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Dissertation Overview

High-level changes are often systematic at 
a code level 



Diff Output

- public class CmiRegistry implements 
NameService {
+ public class CmiRegistry extends 
AbsRegistry implements NameService {
-    private int port = ... 
-    private String host = null 
-    public void setPort (int p) {
-       if (TraceCarol. isDebug()) { ...
-       }  
-     }
-     public int getPort() {
-       return port;
-      }
-     public void setHost(String host) 
{ ....
   ...

Changed Code 
File Name Status Lines

DummyRegistry New 20 lines

AbsRegistry New 133 lines

JRMPRegistry Modified 123 lines

JeremieRegistry Modified 52 lines

JacORBCosNaming Modified 133 lines

IIOPCosNaming Modified 50 lines

CmiRegistry Modified 39 lines

NameService Modified 197 lines

NameServiceManager Modified 15 lines

Total Change:  9 files, 723 lines

LSdiff [ICSE 2009]

∀m ∀t past_method(m, “setHost”, t) ∧ 
past_subtype(“Service”, t)
⇒ deleted_calls(m, “SQL.exec”)
[except t=“NameSvc” m=”NameSvc.setHost”]

Each rule represents systematic changes by relating 
groups of change facts. These rules are automatically 

inferred using inductive logic programming.
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ABSTRACT
We describe CodeQuest, a system for querying source code.
It combines two previous proposals, namely the use of logic
programming and database system. Experiments (on projects
ranging from 3KSLOC to 1300KSLOC) confirm that for this
application, a query language based on DataLog strikes the
right balance between expressiveness and scalability.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments;
H.3.4 [Information Storage and Retrieval]: Systems
and Software—source code querying

General Terms
Languages, Design, Measurement, Performance

Keywords
Source code querying, analysis of object-oriented programs,
DataLog, relational databases

1. INTRODUCTION
A code query helps to identify locations of interest in the

source of a program. The most commonly used tool for
code queries is grep, but often it is desirable to ask seman-
tical questions that cannot be solved by purely text-based
pattern matching. Such semantic code queries are impor-
tant for checking coding styles (such as naming conventions
based on types), fault detection (to discover bugs at develop-
ment time), refactoring (to detect code smells), and aspect
weaving (to identify join point shadows of interest). Per-
haps the most common use, however, is simply for program
understanding.

In several of these application areas, e.g. aspect weaving,
there have been numerous proposals for specialised query
languages. These range from complex pattern languages (as
in AspectJ [7]) to Prolog as part of LogicAJ [4]. Tools that
are intended for interactive use in a development environ-
ment exhibit a similarly wide range of query technologies,
ranging from a generalisation of AspectJ’s pointcuts in the
CME [9] to a full logic programming language in JQuery [5].

In the software maintenance community, there is a long
tradition of using storing information about the source in a
Copyright is held by the author/owner.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

database, and then querying that information via database
queries, e.g. [1, 8]. Jarzabek [6] presents an SQL-like query
language with special primitives for code queries, imple-
mented on top of a Prolog system. ASTLog is a query
language for inspecting abstract syntax trees [2].

Thus far there has not been a rigorous assessment of the
relative merits of these different technologies. In particular,
there appears to be little work on assessing scalability; and
yet the importance of code queries grows with program size.
This poster represents the first steps towards such an assess-
ment, as well as a synthesis of the best ideas of the works
cited above. To wit, the contributions of the work reported
here are:

• The combination of earlier strands of work, leading
to the use of DataLog as the query language, with a
traditional database system as its backend.

• The construction of an optimising compiler from
DataLog to SQL, both targeting built-in
recursive queries and a custom implementation of re-
cursion via stored procedures.

• The collection of a number of benchmarks to compare
query engines.

• A comparison of four different query engine technolo-
gies with respect to these benchmarks.

2. EXAMPLE CODE QUERIES
We now present some example queries to help focus the

discussion. All three queries are intended to run on Java
programs. The notation we use is that of Prolog, as sug-
gested by many of the works cited above.

The first query is checking a common style rule, namely
that there are no declarations of non-final public fields. When
such fields occur, we want to return both the field F and the
enclosing type T . As a Prolog clause, this query might read
as follows:

q1(T, F ) :− type(T ), child(T, F ),field(F ),
modifier(F, public),
not(modifier(F,final)) .

Our second query is a little more interesting. Here we
wish to determine all methods M that write a field of a
particular type, say T . In fact, fields whose type is a subtype
of T qualify as well. We therefore specify:

q2(M, T ) :− method(M),writes(M, F ),
type(F, FT ), subtypestar(T, FT ) .

Navigating and Querying Code Without Getting Lost

Doug Janzen and Kris De Volder
Department of Computer Science
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ABSTRACT
A development task related to a crosscutting concern is chal-
lenging because a developer can easily get lost when explor-
ing scattered elements of code and the complex tangle of re-
lationships between them. In this paper we present a source
browsing tool that improves the developer’s ability to work
with crosscutting concerns by providing better support for
exploring code. Our tool helps the developer to remain ori-
ented while exploring and navigating across a code base.
The cognitive burden placed on a developer is reduced by
avoiding disorienting view switches and by providing an ex-
plicit representation of the exploration process in terms of
exploration paths. While our tool is generally useful, good
navigation support is particularly important when exploring
crosscutting concerns.

1. INTRODUCTION
Consider the scenario of a software developer wanting to

reuse part of a particular application’s code base because
it contains functionality she needs in another application
she is developing. The developer will need to track down
the potentially scattered pieces of code that constitute the
desired functionality and refactor the code to bring them to-
gether into one or more modules. This can be a challenging
task because not only are the parts of the code she is trying
to identify scattered across several modules, they are also
tangled up with each other and with the rest of the code
through many di↵erent types of relationships.

In a good development environment developers may have
at their disposal a wide variety of exploration, visualization
and navigation tools that may assist them in this task. Es-
tablished integrated development environments today may
provide tools such as a package browser, a class hierarchy
browser, a call graph browser (e.g. [3]) and a variety of dif-
ferent search engines. Research prototypes may go even fur-
ther and provide powerful specialized query languages (e.g.
[4, 19, 7, 8]) and sophisticated visualization tools (e.g. [14,
12, 18]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 2003 Boston, MA USA
Copyright 2003 ACM 1-58113-660 -9 /03/002 ...$5.00.

In this paper we focus on how to combine the advantages
of hierarchical code browsers and query tools, in terms of
how they help developers with exploration, by providing an
e↵ective means to navigate the source code.

A hierarchical browser is a tool that supports navigation
based on particular kinds of relationships. For example, a
class hierarchy browser allows navigation along inheritance
relationships whereas a call-graph browser allows navigation
along static calling dependencies. The typical browser’s in-
terface is a tree view with collapsible and expandable nodes.
When expanded, subnodes reveal other elements that are
connected to it through some specific relationship. The ad-
vantage of hierarchical browsers is that they provide an ex-
plicit map of the navigation paths. Also, the history of the
user’s exploration is captured in the collection of nodes that
were expanded.

Unfortunately, these browsers are specialized and limit ex-
ploration to particular types of relationships. Consequently,
when developers want to navigate the code across di↵erent
kinds of relationships they are forced to switch between dif-
ferent browsers. Switching between tools is disorienting by
itself, and also has the disadvantage that there no longer is
an unbroken representation of the exploration path. Instead,
the path is divided into fragments spread across multiple dis-
connected views. As a result developers lose track of their
current position with respect to the exploration task.

Compared to typical browsers, tools based on query lan-
guages and program databases (e.g. [4, 19, 7, 8]) provide
more flexibility in terms of the relationships that can be ex-
plored with them. Developers can construct queries using
complex combinations of relationships. Queries allow the ex-
traction of useful information and can also be used for the
purpose of constructing source code navigation views. For
example, the results of a query can be turned into a naviga-
tional aid by visually representing it as a hyper-linked struc-
ture, with links to the corresponding places in the code that
match the query. In general, it is not possible to formulate
a single query that finds everything the user is interested
in pertaining to a task. Consequently, exploration using
a query tool usually follows a pattern of writing a query,
browsing the results, writing another query, analyzing more
results, and so on. A drawback of this approach is—once
more—that the exploration path connecting the queries gets
lost along the way.

This paper presents JQuery, a prototype code browsing
tool. JQuery is a browser tool implemented on top of an
expressive logic query language. The main contribution of
this paper is that it shows a way to design and implement
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ABSTRACT
Maintaining the source code of large software systems is hard.
One underlying cause is that existing modularisation mechanisms
are inadequate to handle crosscutting concerns. We propose in-
tentional source-code views as an intuitive and lightweight means
of modelling such concerns. They increase our ability to under-
stand, modularise and browse the source code by grouping together
source-code entities that address the same concern. They facilitate
software development and evolution, because alternative descrip-
tions of the same intentional view can be checked for consistency
and relations among intentional views can be defined and verified.
Finally, they enable us to specify knowledge developers have about
source code that is not captured by traditional program documenta-
tion mechanisms.

Our intentional view model is implemented in a logic metaprog-
ramming language that can reason about and manipulate object-ori-
ented source code directly. The proposed model has been validated
on the evolution of a medium-sized object-oriented application in
Smalltalk, and a prototype tool has been implemented.

Keywords
Crosscutting concerns, modularisation, logic metaprogramming,
software maintenance and evolution, validation and verification.

1. INTRODUCTION
Documenting, browsing, implementing, maintaining and evolv-

ing the source code of large software systems is hard. Once soft-
ware systems reach a certain size, the modularisation constructs
provided by current programming languages fall short. Typically,
they support only a limited number of modularisations of the soft-
ware.
∗Tom Mens is a Postdoctoral Fellow of the Fund for Scientific Re-
search - Flanders (Belgium)
†Supported by ATX Software SA, and by project POSI/32717/00
(Formal Approach to Software Architecture) funded by Fundao
para a Cincia e Tecnologia.
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As has been recognized by the aspect-oriented programming com-
munity (AOP) [6], system-wide concerns often do not fit nicely into
the chosen modularisations; they crosscut these modularisations.
Choosing another modularisation merely shifts the problem, lead-
ing to another set of concerns that crosscut the ‘dominant’ mod-
ularisations into which everything else needs to be fit. Perry et
al. call this problem the tyranny of the dominant decomposition
[14]. AOP addresses this problem by implementing crosscutting
concerns as separate aspects and merging them afterwards with
a special-purpose compiler called aspect weaver. Unfortunately,
AOP implies a completely new way of programming and is not
mature enough yet to be used in every-day programming practice.

We propose a complementary approach that provides a power-
ful and expressive software modularisation mechanism on top of
an existing programming language. Instead of describing different
concerns in separate aspects that are weaved afterwards, we allow
the source code to be modularised into a number of user-defined
intentional views that may crosscut the actual implementation de-
composition and that may be overlapping. Each intentional view
corresponds to an important (functional or non-functional) concern
that may be spread throughout the source code. It groups the set of
source-code entities that address this concern. An intentional view
is a view in the sense that it provides only partial information and
does not have to be explicit in the actual source code.1 It is in-
tentional as it describes the common characteristics of the entities
belonging to a view in an abstract and intuitive way that clearly ex-
presses the ‘intent’ of the view. More specifically, we describe this
intent in SOUL, a Prolog-like logic programming language that can
reason about and manipulate the source code directly.

In addition to defining intentional views, our proposed model
allows us to express, verify and enforce important relations among
intentional views. As such, many hidden assumptions in the source
code are codified as explicit knowledge about the software system.

Using intentional views and their relations to make software con-
cerns explicit, increases software maintainability and understand-
ability. First of all, they enhance software understanding because
they provide important knowledge about where and how certain
concerns are implemented and how they relate with other concerns.
As such, intentional views and their relations serve as active and
enforceable documentation at an abstract level that is not explicitly
available in the source code. Secondly, it becomes easier to man-
age the source code because important concerns have been made
explicit in the intentional views, even if they are spread through-
out the source code. Finally, when the software evolves, we can
analyze the constraints imposed by the intentional views and their
relations to verify that no assumptions have been invalidated. This
1In this sense, it is similar to a database view.
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Abstract
Merging and splitting source code artifacts is a common ac-
tivity during the lifespan of a software system; as developers
rethink the essential structure of a system or plan for a new
evolutionary direction, so must they be able to reorganize the
design artifacts at various abstraction levels as seems appro-
priate. However, while the raw effects of such changes may
be plainly evident in the new artifacts, the original intent of
the design changes is often lost. In this paper, we discuss how
we have extended origin analysis [10, 5] to aid in the detec-
tion of merging and splitting of files and functions in proce-
dural code; in particular, we show how reasoning about how
call relationships have changed can aid a developer in locat-
ing where merges and splits have occurred, thereby helping
to recover information about the intent of the design change.
We also describe a case study of these techniques (as imple-
mented in the Beagle tool) using the PostgreSQL database
as the candidate system.

1 Introduction
Merging and splitting source code artifacts — such as files
and functions — are commonly performed activities during
both active development and maintenance. These refactor-
ing techniques [3, 8] can be used to keep the codebase in a
healthy and agile state; software maintainers often use merg-
ing and splitting to reduce the complexity of the software
system, making it more comprehensible and easier to evolve.
Although the effects of merging and splitting are plainly

evident in the source code version histories, the merging and
splitting actions themselves typically are not. That is, it may
be clear what is contained in successive versions of a set of
files, but it may not be clear that between versions 4.2 and
4.3 one function from each of the files scsi.c, atapi.c,
and usb.cwere merged into a common utility function that
was added to the file storage.c.
Detecting where merges and splits have occurred can help

software maintainers to better understand the change history
of a software system. In a typical development environment,
system changes are tracked by a version management sys-

tem, and detail which characters in which files have changed
since the last check-in. They usually do not provide answers
to such questions as “why was this new function added?”,
“where did the XXX functionality disappear to?, “how much
additive versus invasive change occurred?”, or “how much
restructuring of source code occurred?”. If a software de-
veloper requires answers to these questions, (s)he must ei-
ther hope that previous developers have kept accurate and
up-to-date documentation, or (s)he must make use of tools
that can help to extract information about the system’s evo-
lution after-the-fact.
In this paper, we propose an approach to detecting func-

tion and file merges and splits that may have occurred be-
tween versions of a software system. Our approach is based
on a detailed analysis of call relations and various attributes
of the function entities themselves. This work is an extension
of our previous work on origin analysis [5, 10]; our original
formulation of origin analysis did not consider the possibil-
ity that program entities might be merged or split between
versions.
The remainder of this paper is structured as follows: In

Section 2, we define what we mean by origin analysis, and
show how we have extended the definition to include the de-
tection of merging and splitting of source code artifacts. In
Section 3, we describe how we have implemented our tech-
niques in the Beagle tool, and we describe a case study per-
formed on the source code for PostgreSQL, an open source
database system that is in wide use. In Section 4, we dis-
cuss related work, and finally, in Section 5 we summarize
our results and sketch future research.

2 Origin analysis and merges/splits

2.1 Definition of origin analysis
Let us begin with an informal definition of origin analysis:

Suppose G is a software entity (such as a function,
class, or file) that occurs in a particular version
of a software system, call it Vnew. Suppose further
that G did not “exist” in the previous version, call

1
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Abstract 
This paper presents UMLDiff, an algorithm for automatically de-
tecting structural changes between the designs of subsequent ver-
sions of object-oriented software. It takes as input two class models 
of a Java software system, reverse engineered from two corre-
sponding code versions. It produces as output a change tree, i.e., a 
tree of structural changes, that reports the differences between the 
two design versions in terms of (a) additions, removals, moves, 
renamings of packages, classes, interfaces, fields and methods, (b) 
changes to their attributes, and (c) changes of the dependencies 
among these entities. UMLDiff produces an accurate report of the 
design evolution of the software system, and enables subsequent 
design-evolution analyses from multiple perspectives in support of 
various evolution activities. UMLDiff and the analyses it enables 
can assist software engineers in their tasks of understanding the 
rationale of design evolution of the software system and planning 
future development and maintenance activities. We evaluate UM-
LDiff’s correctness and robustness through a real-world case study. 

Categories and Subject Descriptors: D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement –restructuring, 
reverse engineering, and reengineering.  

General Terms: Design 

Keywords: Design differencing, structural evolution, design un-
derstanding, design mentoring 

1 Introduction 
Change is an essential feature of the evolutionary development of 
object-oriented software systems and recognizing the changes that 
a system has gone through its lifecycle is essential to understanding 
how and why a system has reached its current state. It is, therefore, 
of critical importance that software engineers are able to under-
stand the various types of design-level structural evolution that an 
object-oriented system may have gone through, such as refactor-
ings involving moving features among classes, restructuring of 
data structures or class interfaces, changes to the interactions be-
tween classes and so on. These elementary structural-evolution 
operations are usually intended to improve the quality of the soft-
ware system, such as its understandability, extensibility and main-
tainability. Thus, recognizing them is crucial not only for under-
standing the system design and its evolution but also for obtaining  

 
an accurate picture of the quality requirements of the system so 
that it can be consistently evolved. 

There has been some work [4,5,6] that models the changes of a 
system’s components in terms of CVS-like deltas, which record 
lines of code that have been added, deleted, or changed, as reported 
by GNU diff-like tools. These approaches are simple to implement, 
since it is easy to extract the deltas from a versioning system, such 
as Concurrent Version System (CVS). Such delta reports are in-
tended to assist software developers in merging different revisions 
of the system source code. However, GNU diff-like tools are essen-
tially lexical-differencing tools and ignore the high-level logi-
cal/structural changes of the software system. When the intension 
is to build an accurate evolutionary history of a software system, 
GNU diff misses a lot of pertinent information. For example, a 
class renaming or a method movement to another class would most 
likely be reported as two separate activities: the original entity has 
been removed and the modified one has been added. 

Source-code metrics [2,13] and clone detection [19,22] may 
help to infer the renamings and moves of design entities. Unfortu-
nately, code-line metrics are at too low level of abstraction and do 
not necessarily correspond to the developers’ intuitions about the 
system. Consistently maintained change documentation [5,6], if it 
exists, is a reliable source of information as to what has been 
changed and what is the rationale behind the change. However, 
more frequently than not, documentation is vague and incomplete 
about what has actually been modified. Visualization of low-level 
data, such as CVS-like delta and code metrics, may help to capture 
the higher-level connections between moved and renamed ele-
ments. But, visualization approaches [4,13,19] are inherently lim-
ited because they assume a substantial interpretation effort on be-
half of their users and become “unreadable” for large systems.  

Clearly, there is a need for automatic tools that can assist soft-
ware engineers to reason at the design level about which structural 
changes have occurred in long-lived evolving software systems and 
why. In this paper, we present an automated UML-aware struc-
tural-differencing algorithm, UMLDiff. It takes as input two class 
models of an object-oriented software system, reverse engineered 
from two corresponding code versions. UMLDiff traverses the two 
class models, identifies corresponding entities based on their name 
and structure similarity, and produces a change tree, i.e. a tree of 
structural changes, which records the changes between the two 
system versions in terms of additions, removals, moves, renamings 
of various types of design entities, such as packages, classes, inter-
faces, fields and methods in Java, the changes to their attributes, 
such as visibility and modifiers, and the changes of relations 
among these entities. 

UMLDiff is at the core of our design-evolution analysis work, 
which has been implemented in the JDEvAn tool (Java Design 
Evolution and Analysis). JDEvAn has been developed as an 
Eclipse plugin with the objective of investigating the change pat-
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Abstract. One of the costs of reusing software components is updating appli-
cations to use the new version of the components. Updating an application can
be error-prone, tedious, and disruptive of the development process. Our previous
study showed that more than 80% of the disruptive changes in five different com-
ponents were caused by refactorings. If the refactorings that happened between
two versions of a component could be automatically detected, a refactoring tool
could replay them on applications. We present an algorithm that detects refactor-
ings performed during component evolution. Our algorithm uses a combination
of a fast syntactic analysis to detect refactoring candidates and a more expensive
semantic analysis to refine the results. The experiments on components ranging
from 17 KLOC to 352 KLOC show that our algorithm detects refactorings in
real-world components with accuracy over 85%.

1 Introduction

Part of maintaining a software system is updating it to use the latest version of its com-
ponents. Developers like to reuse software components to quickly build a system, but
reuse makes the system dependent on the components. Ideally, the interface of a com-
ponent never changes. In practice, however, new versions of components often change
their interfaces and require the developers to change the system to use the new versions
of the components.

An important kind of change in object-oriented software is a refactoring. Refac-
torings [FBB+99] are program transformations that change the structure of a program
but not its behavior. Example refactorings include changing the names of classes and
methods, moving methods and fields from one class to another, and splitting methods
or classes. An automated tool, called refactoring engine, can apply the refactorings to
change the source code of a component. However, a refactoring engine can change only
the source code that it has access to. Component developers often do not have access
to the source code of all the applications that reuse the components. Therefore, refac-
torings that component developers perform preserve the behavior of the component but
not of the applications that use the component; in other words, although the change is
a refactoring from the component developers’ point of view, it is not a refactoring from
the application developers’ point of view.

Change Distilling: Tree Differencing for Fine-
Grained Source Code Change Extraction

Beat Fluri, Student Member, IEEE, Michael Würsch, Student Member, IEEE,
Martin Pinzger, Member, IEEE, and Harald C. Gall, Member, IEEE

Abstract—A key issue in software evolution analysis is the identification of particular changes that occur across several versions of a
program. We present change distilling, a tree differencing algorithm for fine-grained source code change extraction. For that, we have

improved the existing algorithm by Chawathe et al. for extracting changes in hierarchically structured data [8]. Our algorithm extracts
changes by finding both a match between the nodes of the compared two abstract syntax trees and a minimum edit script that can

transform one tree into the other given the computed matching. As a result, we can identify fine-grained change types between
program versions according to our taxonomy of source code changes. We evaluated our change distilling algorithm with a benchmark

that we developed, which consists of 1,064 manually classified changes in 219 revisions of eight methods from three different open
source projects. We achieved significant improvements in extracting types of source code changes: Our algorithm approximates the

minimum edit script 45 percent better than the original change extraction approach by Chawathe et al. We are able to find all occurring
changes and almost reach the minimum conforming edit script, that is, we reach a mean absolute percentage error of 34 percent,

compared to the 79 percent reached by the original algorithm. The paper describes both our change distilling algorithm and the results
of our evaluation.

Index Terms—Source code change extraction, tree-differencing algorithms, software repositories, software evolution analysis.

Ç

1 INTRODUCTION

SINCE Lehman’s Laws of Program Evolution from the
1980s [25], it has been well understood that software has

to be adapted to changing requirements and environments
or it becomes progressively less useful. Change is broadly
accepted as a crucial part of a software’s life cycle. As a
consequence, in recent years, several techniques and tools
have been developed to aid software engineers in main-
taining and evolving large complex software systems. For
instance, Ying et al. or Zimmermann et al. developed
approaches that guide programmers along related changes
by telling them “programmers who changed these functions
also changed. . . ” [45], [47]. The Hipikat tool of !Cubrani"c
et al. used project history information to provide recom-
mendations for a modification task [9]. Gall et al. detected
possible maintainability hot spots by analyzing cochange
relationships of modules [13].

We argue that such techniques and tools are valuable but

suffer from the low quality of information available for

changes. Typically, such information, in particular for source

code, is stored by versioning systems (for example, CVS or

Subversion). They keep track of changes by storing the text

lines added and/or deleted from a particular file. Structural

changes in the source code are not considered at all.

More sophisticated approaches are able to narrow down
changes to the method level, but fail in further qualifying
changes such as the addition of a method invocation in the
else branch of an if-statement. Furthermore, a classification
of changes according to their impact on other source code
entities is missing. In particular, the latter information is
important to improving the quality of software evolution
results and, as a consequence, to providing better support
for programmers and system analysts.

Since source code can be represented as abstract syntax
trees (ASTs), tree differencing can be used to extract
detailed change information. This approach is promising
because exact information on each entity and statement is
available in an AST. In our previous work [12], we built a
taxonomy of source code changes that defines source code
changes according to tree edit operations in the AST and
classifies each change type with a significance level. The level
expresses how strongly a change may impact other source
code entities and whether a change may be functionality
modifying or functionality preserving. In our taxonomy, we
focus on object-oriented programming languages (OOPLs)
and Java in particular. By adjusting the change type
extraction, the taxonomy can also be used for other OOPLs.
In total, our taxonomy defines 35 change types.

In this paper, we present change distilling, a tree-
differencing algorithm for fine-grained source code change
extraction. For that, we improved the existing algorithm for
extracting changes in hierarchically structured data by
Chawathe et al. [8]. This algorithm finds changes according
to basic tree edit operations such as insert, delete, move, or
update of tree nodes.
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Binzmühlestrasse 14, CH-8050 Zürich, Switzerland.
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ABSTRACT
Our research is driven by the motivation that change must be put
in the center, if one wants to understand the complex processes of
software evolution. We built a toolset named SpyWare which, us-
ing a monitoring plug-in for integrated development environments
(IDEs), tracks the changes that a developer performs on a program
as they happen. SpyWare stores these first-class changes in a change
repository and offers a plethora of productivity-enhancing IDE ex-
tensions to exploit the recorded information.

1. INTRODUCTION
The only constant in software is that it changes: Software must

be continuously tailored to fit new or updated requirements. This
has been formulated in Lehman’s first law of software evolution [4],
which states that a software system must be continuously adapted,
or become less and less useful. Given this situation, it is surpris-
ing that most development tools (with the exception of versioning
systems) still consider a software system as its source code only,
disregarding any available historical information. This information,
when available in the form of versioning system archives, has been
proven to be useful for several applications [5], [11] and fostered
the quickly growing community dedicated to the mining of soft-
ware repositories [3, 1]. However, the evolutionary information
mostly used, versioning system archives (primarily from systems
such as CVS and Subversion), suffers from several problems (de-
tailed in [6], [7]), such as incomplete data sources and noise.
With SpyWare our goal was to start from a clean slate by captur-

ing changes as they happen at the level of program entities rather
than files and lines. For instance, our format allows us to describe
refactorings. Instead of relying on the developer to save changes,
our tool chain monitors changes as they happen in the IDE to have
a finer granularity of changes. This allows us to model the change
history as a sequence of first-class change operations, rather than a
sequence of successive versions of the program. Since we use the
IDE as an information source, we exploit the integration with the
IDE at its maximum, by providing our enhancements as IDE exten-
sions rather than stand-alone tools. More than creating single tools,
we thus created the SpyWare platform, which allows us to:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
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ICSE’08,May 10–18 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

• monitor developer activity as it happens in the IDE, using a
monitoring plugin,

• convert the changes the developer did to the program to first-
class change operations,

• stores the changes in a repository for later use,

• record higher-level changes such as refactorings,

• generate, by executing change operations, part or the whole
of the system at any point in time,

• access the change history of any package, class, instance vari-
able, method, or statement defined in the system,

• show the differences between two states of the program, us-
ing color-coding to reflect the type of changes,

• measure the extent of changes using structural metrics and
the type of changes that were performed,

• visualize how the system was changed with metrics, graphs,
and interactive visualizations,

• generalize concrete changes to the system to reusable pro-
gram transformations,

• access all of its functionality from the IDE, rather than a
stand-alone tool, to ease its usage.

In the following, we describe the approach and the change model
we defined, before detailing the SpyWare toolset.

2. CHANGE-BASED SOFTWARE EVOLU-
TION IN A NUTSHELL

SpyWare is based on our work on Change-Based Software Evo-
lution (CBSE) [7], whose aim is to accurately model how software
evolves by treating change as a first-class entity.
The Model. We model software evolution as a sequence of

changes that take a system from one state 1 to the next by means
of semantic (i.e., non text-based) transformations. These transfor-
mations are inferred from the activity recorded by the event noti-
fication system of IDEs such as Eclipse, whenever the developer
incrementally modifies the system. Examples are the modification
of the body of a method or a class, but also higher-level changes
offered by refactoring engines. In short, we do not view the history
of a software system as a sequence of versions, but as the sum of
change operations which brought the system to its actual state.
1We define the state as being the source code of the program, as
opposed to the dynamic run-time state



Statistical Relational Structure Learning

Inductive Logic Programming

Genetic Programming

Heuristic Search 

Infer too many “uninteresting” change rules

�must encode inductive bias explicitly  



“Template-based Reconstruction of Complex Refactoring” 



Motivation: Refactoring-Aware 
Code Review

• Developers can benefit from refactoring 
information when they investigate complex 
non-local edits during peer code reviews. 

• Problem: How can we automatically 
identify the locations and types of 
refactoring from two program versions? 



Challenges: Complex 
Refactoring Reconstruction

• Must find pre-requisite refactorings to 
identify composite refactorings 

• Require information about changes within 
method bodies

• Require the knowledge of changes to the 
control structure of a program 



Approach: Logic Query-based 
Refactoring Reconstruction

• Step 1. Encode each refactoring type as a template 
logic rule 

• Step 2. Extract change-facts from two input 
program versions

• Step 3. Refactoring identification via logic queries 

• Ref-Finder orders pre-requisite refactorings
before composite refactorings



Predicates 

LSdiff Predicates Extended Predicates
package type methodbody conditional

method field cast trycatch

return fieldoftype throws variabledeclation

typeintype accesses methodmodifiers fieldmodifiers

calls subtype parameter similarbody(σ)*

inheritedfield getter setter

inheritedmethod addedparameter deletedparameter



- set 
difference

added_method(“Foo.summerCharge”, ...) 
added_method(“Foo.notSummer”, ...)
deleted_conditional(“date.before(SUMMER_START).
..)

Differences (∆FB) added_* / deleted_*

Fact-Level Differences

=

New Program after_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
access(“Key.on”,”Bus.start”)
method(“Key.out”,”out”,”Key”)...

type(“Foo”,..)
method(“Foo.main”,”main”,”Foo”)
conditional(“date.before(SUMMER_START)...) 
methodbody(“Foo.main”, ...) 

Old Program before_*

type(“Foo”,..)
method(“Foo.main”,”main”,”Foo”)
method (“Foo.notSummer(Date)”, “notSummer”, “Foo”)



Rule Syntax

A rule’s consequent refers to a target refactoring 
to be inferred.  

(deleted_subtype(t1,t2) 
∧(pull_up_field(f,t2,t1) ∨ pull_up_method(m,t2,t1)))
∨(before_subtype(t1,t2) ∧ deleted_type(t1,n,p)
∧(push_down_field(f,t1,t2) ∨ push_down_method(m,t1,t2))
�collapse_hierarchy(t1,t2)

Example: collapse hierarchy refactoring—a superclass and its 
subclass are not very different. Merge them together. 



Rule Syntax

A rule’s consequent refers to a target refactoring to be inferred.  A rule’s antecedent may refer to pre-requisite 
refactorings.

Example: collapse hierarchy refactoring—a superclass and its 
subclass are not very different. Merge them together. 

(deleted_subtype(t1,t2) 
∧(pull_up_field(f,t2,t1) ∨ pull_up_method(m,t2,t1)))
∨(before_subtype(t1,t2) ∧ deleted_type(t1,n,p)
∧(push_down_field(f,t1,t2) ∨ push_down_method(m,t1,t2))
�collapse_hierarchy(t1,t2)



Encoding Fowler’s Refactorings

• We encoded 63 types but excluded a few 
because

• they are too ambiguous, 

• require accurate alias analysis, or 

• require clone detection at an arbitrary 
granularity.   



before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”) 
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”) 
added_access(“Chart.color”, “Chart.draw”) 

Fact-base

deleted_field(f1, f, t1) 
∧ added_field(f2, f, t2)
∧ deleted_access(f1, m1) 
∧ added_access(f2, m1) 
� move_field(f, t1, t2) 

To find a move 
field refactoring

Collapse

Move

Pull UpCollapse Hierarchy Inference    



before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”) 
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”) 
added_access(“Chart.color”, “Chart.draw”) 

Fact-base

deleted_field(f1, f, t1) 
∧ added_field(f2, f, t2)
∧ deleted_access(f1, m1) 
∧ added_access(f2, m1) 
� move_field(f, t1, t2) 

To find a move 
field refactoring

Collapse

Move

Pull UpCollapse Hierarchy Inference    



before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”) 
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”) 
added_access(“Chart.color”, “Chart.draw”) 

Fact-base

� f1, � f, � t1, � t2, � f2, �
m1, 
deleted_field(f1, f, t1) 
∧ added_field(f2, f, t2)
∧ deleted_access(f1, m1) 
∧ added_access(f2, m1)? 

Invoke a move-
field query

Collapse

Move

Pull UpCollapse Hierarchy Inference    



before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”) 
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”) 
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”)

Fact-base

f=”color”, 
t1=”PieChart”, 
t2=”Chart”
move_field(“color”, “PieChart”, 
“Chart”) 

Create a new move 
field fact

Collapse

Move

Pull UpCollapse Hierarchy Inference    



before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”) 
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”) 
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”) 

Fact-base

To find a pull up 
field refactoring

move_field(f, t1, t2) 
∧ before_subtype(t2,t1)
� pull_up_field(f, t1, t2) 

Collapse

Move

Pull UpCollapse Hierarchy Inference    



To find a pull up 
field refactoring

move_field(f, t1, t2) 
∧ before_subtype(t2,t1)
� pull_up_field(f, t1, t2) 

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”) 
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”) 
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”) 

Fact-base

Collapse

Move
Collapse Hierarchy Inference    Pull Up



before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”) 
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”) 
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”) 

Fact-base

Invoke a pull up 
field query

� f, � t1, � t2, 
move_field(f, t1, t2) 
∧ before_subtype(t2,t1)?

Collapse

Move
Collapse Hierarchy Inference    Pull Up



before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”) 
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”) 
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”) 
pull_up_field(“color”, “PieChart”, “Chart”)

Fact-base

f=”color”, 
t1=”PieChart”, 
t2=”Chart”
pull_up_field(“color”, “PieChart”, 
“Chart”) 

Create a new 
pull up field fact

Collapse

Move
Collapse Hierarchy Inference    Pull Up



before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”) 
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”) 
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”) 
pull_up_field(“color”, “PieChart”, “Chart”)

Fact-base

Create a new 
collapse 

hierarchy fact

collapse_hierarchy(“Chart”, 
“PieChart”) 

Collapse

Move
Collapse Hierarchy Inference    Pull Up



before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”) 
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”) 
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”) 
pull_up_field(“color”, “PieChart”, “Chart”) 
collapse_hierarchy(“Chart”, “PieChart”)

Fact-base

Create a new 
collapse 

hierarchy fact

Move
Collapse Hierarchy Inference    Pull Up

Collapse



Evaluation: Fowler’s

Types Expected Found Precision Recall False negatives False Positives
1-10 8 19 1 1

11-20 9 20 0.95 1 extract method

21-30 9 12 1 1

31-40 10 13 1 0.9 preserve whole objects

41-50 9 11 1 0.89
replace conditionals 
with polymorphism

51-60 10 11 1 0.9
replace parameters 

with explicit methods

61-72 8 14 0.86 0.88
replace type code with 

state

replace magic number 
with symbolic 

constants,  
extract method 

Total 63 100 0.97 0.94

Ref-Finder finds refactorings with 97% precision and 94% recall.  



Versions # Found Prec. Recall

jEdit
3.0-3.0.1 10 0.75 0.78

3.0.1-3.0.2 1 1 1

3.0.2-3.1 214 0.45 1

Columba
300-352 43 0.52 0.9

352-449 209 0.91 1

Carol

62-63 12 1 1

389-421 8 0.63 1

421-422 147 0.64 0.9

429-430 48 0.85 1

430-480 37 0.81 1

480-481 11 0.91 0.9

548-576 20 1 1

576-764 14 0.85 1

Total 774 0.74 0.96

Ref-Finder finds refactorings with 74% precision and 96% recall.  

Evaluation: Open Source





Refactoring 
Reconstruction

Tools for Realistic 

Refactoring

Automated Clone 

Removal and Code 

Extraction

Studies on Technical 

Debt, Code Smells, 

Refactoring Benefits

Refactoring 

Recommendations

Multi-Objective 

Search-based 

Refactoring

Refactoring-Aware 

Code Review and 

Merging

Accurate Refactoring 

Reconstruction 

Refactoring Error 

Detection

Automated Change 

Documentation 

Refactoring-Aware 

Testing and Dynamic 

Analysis



Refactoring 

Reconstruction

Tools for Realistic 

Refactoring

Automated Clone 

Removal and Code 

Extraction

Studies on Technical 

Debt, Code Smells, 

Refactoring Benefits

Refactoring 

Recommendations

Multi-Objective 

Search-based 

Refactoring

Refactoring-Aware 

Code Review and 

Merging

Accurate Refactoring 

Reconstruction 

Refactoring Error 

Detection

Automated Change 

Documentation 

Refactoring-Aware 

Testing and Dynamic 

Analysis



How We Refactor, and How We Know It

Emerson Murphy-Hill
Portland State University

emerson@cs.pdx.edu

Chris Parnin
Georgia Institute of Technology

chris.parnin@gatech.edu

Andrew P. Black
Portland State University

black@cs.pdx.edu

Abstract

Much of what we know about how programmers refactor in

the wild is based on studies that examine just a few software

projects. Researchers have rarely taken the time to replicate

these studies in other contexts or to examine the assump-

tions on which they are based. To help put refactoring re-

search on a sound scientific basis, we draw conclusions us-

ing four data sets spanning more than 13 000 developers,

240 000 tool-assisted refactorings, 2500 developer hours,

and 3400 version control commits. Using these data, we

cast doubt on several previously stated assumptions about

how programmers refactor, while validating others. For ex-

ample, we find that programmers frequently do not indicate

refactoring activity in commit logs, which contradicts as-

sumptions made by several previous researchers. In con-

trast, we were able to confirm the assumption that program-

mers do frequently intersperse refactoring with other pro-

gram changes. By confirming assumptions and replicating

studies made by other researchers, we can have greater con-

fidence that those researchers’ conclusions are generaliz-

able.

1.. Introduction

Refactoring is the process of changing the structure of a
program without changing the way that it behaves. In his
book on the subject, Fowler catalogs 72 different refac-
torings, ranging from localized changes such as EXTRACT
LOCAL VARIABLE, to more global changes such as EX-
TRACT CLASS [5]. Based on his experience, Fowler claims
that refactoring produces significant benefits: it can help
programmers add functionality, fix bugs, and understand
software [5, pp. 55–57]. Indeed, case studies have demon-
strated that refactoring is a common practice [19] and can
improve code metrics [1].

However, conclusions drawn from a single case study
may not hold in general. Studies that investigate a phe-
nomenon using a single research method also may not hold.
To see why, let’s look at one particular example that uses

a single research method: Weißgerber and Diehl’s study of
3 open source projects [18]. Their research method was to
apply a tool to the version history of each project to de-
tect high-level refactorings such as RENAME METHOD and
MOVE CLASS. Low- and medium-level refactorings, such
as RENAME LOCAL VARIABLE and EXTRACT METHOD,
were classified as non-refactoring code changes. One of
their findings was that, on every day on which refactoring
took place, non-refactoring code changes also took place.
What we can learn from this depends on the relative fre-
quency of high-level and mid-to-low-level refactorings. If
the latter are scarce, we can infer that refactorings and
changes to the projects’ functionality are usually interleaved
at a fine granularity. However, if mid-to-low-level refactor-
ings are common, then we cannot draw this inference from
Weißgerber and Diehl’s data alone.

In general, validating conclusions drawn from an indi-
vidual study involves both replicating the study in wider
contexts and exploring factors that previous authors may
not have explored. In this paper we use both of these meth-
ods to confirm — and cast doubt on — several conclusions
that have been published in the refactoring literature.

Our experimental method takes data from four different
sources (described in Section 2) and applies several differ-
ent refactoring-detection strategies to them. We use this data
to test nine hypotheses about refactoring. The contributions
of our work lie in both the experimental method used when
testing these hypotheses, and in the conclusions that we are
able to draw:

• The RENAME refactoring tool is used much more fre-
quently by ordinary programmers than by the develop-
ers of refactoring tools (Section 3.1);

• about 40% of refactorings performed using a tool occur
in batches (Section 3.2);

• about 90% of configuration defaults of refactoring tools
remain unchanged when programmers use the tools
(Section 3.3);

• messages written by programmers in commit logs do
not reliably indicate the presence of refactoring (Sec-
tion 3.4);

Use, Disuse, and Misuse of Automated Refactorings

Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P. Bailey, Ralph E. Johnson
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
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Abstract—Though refactoring tools have been available for
more than a decade, research has shown that programmers
underutilize such tools. However, little is known about why
programmers do not take advantage of these tools. We have
conducted a field study on programmers in their natural
settings working on their code. As a result, we collected a
set of interaction data from about 1268 hours of programming
using our minimally intrusive data collectors. Our quantitative
data show that programmers prefer lightweight methods of
invoking refactorings, usually perform small changes using
the refactoring tool, proceed with an automated refactoring
even when it may change the behavior of the program, and
rarely preview the automated refactorings. We also interviewed
nine of our participants to provide deeper insight about the
patterns that we observed in the behavioral data. We found
that programmers use predictable automated refactorings even
if they have rare bugs or change the behavior of the program.
This paper reports some of the factors that affect the use of
automated refactorings such as invocation method, awareness,
naming, trust, and predictability and the major mismatches
between programmers’ expectations and automated refactor-
ings. The results of this work contribute to producing more
effective tools for refactoring complex software.

Keywords-Software engineering; Software maintenance; Pro-
gramming environments; Human factors; User interfaces;
Human computer interaction

I. INTRODUCTION

Refactoring is defined as changing the design of soft-
ware without affecting its observable behavior [1]. Refactor-
ings rename, move, split, and join program elements such
as fields, methods, packages, and classes. Agile software
processes such as eXtreme Programming (XP) prescribe
refactoring [2], because it enables evolutionary software
design and is the key to modifiable and readable code [3].
Programmers refactor their code frequently [4], [5]. Some
refactorings are tedious and error-prone to perform manually.
Thus, automated refactorings were invented more than a
decade ago to make the process of refactoring more efficient
and reliable [6]. Today, modern Integrated Development
Environments (IDEs), such as Eclipse [7], NetBeans [8],
IntelliJ IDEA [9], Xcode [10], and ReSharper [11], support
many automated refactorings.

Recently, there has been much interest in improving the
reliability of existing automated refactorings and building
new ones to automate sophisticated program transforma-
tions [12]–[16]. This is not surprising, given the tedium

and error-proneness of some refactorings and the perceived
benefits of their automation. In spite of the growing interest
in improving the usability of automated refactorings [17]–
[19], this aspect of refactoring has not received enough
attention. For example, the user interfaces of refactoring
tools have changed little since they were first introduced, and
recent studies suggest that programmers greatly underutilize
the existing refactoring tools [5]. We need to understand the
problems programmers have with today’s refactoring tools to
design future generations of these tools that fit programmers’
needs.

We conducted a study consisting of both quantitative
and qualitative data collection. We studied 26 developers
working in their natural settings on their code for a total of
1268 programming hours over three months, and collected
data about their interactions with automated refactorings.
We observed patterns of interaction in our quantitative data
and interviewed nine of our participants to take a more
detailed qualitative look at our behavioral data. Then, we
adapted a general framework of human-automation inter-
action [20] to frame the use, disuse, and misuse of au-
tomated refactorings. Use of automated refactorings refers
to programmers applying automated refactorings to perform
code changes they might otherwise do manually. Disuse of
automated refactorings is programmers’ neglect or underuse
of automated refactorings. Misuse of automated refactorings
refers to programmers’ use of these tools in ways not
recommended by the designers.

Our empirical study sheds light on how users interact
with automated refactorings. First, we have found that a
single context-aware and lightweight method of invoking
refactorings accounts for a significant number of refactoring
invocations (See Section III). Second, we have found sev-
eral factors that lead to the underutilization of automated
refactorings such as need, awareness, naming, trust, pre-
dictability, and configuration (See Section IV). Third, we
have found that programmers usually continue an automated
refactoring that has reported some error or warning. This
finding casts doubt on the main property of automated
refactorings, namely, behavior-preservation. In addition, we
have observed some unjustified uses of the refactoring tool
(See Section V). Finally, we have proposed alternative ways
of designing refactoring tools based on the findings of our
study (See Subsections III-B, IV-G, and V-C).
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Abstract. Despite the enormous success that manual and automated
refactoring has enjoyed during the last decade, we know little about
the practice of refactoring. Understanding the refactoring practice is im-
portant for developers, refactoring tool builders, and researchers. Many
previous approaches to study refactorings are based on comparing code
snapshots, which is imprecise, incomplete, and does not allow answering
research questions that involve time or compare manual and automated
refactoring.
We present the first extended empirical study that considers both man-
ual and automated refactoring. This study is enabled by our algorithm,
which infers refactorings from continuous changes. We implemented and
applied this algorithm to the code evolution data collected from 23 de-
velopers working in their natural environment for 1,520 hours. Using a
corpus of 5,371 refactorings, we reveal several new facts about manual
and automated refactorings. For example, more than half of the refactor-
ings were performed manually. The popularity of automated and manual
refactorings di↵ers. More than one third of the refactorings performed
by developers are clustered in time. On average, 30% of the performed
refactorings do not reach the Version Control System.

1 Introduction

Refactoring [10] is an important part of software development. Development
processes like eXtreme Programming [3] treat refactoring as a key practice.
Refactoring has revolutionized how programmers design software: it has enabled
programmers to continuously explore the design space of large codebases, while
preserving the existing behavior. Modern IDEs such as Eclipse, NetBeans, Intel-
liJ IDEA, or Visual Studio incorporate refactoring in their top menu and often
compete on the basis of refactoring support.

Several research projects [7, 17, 18, 23–25,27, 31, 33] made strides into under-
standing the practice of refactoring. This is important for developers, refactoring
tool builders, and researchers. Tool builders can improve the current generation
of tools or design new tools to match the practice, which will help developers to
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ABSTRACT
It is widely believed that refactoring improves software qual-
ity and developer productivity. However, few empirical stud-
ies quantitatively assess refactoring benefits or investigate
developers’ perception towards these benefits. This paper
presents a field study of refactoring benefits and challenges
at Microsoft through three complementary study methods:
a survey, semi-structured interviews with professional soft-
ware engineers, and quantitative analysis of version history
data. Our survey finds that the refactoring definition in
practice is not confined to a rigorous definition of semantics-
preserving code transformations and that developers per-
ceive that refactoring involves substantial cost and risks.
We also report on interviews with a designated refactoring
team that has led a multi-year, centralized e↵ort on refac-
toring Windows. The quantitative analysis of Windows 7
version history finds that the binary modules refactored by
this team experienced significant reduction in the number of
inter-module dependencies and post-release defects, indicat-
ing a visible benefit of refactoring.

Categories and Subject Descriptors:
D.2.7 [Software Engineering ]: Distribution, Maintenance, and
Enhancement—restructuring

General Terms: Measurement, Experimentation

Keywords: Refactoring; empirical study; software evolu-
tion; component dependencies; defects; churn.

1. INTRODUCTION
It is widely believed that refactoring improves software

quality and developer productivity by making it easier to
maintain and understand software systems [13]. Many be-
lieve that a lack of refactoring incurs technical debt to be
repaid in the form of increased maintenance cost [5]. For ex-
ample, eXtreme Programming claims that refactoring saves
development cost [4] and advocates the rule of refactor mer-
cilessly throughout the entire project life cycles. On the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

other hand, there exists a conventional wisdom that software
engineers often avoid refactoring, when they are constrained
by a lack of resources (e.g., right before major software re-
leases). Some also believe that refactoring does not provide
immediate benefit unlike new features or bug fixes.

Recent empirical studies show contradicting evidence on
the benefit of refactoring as well. Ratzinger et al. [29] found
that, if the number of refactoring edits increases in the pre-
ceding time period, the number of defects decreases. On
the other hand, Weißgerber and Diehl found that a high
ratio of refactoring edits is often followed by an increasing
ratio of bug reports [34, 35] and that incomplete or incor-
rect refactorings cause bugs [14]. In our previous study, we
found similar evidence that refactoring edits have a strong
temporal and spatial correlation with bug fixes [18].

These contradicting findings motivated us to conduct a
field study of refactoring definition, benefits, and challenges
in a large software development organization and investi-
gate whether there is a visible benefit of refactoring a large
system. In this paper, we address the following research
questions: (1) What is the definition of refactoring from de-
velopers’ perspectives? By refactoring, do developers indeed
mean behavior-preserving code transformations or changes
to a program structure [23, 13]? (2) What is the develop-
ers’ perception about refactoring benefits and risks, and in
which contexts do developers refactor code? (3) As claimed
in the literature, are there visible refactoring benefits such
as reduction in the number of bugs, reduction in the average
size of code changes after refactoring, and reduction in the
number of component dependencies?

To investigate the definition of refactoring in practice and
the value perception toward refactoring, we conducted a sur-
vey with over three hundred engineers whose check-in com-
ments included a keyword “refactor*” in the last two years.
From our survey participants, we also came to know about a
multi-year refactoring e↵ort on Windows. Because Windows
is one of the largest, long-surviving software systems within
Microsoft and a designated team led an intentional e↵ort
of system-wide refactoring, we focused on the case study of
Windows. We interviewed the refactoring team and then
assessed the impact of the team’s refactoring on reduction
of inter-module dependencies and post-release defects using
Windows 7 version history.

Our field study found the following results:

• The refactoring definition in practice seems to di↵er
from a rigorous academic definition of behavior-pre-
serving program transformations. Our survey partic-
ipants perceived that refactoring involves substantial
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Abstract—Although useful and widely available, refactoring
tools are underused. One cause of this underuse is that a
developer sometimes fails to recognize that she is going to
refactor before she begins manually refactoring. To address this
issue, we conducted a formative study of developers’ manual
refactoring process, suggesting that developers’ reliance on
“chasing error messages” when manually refactoring is an
error-prone manual refactoring strategy. Additionally, our
study distilled a set of manual refactoring workflow patterns.
Using these patterns, we designed a novel refactoring tool
called BeneFactor. BeneFactor detects a developer’s manual
refactoring, reminds her that automatic refactoring is available,
and can complete her refactoring automatically. By alleviating
the burden of recognizing manual refactoring, BeneFactor is
designed to help solve the refactoring tool underuse problem.

I. INTRODUCTION

Software is expensive to maintain. As software ages, it
must be maintained to reflect evolving user requirements;
this maintenance accounts for between 40 and 75% of the
total cost of software [7]. One of the primary ways that
software developers maintain software is through refactor-

ing, the process of changing the structure of code without
changing the way that it behaves [8].

Refactoring is both an effective and commonplace way
of improving non-functional requirements. Empirical studies
of refactoring have found that it can improve maintain-
ability [12] and reusability [14]. Not only does existing
work suggest that refactoring is useful, but it also suggests
that refactoring is a frequent practice [17]. Cherubini and
colleagues’ survey indicates that developers rate the im-
portance of refactoring as equal to or greater than that of
understanding code and producing documentation [3].

However, refactoring by hand has long been assumed
to be error-prone. In order to help developers perform
efficient and correct refactoring, various refactoring tools
have been developed. These tools promise to help developers
refactor faster and with a smaller probability of introducing
defects. Refactoring tools have been integrated into most
popular development environments, making them available
in a variety of programming languages to a large population
of developers. Despite the wide availability, our previous
work shows that refactoring tools are underused; according
to two case studies, about 90% of refactorings are performed
by hand [17].

Several solutions have been proposed to solve the un-
deruse problem. For example, tools with improved user
interfaces can make refactoring tools more usable [15].
Other novel tools have supported new, specialized types of
refactoring [1][4]. Other research has proposed automatic
testing to make refactoring tools more reliable [5][6].

Such solutions make one common assumption: That the
software developer recognizes that she is going to refactor
before she even begins. This assumption is false when a
developer has already started a refactoring manually by the
time she realizes that she is refactoring. One developer
outlined this situation in an interview [17] as:

I already know exactly how I want the code to look

like. Because of that, my hands start doing copy-

paste and the simple editing without my active

control. After a few seconds, I realize that this

would have been easier to do with a refactoring

[tool]. But since I already started performing it

manually, I just finish it and continue.

This situation illustrates how refactoring tools do not support
the developer when she does not realize she is refactoring
until after she has already begun. Without that realization, a
software developer will not use any the refactoring tool, no
matter how usable, useful, or reliable that tool is.

In this paper, we investigate how to design a refactoring
tool that is aware of a developer’s refactoring, rather than
relying on the developer’s recognition of it. In Section III
we describe a formative study about developers’ manual
refactoring. Building on the study’s results, in Section IV
we designed a novel refactoring tool. We make the following
major contributions in this paper:

• A formative study of developers’ manual refactoring.
To the best of our knowledge, we are the first to study
developers’ manual refactoring process. Our study sug-
gests that reliance on compiler errors when manually
refactoring is a common and error-prone technique.

• A proof-of-concept refactoring tool called BeneFactor.
In addition to relieving the developer from the burden
of recognizing that she is going to refactor, BeneFactor
also allows implicit refactoring configuration and the
interleaving of refactoring and non-refactoring changes.

978-1-4673-1067-3/12/$31.00 c� 2012 IEEE ICSE 2012, Zurich, Switzerland211

Authorized licensed use limited to: UCLA Library. Downloaded on September 30,2020 at 18:22:00 UTC from IEEE Xplore.  Restrictions apply. 

WitchDoctor: IDE Support for Real-Time Auto-Completion of Refactorings

Stephen R. Foster
UC San Diego

La Jolla, CA

srfoster@cs.ucsd.edu

William G. Griswold
UC San Diego

La Jolla, CA

wgg@cs.ucsd.edu

Sorin Lerner
UC San Diego

La Jolla, CA

lerner@cs.ucsd.edu

Abstract—Integrated Development Environments (IDEs)

have come to perform a wide variety of tasks on behalf of

the programmer, refactoring being a classic example. These

operations have undeniable benefits, yet their large (and

growing) number poses a cognitive scalability problem. Our

main contribution is WitchDoctor – a system that can detect, on

the fly, when a programmer is hand-coding a refactoring. The

system can then complete the refactoring in the background

and propose it to the user long before the user can complete it.

This implies a number of technical challenges. The algorithm

must be 1) highly efficient, 2) handle unparseable programs,

3) tolerate the variety of ways programmers may perform

a given refactoring, 4) use the IDE’s proven and familiar

refactoring engine to perform the refactoring, even though the

the refactoring has already begun, and 5) support the wide

range of refactorings present in modern IDEs. Our techniques

for overcoming these challenges are the technical contributions

of this paper.

We evaluate WitchDoctor’s design and implementation by

simulating over 5,000 refactoring operations across three open-

source projects. The simulated user is faster and more efficient

than an average human user, yet WitchDoctor can detect more

than 90% of refactoring operations as they are being performed

– and can complete over a third of refactorings before the

simulated user does. All the while, WitchDoctor remains robust

in the face of non-parseable programs and unpredictable refac-

toring scenarios. We also show that WitchDoctor is efficient

enough to perform computation on a keystroke-by-keystroke

basis, adding an average overhead of only 15 milliseconds per

keystroke.

Keywords-refactoring; IDE; change detection; repository

mining

I. INTRODUCTION

Refactoring is a common activity, yet the automated
refactoring support provided by IDEs remains significantly
under-used in the wild [1]. This is problematic, considering
the tedium of refactoring, the time it can consume, and the
considerable possibility of introducing errors. Reasons for
the disuse of refactoring have been investigated in depth
[2]. Assuming that a programmer has reached a point during
development in which a refactoring R is appropriate, there
exist several “cognitive preconditions” that must be met
before R will be used: The programmer must realize that
she is performing a refactoring. She must know that support
for R exists. She must know the name of R. She must know
that R is applicable. She must believe that invoking IDE

support for R is faster than performing R by hand. She
must trust that the support for R will not transform her
code in unexpected ways. She must be willing to perform a
mental and physical context switch from writing code at the
keyboard to navigating a menu and GUI wizard via mouse.
Moreover, these are merely the cognitive preconditions for
one refactoring – R – as it pertains to an isolated moment
during development. The problem can only become worse
with the addition of new IDE-supported refactorings.

We present WitchDoctor, a system that solves the cogni-
tive scalability problem by relieving the programmer of the
need to meet the aforementioned cognitive preconditions.
WitchDoctor observes the programmer’s programming activ-
ity, detects when a particular refactoring is in progress, and
completes it before the programmer does. In this scenario,
the programmer is relieved even of the burden of knowing
that a particular refactoring exists – let alone its name, menu
location, hotkey, etc.

WitchDoctor’s automated recognition can benefit novices
and experts alike. Novices are simultaneously struggling
with the concepts (e.g., the idea of refactoring), and the
environment (Eclipse’s refactoring operations). A novice
using WitchDoctor can be “taught” in context by having
WitchDoctor suggest completions for the novice’s stuttering
progress. Experts, on the other hand, seek efficiency, and
their work can be accelerated if they don’t have to interrupt
their typing to use the refactoring drop-down menus and
its pop-up dialogs. Although the “teaching” interface and
the “expert” interface would be quite different, the same
underlying technology of WitchDoctor would be required.

Automatically recognizing and completing a refactoring
in-progress at the speed of typing poses a number of
technical and human-computer interaction challenges. In this
paper, we present our solution to five technical challenges
that arise when performing “real-time” refactoring detection.
In order to be interactive, WitchDoctor must do change
detection very quickly; in order to be useful, WitchDoctor
must detect and complete the refactoring before the pro-
grammer has finished it. These requirements lead to novel
technical challenges, where the traditional techniques of
change detection cannot be applied straightforwardly:

1) Interactive Speed: We assume that every keystroke
that goes unchecked is a missed opportunity to save the
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ABSTRACT
Refactoring, the practice of applying behavior-preserving changes
to existing code, can enhance the quality of software systems.
Refactoring tools can automatically perform and check the cor-
rectness of refactorings. However, even when developers have
these tools, they still perform about 90% of refactorings manually,
which is error-prone. To address this problem, we propose a tech-
nique called GhostFactor separating transformation and correctness
checking: we allow the developer to transform code manually, but
check the correctness of her transformation automatically. We im-
plemented our technique as a Visual Studio plugin, then evaluated
it with a human study of eight software developers; GhostFactor
improved the correctness of manual refactorings by 67%.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques

General Terms
Design, Experimentation, Languages, Human Factors

Keywords
Refactoring, Restructuring, Tool, IDE

1. INTRODUCTION
Refactoring is the process of altering software’s internal structure

without modifying its external behavior [13]. Studies show refac-
toring can improve cohesion [20], maintainability [20], evolvabil-
ity [31], and reusability [24] of existing software systems. Because
of these benefits, refactoring is an important part of modern soft-
ware development. According to Cherubini and colleagues’ survey
of 427 developers at Microsoft, developers consider refactoring as
important as or more important than understanding code and pro-
ducing documentation [10]. Refactoring is also an integral part of
agile development processes such as Extreme Programming [9].

Developers can perform refactorings manually or with auto-
mated tools. Manual refactorings are error-prone: according to our
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previous study of twelve professional developers, one third of their
manually performed refactorings inserted defects to the software
system [15]. Automated refactoring tools will perform refactorings
for developers and automatically check their correctness, enabling
developers to quickly and safely refactor their code.

Although automated refactoring tools refactor more correctly
than developers do, developers rarely use them. According to exist-
ing studies, only 11% of 145 refactorings in real-world open source
systems were performed automatically [27, 37].

To solve this underuse problem, researchers have proposed novel
tools to encourage developers to refactor automatically. For in-
stance, BeneFactor and WitchDoctor automatically finish refactor-
ings after developers start refactoring manually [15, 12]. These
tools significantly reduce, but do not completely remove, the bar-
riers to using refactoring tools. For instance, developers must still
explicitly invoke most refactoring tools. In addition, researchers
found that developers do not trust automatic refactorings to be cor-
rect [25, 11]. Existing tools remove neither of these barriers: de-
velopers are unlikely to change their behavior to use a tool they
distrust [25].

To address these problems, in this paper, we propose a novel
static analysis technique. We make the following contributions:

● A technique called GhostFactor that can detect manually per-
formed refactorings and check their correctness. GhostFac-
tor is novel for combining light-weight static analysis with
refactoring detection algorithms to quickly detect refactoring
errors. Section 4 describes the design of GhostFactor.

● We implemented our technique in an open-source plug-in for
the Visual Studio IDE [5]. This plugin, also called Ghost-
Factor, instantly notifies developers when they refactor in-
correctly and suggests ways to fix the error. Unlike previous
refactoring tools, GhostFactor integrates into the IDE’s noti-
fication system, a familiar mode of interaction for develop-
ers. Section 5 describes the implementation.

● We evaluated GhostFactor by conducting a human study with
eight developers. In this study, we compared how partic-
ipants refactored with or without GhostFactor. GhostFac-
tor improved the correctness of their manual refactorings by
67%. Section 6 presents the design and results of the study.

Before describing our technique, we first provide further motiva-
tion for the technique in Section 2 and describe related work in
Section 3.

2. MOTIVATION
One desirable property of software development tools, such as

refactoring tools, is that they should accommodate the developer,

RefDistiller: A Refactoring Aware Code Review Tool for
Inspecting Manual Refactoring Edits

Everton L. G. Alves†‡ Myoungkyu Song† Miryung Kim§

University of Texas at Austin, USA† University of California, Los Angeles, USA§

Federal University of Campina Grande, Brazil‡
{everton, mksong1117}@utexas.edu, miryung@cs.ucla.edu

ABSTRACT

Manual refactoring edits are error prone, as refactoring re-
quires developers to coordinate related transformations and
understand the complex inter-relationship between a↵ected
types, methods, and variables. We present RefDistiller, a
refactoring-aware code review tool that can help develop-
ers detect potential behavioral changes in manual refactor-
ing edits. It first detects the types and locations of refac-
toring edits by comparing two program versions. Based
on the reconstructed refactoring information, it then de-
tects potential anomalies in refactoring edits using two tech-
niques: (1) a template-based checker for detecting miss-

ing edits and (2) a refactoring separator for detecting ex-

tra edits that may change a program’s behavior. By help-
ing developers be aware of deviations from pure refactor-
ing edits, RefDistiller can help developers have high con-
fidence about the correctness of manual refactoring edits.
RefDistiller is available as an Eclipse plug-in at https:
//sites.google.com/site/refdistiller/ and its demon-
stration video is available at http://youtu.be/0Iseoc5HRpU.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: [Distribution, Maintenance,
and Enhancement]

General Terms

Design, Experimentation

Keywords

Software evolution, refactoring

1. INTRODUCTION

Recent studies show that developers often conduct refac-
torings manually despite their awareness of automated refac-
toring engines [5, 7, 12]. Most expert developers do refac-
toring edits manually instead of using automated refactoring
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Figure 1: Overview of RefDistiller

tools [7]. Developers also underuse and misuse automated
refactoring tools [12].
Manual refactorings are error prone. According to a field

study at Microsoft [5], 77% of developers find it hard to per-
form manual refactorings correctly. Weißgerber and Diehl
find evidence that bugs are caused by incomplete refactor-
ings [13]. Existing approaches for detecting manual refactor-
ing anomalies are limited. Rachatasumrit and Kim find that
regression testing suites in practice are often inadequate for
covering refactored locations and are ine↵ective in detecting
refactoring errors [10]. SafeRefactor [11] validates refactor-
ing edits by leveraging an existing test generation engine and
by comparing test results between the old and new program
versions. However, it also requires having enough test cov-
erage. GhostFactor [4] detects a limited category of missing
edits in manual refactoring but does not detect extra edits
that may change a program’s behavior.
In this tool demonstration paper, we present RefDistiller,

a refactoring-aware code review Eclipse plug-in. Figure 1
shows the overview of RefDistiller. To detect potential
deviations from pure refactoring edits, RefDistiller incor-
porates two key techniques: (1) RefChecker for detecting
missing edits and (2) RefSeparator for detecting extra ed-
its. It takes an original version and a manual refactored
version as input, and automatically infers the types and lo-
cations of potential refactoring edits using RefFinder [9]. For
each refactoring edit, RefChecker checks a set of required
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RefFinder: An Extensible Framework for Refactoring Reconstruction

Professor Miryung Kim
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Type I Proposal (Requested Budget $25,000)

We propose to design, build, and evaluate a logic-query based refactoring reconstruction
tool in Visual Studio.

1 Problem Statement

As software engineers collaboratively develop software, they often need to investigate
code changes implemented by other developers. In order to improve developer produc-
tivity during peer code reviews, this research proposal focuses on a specific problem of
refactoring reconstruction—How can we automatically identify the location and types

of refactorings from two program versions? Refactoring is the process of changing a soft-
ware system in such a way that it does not alter the external behavior of the code, yet
improves the modular structure of software. While improving software maintainability,
refactoring often involves coordinated edits to different parts of a system. For example, a
replace conditional with polymorphism refactoring simplifies repetitive if statements by cre-
ating subclasses and by moving each leg of the conditional to an overriding method.

We hypothesize that developers can tremendously benefit from refactoring information
inferred from code changes when they investigate non-local, complex edits. Recording
refactorings in an IDE is inadequate alternative to this problem because developers of-
ten manually apply refactorings and behavior-modifying edits together. Murphy-Hill et
al. find that almost 90% of refactorings are performed manually without the help of auto-
mated refactoring tools, and programmers do frequently intersperse refactoring with other
program changes. In fact, pure refactorings only account for 15% of commits, while 28%
of commits are refactorings combined with behavior-modifying edits [13].

Another reason why it is important to reconstruct refactorings from program versions is
that manual implementation of refactoring is often error-prone. Weißgerber and Diehl
investigated the rate of refactorings and bug fixes in open source projects and found that
there is an increase in the number of bugs after refactorings [16]. In our recent study of
three large open source projects (Eclipse, jEdit, and Columba), we found that the number
of bug fixes increase by 12.4% in the 5 subsequent revisions after refactorings, and that
these bug fixes often repair refactoring mistakes.

2 Background

Even though high-level program transformations such as refactorings are often systematic
at a code level, existing program differencing tools such as diff produce low-level differ-
ences without much abstraction. Our prior work on logical program differencing [9, 8, 11]
overcomes this limitation by raising the abstraction level beyond syntactic and textual dif-
ferences using a logic rule-based approach.

Existing refactoring reconstruction techniques [2, 17, 18, 19] find only simple rename and
move refactorings and cannot identify composite refactorings, which consist of atomic
refactorings. Our approach, REF-FINDER, can infer complex refactorings by encoding each
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¡ We integrate RefFinder with FaultTracer
dynamic change impact analysis [ICSM’ 
12]

¡ While refactoring edits are only 8% of 
changes, 38% of affected tests are 
relevant to refactoring and a half of 
failed affected tests include refactoring 
edits.
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