Applications ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Jmtrace vs. TamiFlex. As discussed in Section 3.1, our native profiler,
Jmtrace, uses JVMTI to instrument method bodies in any classes
loaded in a JVM. Therefore, it can capture all dynamically invoked
methods. By contrast, TamiFlex [9] only instruments a predefined
set of reflection APIs and thus is considered more light-weight. The
two TamiF. columns in Table 3 show the size reduction and test
failures caused by the TamiFlex variant of JShrink. TamiFlex only
identifies a subset of dynamic method calls captured by Jmtrace
and thus should trim more unreachable methods. However, the size
reduction improvement achieved by TamiFlex is trivial, only 0.06%
on average. On the other hand, JShrink with TamiFlex breaks 52
more test cases in comparison to JShrink with Jmtrace.
An in-depth inspection. To investigate which extension aid in im-
proving behavior preservation, we choose one project, java-apns
for a thorough investigation into each failure. This is because there
are a total of 3174 and 3408 test failures for JRed and Jax respec-
tively; thus, it would be prohibitively time consuming to examine
all test failures individually for all projects. Java-apns produces 107
test failures after Jax but was error-free when processed by JShrink.
We manually examine and determine what extension was responsi-
ble for rectifying the failure. Incorporation of Jmtrace reduced test
failures by 59%. The rest of the enhancements such as type depen-
dency analysis all contribute to improving a test pass rate, but none
was the dominant contributor. This result indicates that handling
dynamic language features is absolutely necessary, while each of the
remaining enhancements contributes to behavior preservation.

5.5 RQ4: Robustness
Finally, we assess the robustness of debloated software by run-
ning new tests not seen during dynamic profiling. We use 80% of
the original test suite in each project for profiling and debloating.
Then we use the remaining 20% as a hold-out test set for exam-
ining the robustness of each debloated project. In particular, for
the three projects with one test case, we only use their tests for
robustness assessment. The hold-out test set contains 42 test cases
on average. JShrink does not cause any test failures in 22 out of 26
projects when running the debloated project on its hold-out test
set. JShrink causes 3, 5, 45, and 1 test failures in the remaining
four projects respectively—retrofit1-okhttps3-client, junit,
java-apns, and autoLoadCache. This implies that, though there
is a chance that unseen executions may cause runtime exceptions
in debloated software, the chance is relatively low — only 4 out
of 26 projects (15%) in our benchmark. This should be attributed
to the design choice of using both static reachability analysis and
dynamic profiling in JShrink. While dynamic profiling precisely
captures all invoked methods in previous executions and handles
dynamic features, static reachability analysis overapproximates
other potential reachable code from given entry points, improving
the robustness of debloated software compared to purely dynamic
profiling alone.

6 DISCUSSION
This work presents the first systematic evaluation of bytecode de-
bloating transformations using modern Java applications. We find
that there is a lack of effort in ensuring and assessing behavior
preservation by previous bytecode debloating techniques, which

poses a big safety concern of adopting them in practice. Thus, we
make significant engineering effort to improve behavior preserva-
tion, including augmenting static analysis with dynamic profiling,
incorporating type dependency analysis to ensure type safety, and
implementing nuanced extensions to account for new language
features. By doing so, we improve the test pass rate by around 61%.
Attack Surface Removal. Software debloating could also poten-
tially remove security vulnerabilities in a program. To demonstrate
the benefit of attack surface removal, we conduct a case study of a
gadget-chain deserialization vulnerability in Java [5]. This vulnera-
bility allows remote attackers to execute arbitrary commands by
carefully crafting a payload of serialized Java classes (i.e., gadget
chains). A gadget chain includes a “kick-off” gadget that is executed
during or after deserialization, a “sink” gadget that executes arbi-
trary commands during instantiation, and other auxiliary gadgets
that create a chain from the start gadget execution to end gadget.
Frohoff et al. discovered a collection of 31 distinct gadget chains
in JDK and popular Java libraries and present a proof-of-concept
tool called ysoserial that automatically generates payloads of
these gadget chains [6]. Based on these known gadget chains, we
automatically scan libraries and classes and detect the presence of
gadget chains that can be potentially exploited by remote attackers.

If a method or a class in a gadget chain is successfully removed,
the gadget chain will be effectively removed and the attack surface
shall cease to be a threat. Running our gadget-chain analysis, we
detect two gadget chains in one project, dubbokeeper in our bench-
mark. Both gadget chains involve unsafe classes and methods in
imported libraries from Spring Framework, a widely used web ap-
plication framework in Java. These gadget chains have also been
reported multiple times as security vulnerabilities, e.g., CVE-2017-
8045, CVE-2017-3203, CVE-2016-2173. After applying JShrink, both
gadgets in dubbokeeper are removed. Hence exploiting the same gad-
get chain in dubbokeeper will only lead to ClassNotFoundException,
rather than arbitrary code execution after debloating. We therefore
demonstrate JShrink is effective at reducing these forms of attack
surfaces, thereby improving application security.
Threats to validity.While replicating bytecode transformations
described in Jax [58], our implementation is different from [58]
is two aspects. First, when merging two classes, the original Jax
algorithm requires that the number of reachable field members in
the new class aftermerging does not increase, in order to ensure that
the new class did not consumemore memory when instantiated.We
ignore this constraint in JShrink, because ourmain goal is to reduce
code size not memory consumption. Second, method inlining in
Jax is originally implemented by simply adding a final modifier
to an inlinable method so that the just-in-time (JIT) compiler in
JVM can inline the method. However, this is tricky as JIT compilers
also apply their own heuristics to decide whether a method, though
declared as final, could be inlined. So we implement our own
inlining transformation using Soot’s APIs. This potentially produces
better results than the original implementation in [58].

In Section 5, we reimplement Jax and JRed by adapting JShrink
based on their papers. The size reduction numbers reported from
their original Jax and JRed papers are higher, at 48.7% and 44.5% re-
spectively. This is because we conservatively choose all public, main,

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

and test methods as entry points, while their original experiment
used main methods as the entry points only.
Limitation. Our goal is to assess size reduction potential based on
both static analysis and dynamic profiling using developer-written
tests. We acknowledge that developer-written tests may suffer from
low-coverage issues and thus cannot represent possible execution
scenarios that may be encountered in the future. To investigate
this issue, we examine how robust a debloated project is to unseen
executions in a hold-out test set in Section 5.5. The result shows
that though unseen executions indeed cause runtime exceptions
in some projects, the chance of running into such issues is rela-
tively low (15%). This is because static reachability analysis and
dynamic profiling synergistically work toghether to handle unseen
executions–dynamic profiling already provides good hints of dynam-
ically invoked method even with an incomplete set of test cases, and
static reachability analysis overapproximates reachable code from
all possible entry points. The solution to reducing this rate of fail-
ure is to increase test case coverage by either by manually adding
tests, or via automated regression test generation tools, such as
EvoSuite [21].

7 RELATEDWORK
Code Bloat. Code size reduction is an important development ac-
tivity in areas such as networking and embedded systems. A large
body of work exists on code compression [14, 17, 30, 33, 34] and
code compaction [16, 62, 63] to reduce the size of binary code for
efficient executions on embedded hardware with limited memory.
We refer interested readers to Beszédes et al. [8] for a detailed sur-
vey. Program slicing [26, 46, 53, 54, 57] is a dataflow-based static
technique that computes, from a given seed, a subset of statements
that can still form a valid and executable program. Slicing reduces
code size by computing a dependence graph and preserving only
the statements that are directly or transitively reachable from the
seed on the graph. Fine-grained static slicing is known to have
limitations due to imprecision of heap modeling and pointer han-
dling and thus does not work well for large-scale applications with
pointers, reflection, and dynamic class loading. Soto-Valero et al. in-
vestigated library dependency debloat in maven projects. Compared
with JShrink, their analysis is coarse-grained at the library depen-
dency level [52]. Therefore, their debloating technique can only
remove unused libraries, rather than unused code within a library.
Furthermore, their analysis is purely static and does not account
for dynamic features, which GitHub developers reported as an
important concern in their qualitative study.

The past two years have seen a proliferation of debloating tech-
niques [19, 25, 43, 44, 49, 64] designed for various domains, includ-
ing JavaScript programs [64], application containers (e.g., docker) [19],
or native C programs [43, 44]. These range from static analysis [19,
49] to load/runtime techniques [43] and machine learning [25].
However, none target modern Java, notoriously different from na-
tive programs in terms of memory management or dynamic method
invocation. This paper revisits and extends existing bytecode trans-
formation techniques, quantifies debloating potential, and checks
behavior preservation with real world tests.
Delta Debugging. Given a test oracle, delta-debugging based tech-
niques can repeatedly split the original program into different

sub-programs and re-check the test oracle to produce a debloated
program [29, 45, 56, 73]. For example, JReduce [29] partitions the
original program into transitive closures based on class-level depen-
dencies and isolates a debloated program that still passes the test.
Chisel [25] uses reinforcement learning to reduce the number of
search iterations during delta debugging. While these approaches
ensure behavior preservation of debloated software by repeatedly
running existing tests on each intermediate program, they suffer
from two limitations—(1) the resulting debloated software may not
retain any functionality beyond test-exercised code, simply reflect-
ing test coverage, and (2) the debloated software cannot be easily
configured to retain code statically reachable from public APIs or
main method entries, since designing such oracle would be exactly
the same task we undertook in JShrink.
Runtime Bloat. Researchers have proposed a range of dynamic
techniques that look for inefficiencies in data structure usage [41, 66,
67], object lifetime patterns [68], or reference copy chains [69, 72].
Such runtime bloat work is orthogonal to this work that removes
code bloat via static bytecode transformations.

8 CONCLUSION
Software debloating is a long standing problem. Some even con-
sider this problem to have been solved 20 years ago through static
reachability-analysis based code transformation. We therefore set
out to extend and rigorously evaluate software debloating transfor-
mations in the context of modern Java. Unlike previous research,
we handled dynamic language features, ensured type safety, and
took measures to pass the JVMs bytecode verification checks. We
found that prior work falls short of behavior preservation, meaning
debloated software no longer passes the same tests, with a test fail-
ure rate of up to 62.7%. Such lack of behavior preservation would
make it impossible to adopt debloating techniques in practice, as
no one would like to remove unused code at the cost of breaking a
majority of existing tests.

The technical contributions that we made are significant, and
our study shows that these extensions, which we embody in a tool
called JShrink, are worthwhile and necessary to improve the test
passing rate of prior work. With checkpointing, JShrink is able to
provide 100% behavior preservation guarantees with marginal size
reduction loss (0.9%). ProGuard, a popular software debloating tool,
reduced software size by almost double but also resulted in 6X more
test failures compared to JShrink. To the best of our knowledge, we
are the first that systematically quantify size reduction, behavior
preservation, and the benefit of dynamic profiling in software de-
bloating. To support the open-science policy, we present our source
code and additional resources necessary to replicate our results at
https://doi.org/10.6084/m9.figshare.12435542.

REFERENCES
[1] [n.d.]. Cobertura: A code coverage utility for Java. https://cobertura.github.io/

cobertura. Accessed: 2020-02-16.
[2] [n.d.]. ONR BAA Announcement # N00014-17-S-B010. https://www.onr.

navy.mil/-/media/Files/Funding-Announcements/BAA/2017/N00014-17-S-
B010.ashx. Accessed: 2019-05-13.

[3] [n.d.]. ProGuard Bug #767: A misjudgement exception occurs while preverifying.
https://sourceforge.net/p/proguard/bugs/767. Accessed: 2020-04-04.

[4] [n.d.]. ProGuard: Java and Android Apps Optimizer. https://www.guardsquare.
com/en/products/proguard. Accessed: 2019-12-13.

10

https://doi.org/10.6084/m9.figshare.12435542
https://cobertura.github.io/cobertura
https://cobertura.github.io/cobertura
https://www.onr.navy.mil/-/media/Files/Funding-Announcements/BAA/2017/N00014-17-S-B010.ashx
https://www.onr.navy.mil/-/media/Files/Funding-Announcements/BAA/2017/N00014-17-S-B010.ashx
https://www.onr.navy.mil/-/media/Files/Funding-Announcements/BAA/2017/N00014-17-S-B010.ashx
https://sourceforge.net/p/proguard/bugs/767
https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

JShrink: In-depth Investigation into Debloating Modern Java Applications ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[5] [n.d.]. Why The Java Deserialization Bug Is A Big Deal. Available from
www.darkreading.com. https://www.darkreading.com/informationweek-home/
why-the-java-deserialization-bug-is-a-big-deal/d/d-id/1323237

[6] [n.d.]. ysoserial: a proof-of-concept tool for generating payloads that exploit
unsafe Java object deserialization. https://github.com/frohoff/ysoserial. Accessed:
2019-05-10.

[7] David F Bacon and Peter F Sweeney. 1996. Fast static analysis of C++ virtual
function calls. ACM Sigplan Notices 31, 10 (1996), 324–341.

[8] Árpád Beszédes, Rudolf Ferenc, Tibor Gyimóthy, André Dolenc, and Konsta
Karsisto. 2003. Survey of Code-size Reduction Methods. ACM Computer Survey
35, 3 (2003), 223–267.

[9] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011.
Taming Reflection: Aiding Static Analysis in the Presence of Reflection and
Custom Class Loaders. In Proceedings of the 2011 International Conference on
Software Engineering — ICSE ’11. ACM, 241–250.

[10] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A code ma-
nipulation tool to implement adaptable systems. In Adaptable and extensible
component systems.

[11] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. 2008. When
good instructions go bad: Generalizing return-oriented programming to RISC.
In Proceedings of the 2008 ACM conference on Computer and Communications
Security — CCS ’08. ACM, 27–38.

[12] Jeffrey C. Carver, Natalia Juristo, Maria Teresa Baldassarre, and Sira Vegas. 2014.
Replications of Software Engineering Experiments. Empirical Softw. Engg. 19, 2
(April 2014), 267–276. https://doi.org/10.1007/s10664-013-9290-8

[13] Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build
system with lazy retrieval for Java projects. In Proceedings of the 2016 SIGSOFT
International Symposium on Foundations of Software Engineering — FSE ’16. ACM,
643–654.

[14] Keith D. Cooper and Nathaniel McIntosh. 1999. Enhanced Code Compression for
Embedded RISC Processors. In Proceedings of the 1999 Conference on Programming
Language Design and Implementation — PLDI ’99. ACM, 139–149.

[15] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In Proceedings of the 1995
European Conference on Object-Oriented Programming — ECOOP ’95.

[16] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. 2000. Com-
piler Techniques for Code Compaction. Transactions on Programming Languages
and Systems 22, 2 (2000), 378–415.

[17] Jens Ernst, William Evans, Christopher W. Fraser, Todd A. Proebsting, and Steven
Lucco. 1997. Code Compression. In Proceedings of the 1997 Conference on Pro-
gramming Language Design and Implementation — PLDI ’97. ACM, 358–365.

[18] Robert Feldt, Tim Menzies, and Thomas Zimmermann. 2018. The 26th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE 2018), ROSE Festival
2018 Recognizing and Rewarding Open Science in Software Engineering.
https://2018.fseconference.org/track/rosefest-2018.

[19] Kostas Ferles, Valentin Wüstholz, Maria Christakis, and Isil Dillig. 2017. Failure-
directed Program Trimming. In Proceedings of the 2017 Symposium on the Foun-
dations of Software Engineering — FSE ’17. ACM, 174–185.

[20] George Fourtounis, George Kastrinis, and Yannis Smaragdakis. 2018. Static Analy-
sis of Java Dynamic Proxies. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (Amsterdam, Netherlands) (ISSTA
2018). ACM, New York, NY, USA, 209–220. https://doi.org/10.1145/3213846.
3213864

[21] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the 2011 Conference on Foundations
of Software Engineering — FSE ’11. ACM, 416–419.

[22] Neal Glew and Jens Palsberg. 2002. Type-safe method inlining. In Proceedings of
the European Conference on Object-Oriented Programming — ECOOP ’02. Springer,
525–544.

[23] Neal Glew and Jens Palsberg. 2005. Method Inlining, Dynamic Class Loading,
and Type Soundness. Journal of Object Technology 4, 8 (2005), 33–53.

[24] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997. Call graph
construction in object-oriented languages. ACM SIGPLAN Notices 32, 10 (1997),
108–124.

[25] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (Toronto, Canada)
(CCS ’18). ACM, New York, NY, USA, 380–394. https://doi.org/10.1145/3243734.
3243838

[26] S. Horwitz, T. Reps, and D. Binkley. 1988. Interprocedural Slicing Using Depen-
dence Graphs. In Proceedings of the Conference on Programming Language Design
and Implementation — PLDI ’88. ACM, 35–46.

[27] Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and DinghaoWu. 2018. RedDroid:
Android application redundancy customization based on static analysis. In 2018
IEEE 29th International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 189–199.

[28] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program customization and
bloatware mitigation based on static analysis. In Proceedings of the 2016 Computer
Software and Applications Conference — COMPSAC ’16. IEEE, 12–21.

[29] Christian Gram Kalhauge and Jens Palsberg. 2019. Binary Reduction of Depen-
dency Graphs. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Tallinn, Estonia) (ESEC/FSE 2019). ACM, New York, NY, USA, 556–
566. https://doi.org/10.1145/3338906.3338956

[30] Darko Kirovski, Johnson Kin, and William H. Mangione-Smith. 1997. Procedure
Based Program Compression. In Proceedings of the 1997 International Symposium
on Microarchitecture — Micro ’97. ACM, 204–213.

[31] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges
for Static Analysis of Java Reflection: Literature Review and Empirical Study. In
Proceedings of the 39th International Conference on Software Engineering (Buenos
Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 507–518. https:
//doi.org/10.1109/ICSE.2017.53

[32] Jason Landsborough, Stephen Harding, and Sunny Fugate. 2015. Removing the
kitchen sink from software. In Proceedings of the 2015 Genetic and Evolutionary
Computation Conference Companion — GECCO Companion ’15. ACM, 833–838.

[33] Charles Lefurgy, Eva Piccininni, and Trevor Mudge. 1999. Evaluation of a High
Performance Code Compression Method. In Proceedings of the 1999 International
Symposium on Microarchitecture — Micro ’99. 93–102.

[34] Haris Lekatsas, Jörg Henkel, and Wayne Wolf. 2000. Code Compression for
Low Power Embedded System Design. In Proceedings of the 2000 Annual Design
Automation Conference — DAC ’00. 294–299.

[35] Ondrej Lhoták. 2002. Spark: A flexible points-to analysis framework for Java.
(2002).

[36] Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-inferencing Reflection
Resolution for Java. In ECOOP 2014 – Object-Oriented Programming, Richard
Jones (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 27–53.

[37] Benjamin Livshits, Dimitrios Vardoulakis, Manu Sridharan, Yannis Smaragdakis,
OndÅŹej LhotÃąk, JosÃľ Amaral, Bor-Yuh Evan Chang, Samuel Guyer, Uday
Khedker, and Anders MÃÿller. 2015. In Defense of Soundiness: A Manifesto.
Commun. ACM 58 (01 2015), 44–46. https://doi.org/10.1145/2644805

[38] Benjamin Livshits, John Whaley, and Monica S. Lam. 2005. Reflection Analysis
for Java. In Proceedings of the Third Asian Conference on Programming Languages
and Systems (Tsukuba, Japan) (APLAS’05). Springer-Verlag, Berlin, Heidelberg,
139–160. https://doi.org/10.1007/11575467_11

[39] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. 2010. Apache Maven.
Alpha Press.

[40] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. [n.d.]. Four Trends Leading
to Java Runtime Bloat. IEEE Software 27, 1 ([n. d.]), 56–63.

[41] Nick Mitchell and Gary Sevitsky. 2007. The Causes of Bloat, the Limits of Health.
Proceedings of the 2007 Conference on Object-Oriented Programming Systems,
Languages, and Applications — OOPSLA ’07 (2007), 245–260.

[42] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim,
and Wenke Lee. 2019. {RAZOR}: A Framework for Post-deployment Software
Debloating. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1733–
1750.

[43] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating software through
piece-wise compilation and loading. In Proceedings of the 2018 USENIX Security
Symposium — USENIX Security ’18. 869–886.

[44] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: Automatically Debloating Containers. In Proceedings
of the 2017 Symposium on the Foundations of Software Engineering — FSE ’17. ACM,
476–486.

[45] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In ACM SIGPLAN Notices,
Vol. 47. ACM, 335–346.

[46] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. 1994. Speeding
Up Slicing. In Proceedings of the 1994 Symposium on Foundations of Software
Engineering — FSE ’94. ACM, 11–20.

[47] IEEE Security and Privacy. 2019. A list of CS conferences with “SoK” tracks.
https://oaklandsok.github.io/others/.

[48] Marc Shapiro and Susan Horwitz. 1997. Fast and accurate flow-insensitive points-
to analysis. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 1–14.

[49] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.
TRIMMER: Application Specialization for Code Debloating. In Proceedings of
the 2018 International Conference on Automated Software Engineering — ASE ’18.
ACM, 329–339.

[50] Olin Shivers. 1991. Control-flow analysis of higher-order languages. Ph.D. Disser-
tation. Citeseer.

[51] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Braven-
boer. 2015. More Sound Static Handling of Java Reflection. In APLAS.

[52] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2020.
A Comprehensive Study of Bloated Dependencies in the Maven Ecosystem. arXiv

11

https://www.darkreading.com/informationweek-home/why-the-java-deserialization-bug-is-a-big-deal/d/d-id/1323237
https://www.darkreading.com/informationweek-home/why-the-java-deserialization-bug-is-a-big-deal/d/d-id/1323237
https://github.com/frohoff/ysoserial
https://doi.org/10.1007/s10664-013-9290-8
https://doi.org/10.1145/3213846.3213864
https://doi.org/10.1145/3213846.3213864
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3338906.3338956
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1145/2644805
https://doi.org/10.1007/11575467_11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

preprint arXiv:2001.07808 (2020).
[53] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. 2007. Thin Slicing. In Pro-

ceedings of the Conference on Programming Language Design and Implementation
— PLDI ’07. ACM, 112–122.

[54] Venkatesh Srinivasan and Thomas Reps. 2016. An Improved Algorithm for Slicing
Machine Code. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications — OOPSLA ’16. ACM, 378–393.

[55] Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir. 2018. On
the Soundness of Call Graph Construction in the Presence of Dynamic Language
Features-A Benchmark and Tool Evaluation. InAsian Symposium on Programming
Languages and Systems. Springer, 69–88.

[56] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: syntax-guided program reduction. In Proceedings of the 40th International
Conference on Software Engineering. ACM, 361–371.

[57] Frank Tip. 1994. A Survey of Program Slicing Techniques. Technical Report.
Amsterdam, The Netherlands, The Netherlands.

[58] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. 1999. Practical
Experience with an Application Extractor for Java. In Proceedings of the 1999
Conference on Object-oriented Programming, Systems, Languages, and Applications
— OOPSLA ’99. ACM, 292–305.

[59] Frank Tip, Peter F Sweeney, Chris Laffra, Aldo Eisma, and David Streeter. 2002.
Practical extraction techniques for Java. ACM Transactions on Programming
Languages and Systems — TOPLAS ’02 24, 6 (2002), 625–666.

[60] Mohsen Vakilian, Raluca Sauciuc, J David Morgenthaler, and Vahab Mirrokni.
2015. Automated decomposition of build targets. In Proceedings of the 2015
International Conference on Software Engineering — ICSE ’15. IEEE Press, 123–133.

[61] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot — A Java Bytecode Optimization Framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research — CASCON ’99. IBM Press, 13–23.

[62] R. van deWiel, L. Augusteijn, A. Bink, and P. Hoogendijk. 2001. Code compaction:
Reducing memory cost of embedded software. Philips White Paper.

[63] R. van de Wiel and P. Hoogendijk. 2001. Belt-tightening in software. Philips Res.
Passw. Mag.. , 16–19 pages.

[64] H.C. Vazquez, A. Bergel, S. Vidal, J.A. Diaz Pace, and C. Marcos. 2019. Slim-
ming Javascript applications: An approach for removing unused functions from

Javascript libraries. Information and Software Technology 107 (2019), 18–29.
[65] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2018. VMHunt: A verifiable

approach to partially-virtualized binary code simplification. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security. ACM,
442–458.

[66] Guoqing Xu. 2012. Finding Reusable Data Structures. In Proceedings of the 2012
Conference on Object-Oriented Programming Systems, Languages, and Applications
— OOPSLA ’12. ACM, 1017–1034.

[67] Guoqing Xu. 2013. CoCo: Sound and Adaptive Replacement of Java Collections.
In Proceedings of the 2013 European Conference on Object-Oriented Programming
— ECOOP ’13. Springer, 1–26.

[68] Guoqing Xu. 2013. Resurrector: A Tunable Object Lifetime Profiling Technique
for Optimizing Real-world Programs. In Proceedings of the 2013 Conference on
Object Oriented Programming Systems Languages and Applications — OOPSLA ’13.
ACM, 111–130.

[69] Guoqing Xu, Matthew Arnold, Nick Mitchell, and Atanas Rountev añd Gary Sevit-
sky. 2009. Go with the flow: Profiling copies to find runtime bloat. In Proceedings
of the 2009 Conference on Programming Language Design and Implementation —
PLDI ’09. ACM, 419–430.

[70] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, Edith Schonberg,
and Gary S evitsky. 2010. Finding Low-Utility Data Structures. In Proceedings
of the 2010 Conference on Programming Language Design and Implementation —
PLDI ’10. ACM, 174–186.

[71] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary Sevitsky.
2010. Software bloat analysis: finding, removing, and preventing performance
problems in modern large-scale object-oriented applications. In Proceedings of
the 2010 workshop on Future of Software Engineering Research — FoSER ’10. ACM,
421–426.

[72] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2012. Uncovering Performance
Problems in Java Applications with Reference Propagation Profiling. In Proceed-
ings of the International Conference on Software Engineering — ICSE ’12. IEEE,
134–144.

[73] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183–200. https://doi.
org/10.1109/32.988498

12

https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498

	Abstract
	1 Introduction
	2 Background
	3 JShrink
	3.1 Profile Augmented Static Analysis
	3.2 Bytecode Debloating Transformations
	3.3 Implementation and Nuanced Extensions

	4 Benchmark
	5 Experiments
	5.1 Experiment Setup and Baselines
	5.2 RQ1: Code Size Reduction
	5.3 RQ2: Semantic Preservation
	5.4 RQ3: Trade-offs
	5.5 RQ4: Robustness

	6 Discussion
	7 Related Work
	8 Conclusion
	References

