36t IEEE International Conference on Software Maintenance and Evolution
(ICSME 2020) Adelaide, Australia

Most Influential Paper from ICSM 2010

“Template-based Reconstruction of Complex Refactoring”

by Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and
Miryung Kim

What was 2010 like?

Air Travel Disruption from
Volcanic Eruption, Iceland

ACMAEEE 32ad International Cond.
on Software Engineering
2 — 8 MAY 2010
CAPE TOWN, SOUTH AFRICA

www.sbs.co.zalicse2010

AFRICA
2010

WORLD CUP i

ICSE 2010, South Afrlca CapeTown ‘,

2"d year Assistant Professor:

Miryung Kim

Deadlines sketched on
the white board

Boxes of papers
on book shelves

1st year graduate student:
Kyle Prete

RA offer

Miryung Kim «n

1OF e, . '|"~" "Aanie

Dear Kyle

| have Biked with your rdorencss and | am veary exciied about doing

research with you'! | am pleased 10 S8 your Motvation and
A fresh graduate from determination 1o pursue a PhLD degree in softlware engnsenng and |

Vanderbilt U in 2010 believe our interests are very aligned

2nd Year undergraduate:

Napol Rz

Research Assistant Opportunity

Napod Rachatasumwit the _dec:

Dear Dr, Xim

foongd that

| am writing to apply for a rescarch assastant opportunstics. According 5o the email, 1

“Coping with Evolution in Software Reuse® is the most inferesting topuc. 1 always face with the

complication m reusing existing hibrary, especially when | worked in robot clubs in freshmen year,

where there were many sabgroups working separately. | believe &

cxpenence and 2 foundation for neat programming stylie

Reractoring

IMPROVING THE DESIGN
OF ExiSTING CODE

A sophomore in Math
and ECE in 2010

MARTIN FOWLER

W comtritatiom by Kent Bock, John Bran,
William Opdyke, st Don Roberts

Could you please S
read this book

and let me know i
your thoughts? |

Do you know how
to program?
Do you know Java?

15 Year graduate Student:
Nikita Sudan

applying to UTexas, Dr. Vibha Sazawal's student

| g ‘nike Ton »

Nixna Sudan «

" . ’
Ol Ur, am

Hope you are coing weil. | am a senir Computer Engineenng and Economics (douilo) maor studying at
e Universlty of Maryland, Collage Park | have Deen Song ressarch under Dr, VibRa Sazawal, Assistant
Professor, Department of Compuler Sclience, UMD on the 1opic of Modeing Scitware Evoluton using Game

Thedry. W ncently submitiad & Dager 1o the Imematonal Conferancs on Sofware Processes, 2000

A fresh graduate from
U Maryland in 2010

ICSM 2010 In Timisoara

]H m

illilalak

A A
1

Thomas Zimmermann
Microsoft Research

ICSM 2010, Timisoara

http:/thomas-zimmermann.com
Twitter: @tomzimmermann

What ideas have motivated
and inspired RefFinder?

Dagstuhl: Multiversion Program
Analysis In 2005

Dagstuhl: Multiversion Program
Analysis In 2005

“"How do we automatically match corresponding code elements
between two program versions?”

Miryung’s PhD @
University of Washington

Analyses of Software Evolution
- Evolution of Code Clones

A 4

High-level changes are often systematic at
a code level

4

Automatic Inference of

High-Level Change Descriptions
- Rule-based Change Representations
- Rule Learning Algorithms

Miryung’s PhD: Discovering

Systematic Changes as Rules

Changed Code - public class CmiRegistry implements

File Name Lines NameService { . |
+ public class CmiRegistry extends
New
New

DummyRegistry 20 lines AbsRegistry implements NameService {

New |
i _ 133 lines
Modified

JRMPRegistry Modified 123 lines

ifi
JeremieRegistry Modified 52 lines

ifi

ifi

private int port = ...

private String host = null

public void setPort (int p) {
if (TraceCarol. isDebug()) { ...
}

}
public int getPort() {

return port;

JacORBCosNaming 133 lines
ITOPCosNaming 50 lines
CmiRegistry 39 lines
NameService

NameServiceManager |Modified | Each rule represents systematic changes by relating
Total Change: 9 files, 723 lines groups of change facts. These rules are automatically
inferred using inductive logic programming.

}

>
o
()]
o
D
Q
[
0]
o
[
s

vm vt past method(m, “setHost”, t) A
past_subtype(“Service”, t)

= deleted calls(m, “SQL.exec”)
[except t="NameSvc” m="NameSvc.setHost”]

Inspiration for RefFinder (1)

Logical Queries for Code Search

Type-Oriented Logic Meta Programming
Kris De Volder

CodeQuest: Querying Source Code with DatalLog

Elnar Hajiyev', Mathieu Verbaere!, Oege de Moor* and Kris de Volder?

! Programming Tools Group ? Software Practices Lab
University of Oxford University of British Columbia
Lioiiod Kinadang \ /oA~ O anads

Navigating and Querying Code Without Getting Lost

Doug Janzen and Kris De Volder
Department of Computer Science
University of British Columbia
2366 Main Mall
Vancouver BC Canada V6T 124

Maintaining software through
intentional source-code views

*
Kim Mens Tom Mens Michel WermelingerT
Département INGI Programming Technology Lab Departamento de Informatica
Univ. catholique de Louvain Vrije Universiteit Brussel Universidade Nova de Lisboa
Louvain-la-Neuve, Belgium Brussels, Belgium 2829-516 Caparica, Portugal

Kim.Mens@info.ucl.ac.boe = Tom.Mens@vub.ac.be mw @di.fct.unl.pt

Inspiration for RefFinder (2)

Fine Grained Diff & Change Types

Detecting Merging and Splitting using
Origin Analysis

UMLDiff: An Algorithm for Object-Oriented
Design Differencing

o 1) 1 AV L _—1 Hl ¥

Automated Detection of Refactorings in Evolving
Components

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson

Department of Computer Science
University of Illinois at Urbana-Champaign

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007 725

Change Distilling: Tree Differencing for Fine-

/- Grained Source Code Change Extraction
P =
o SpyWare: A Change-Aware Development Toolset

Romain Robbes Michele Lanza

Inspiration for RefFinder (3):

Need for Domain Knowledge

Statistical Relational Structure Learning

—

Inductive Logic Programming

Genetic Programming

Heuristic Search

- l - — — —— —

Infer too many “uninteresting” change rules

= must encode inductive bias explicitly

Excerpts from Original
ICSM 2010 Talk

Motivation: Refactoring-Aware
Code Review

® Developers can benefit from refactoring
information when they investigate complex
non-local edits during peer code reviews.

® Problem: How can we automatically
identify the locations and types of
refactoring from two program versions!

Challenges: Complex
Refactoring Reconstruction

® Must find pre-requisite refactorings to
identify composite refactorings

® Require information about changes within
method bodies

® Require the knowledge of changes to the
control structure of a program

Approach: Logic Query-based
Refactoring Reconstruction

Step |. Encode each refactoring type as a template
logic rule

Step 2. Extract change-facts from two input
program versions

Step 3. Refactoring identification via logic queries

® Ref-Finder orders pre-requisite refactorings
before composite refactorings

Predicates

LSdiff Predicates Extended Predicates

package type methodbody conditional

method field cast trycatch

return fieldoftype throws variabledeclation

typeintype accesses methodmodifiers fieldmodifiers

calls subtype parameter similarbody (o) *

inheritedfield getter setter

inheritedmethod addedparameter deletedparameter

Fact-Level Differences

Old Program before_*

type(“Foo”,..)
method (“Foo.main” ,”main”, "Foo”)
conditional (“date.before(SUMMER START)...)

methodbody (“Foo.main”, ...)
difference

New Program after_%

type(“Foo”,..)
method (“Foo.main” ,”main” , "Foo")
method (“Foo.notSummer (Date)”, “notSummer”, “Foo0”)

Differences (AFB) added_* / deleted *

added method (“Foo.summerCharge”, ...)

added method(“Foo.notSummer”, ...)
deleted conditional (“date.before (SUMMER _ START).

2y

Rule Syntax

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

A rule’s consequent refers to a target refactoring
to be inferred.

(deleted subtype(tl,t2)
A(pull up field(f,t2,tl) V pull up method(m,t2,tl)))

V(before subtype(tl,t2) A deleted type(tl,n,p)
A(push down field(f,tl,t2) V push down method(m,tl,t2))

—collapse hierarchy(tl,t2)

Rule Syntax

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

A rule’s antecedent may refer to pre-requisite
refactorings.

(deleted subtype(tl,t2)

A(pull up field(f,t2,tl) V pull up method(m,t2,tl)))
V(before subtype(tl,t2) A deleted type(tl,n,p)
A(push_down field(f,tl,t2) V push down method(m,tl,t2))
—collapse hierarchy(tl,t2)

Encoding Fowler’s Refactorings

® We encoded 63 types but excluded a few
because

® they are too ambiguous,

® require accurate alias analysis, or

® require clone detection at an arbitrary

granularity.

Collapse

Collapse Hierarchy Inference put

o

deleted field(fl, £, t1)

A deleted access(fl, ml)

f'@’d refacto ring A added access(£f2, ml)
= move field(f, t1l, t2)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, *“PieChart”)
added field(“Chart.color”, *“color”, *“Chart”)

deleted access(“PieChart.color”, *“Chart.draw”)

added access(“Chart.color”, “Chart.draw”)

Collapse

Collapse Hierarchy Inference put

o

deleted field(fl, £, t1)

A deleted access(fl, ml)

f'e’d refactoring A added access(£f2, ml)
move field(f, tl1l, t2)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, *“PieChart”)
added field(“Chart.color”, *“color”, *“Chart”)

deleted access(“PieChart.color”, *“Chart.draw”)

added access(“Chart.color”, “Chart.draw”)

Collapse

Collapse Hierarchy Inference put

o

1 £1, 4 £, 4 ¢1, d t2, 4 £2, d
ml,

Invoke a move- deleted field(fl, £, tl)

f,'e’d query A added field(f2, £, t2)
A deleted access(fl, ml)

A added_access(f2, ml)?

before subtype(“Chart”,”PieChart”)
“Chart”,”PieChart”

deleted field(“PieChart.color”, “color”, “PieChart”)

added_field(“Chart.color”, “color”, “Chart”)

deleted_access(“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”)

Collapse

)

Collapse Hierarchy Inference (ruive
p 4 i

f="color”,

Create a new move tl="PieChart”,
t2="Chart”

f’E’d fact move field(“color”, “PieChart”,
“Chart”)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”
move field(“color”, “PieChart”, “Chart”)

Collapse

Collapse Hierarchy Inference GE

Move

TO fmd 1 pu" up move field(f, tl1l, t2)
A before subtype(t2,tl)

field refactoring = pull up field(f, tl, t2)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access (“Chart.color”, “Chart.draw”)

move field(“color”, “PieChart”, “Chart”)

ollapse

Collabse Hierarchy Inference €I
P y o

TO fmd 1 Pu" UP move field(f, tl1l, t2)
. . A before subtype(t2,tl)
field refactoring

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access (“Chart.color”, “Chart.draw”)

move field(“color”, “PieChart”, “Chart”)

Collapse
AP

Collapse Hierarchy Inference &3
P y o

Invoke a pull up 3 £, 3 t1, 3 ¢2,
move field(f, t1, t2)

fiE’d query A before subtype(t2,tl)?

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)

added access(”“Chart.color”, “Chart.draw”
move field(“color”, “PieChart”, “Chart”)

Collapse
AP

Collapse Hierarchy Inference &3
P y o

f="color”,

t2="Chart”

PU" up f’E’d fact pull up field(“color”, “PieChart”,
“Chart”)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, *“Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access (“Chart.color”, “Chart.draw”)

move field(“color”, “PieChart”., “Chart”
pull up field(“color”, “PieChart”, “Chart”)

Collapse

Collapse Hierarchy Inference G
P y o

Create a hew collapse hierarchy(“Chart”,

CO”apse “PieChart”)
hierarchy fact

be fo 1btvp h 3 i h 3
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, *“Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access (“Chart.color”, “Chart.draw”)

yu 144 '/ » 14 “ n

pull up field(“color”, “PieChart”, “Chart”)

Collapse Hierarchy Inference

Create a new
collapse
hierarchy fact

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, *“PieChart”)
added field(“Chart.color”, *“color”, *“Chart”)

deleted access(“PieChart.color”, *“Chart.draw”)

added access(“Chart.color”, “Chart.draw”)

move field(“color”, “PieChart”, *“Chart”)

V7] 144 y/]
O 10O = N 3 N3

collapse hierarchy(“Chart”, “PieChart”)

Collapse

Evaluation: Fowler’s

Ref-Finder finds refactorings with 97% precision and 94% recall.

Types

Expected

Found

Precision

Recall

False negatives

False Positives

[-10

8

19

11-20

9

20

0.95

extract method

21-30

9

12

31-40

13

0.9

preserve whole objects

41-50

replace conditionals
with polymorphism

51-60

replace parameters
with explicit methods

replace type code with
state

replace magic number
with symbolic
constants,
extract method

Evaluation: Open Source

Ref-Finder finds refactorings with 74% precision and 96% recall.

Versions # Found Prec. Recall
3.0-3.0.1 10 0.75 0.78
jEdit 3.0.1-3.0.2 | | |
3.0.2-3.1 0.45 |
300-352 43 0.52
352-449 0.91
62-63 12 |
389-42 8 0.63
421-422 0.64
429-430 48 0.85
430-480 37 0.8
480-48| | 0.91
548-576 |
576-764 0.85

0.74

Columba

Reflections on the paper

SE community took this work to

several directions

Accurate Refactoring Automated Change
Reconstruction Documentation
Multi-Objective Refactoring-Aware
Search-based Code Review and
Refactoring Merging
Refactoring Error Refactoring Tools for Realistic
Detection Reconstruction Refactoring

Refactoring-Aware Studies on Technical

Testing and Dynamic Debt, Code Smells,
Analysis Refactoring Benefits

Automated Clone
Removal and Code
Extraction

Refactoring
Recommendations

Example: Tools for Realistic
Refactoring

Refactoring Tools for Realistic
Reconstructio ' Refactoring

Friendly Competition Towards The

Same Vision

How We Refactor, and How We Know It

Emerson Murphy-Hill Chris Parnin Andrew P. Black
Portland State University Georgia Institute of Technology Portland State University
emerson @cs.pdx.edu chris.parnin @ gatech.edu black@cs.pdx.edu

A Field Study of Refactoring Challenges and Benefits

Miryung Kim * Thomas Zimmermann* Nachiappan Nagappan *
miryung@ece.utexas.edu tzimmer@microsoft.com nachin@microsoft.com

Use, Disuse, and Misuse of Automated Refactorings

Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P. Bailey, Ralph E. Johnson
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
{mvakili2, nchen, snegara2, rajkumal, bpbailey, rjohnson}@illinois.edu

A Comparative Study of Manual and
Automated Refactorings

Stas Negara, Nicholas Chen, Mohsen Vakilian,
Ralph E. Johnson, and Danny Dig

Friendly Competition Towards The

Same Vision

WitchDoctor: IDE Support for Real-Time Auto-Completion of Refactorings

Stephen R. Foster William G. Griswold Sorin Lerner
UC San Diego UC San Diego UC San Diego
La Jolla, CA La Jolla, CA La Jolla, CA

srfoster@cs.ucsd.edu wgg@cs.ucsd.edu lerner@cs.ucsd.edu

Reconciling Manual and Automatic Refactoring

Xi Ge Quinton L. DuBose Emerson Murphy-Hill
Department of Computer Science, North Carolina State University, Raleigh, NC
{xge, qldubose}@ncsu.edu, emerson@csc.ncsu.edu

RefDistiller: A Refactoring Aware Code Review Tool for
Inspecting Manual Refactoring Edits

Everton L. G. Alves’* Myoungkyu Songt Miryung Kim?
University of Texas at Austin, USAT University of California, Los Angeles, USA®
Federal University of Campina Grande, Brazil*

{everton, mksong1117}@utexas.edu, miryung@cs.ucla.edu

0 Cog Manual Refactoring Changes with Automated
Refactoring Validation

SE community took this work to

several directions

“; Accurate Refactoring Automated Change |
" Reconstruction Documentation ol

Multi-Objective
Search-based
Refactoring

Refactoring Error Refactoring Tools for Realistic
Detection Reconstruction Refactoring

Refactoring-Aware ()
Code Review

Refactoring-Aware Studies on Technical
Testing and Dynamic Debt, Code Smells, (@9
Analysis Refactoring Benefits ¥\

: Automated Clone
Refactoring
- . Removal and Code 5
2 Recommendations : &)
Extraction ‘

RefFinder Tool Release

[ICSM'10, Prete et al. FSE'20 Demo, Kim et al.]

EOR €3 3/ /orgar Mo jedriosn /LS jave LN 4.3 14 /st /org I QR0 Ned LI DN LS v
B ject assignd Object val, bodlean strictlove) prat bject ossign(Object ve POSlean strictove
throes Utilfvellrros NI . |
e Ay |
Bf C type - VARIASLE) (] | SAFOR nem_INterpretens :
. B 8
¥ { ledaiVor) nomedpace.s Verioblel varW| '
213 nameloc at¥ariablel verSome, ur".ct‘ "
. 3 ¢ 5 | - 14 |
pelse 1 type w FIELD) { | Conditionals that check the ~
'.", 1

é*‘,xh'. FleldVel « vol |sstonceof Primitive 7| Vi of an ob,ect oz & dyy SLe todty ; . ﬂ
1).getVelee() : val | replaced by polymorphism " varlome - “evorNome: *°)
—————————— T ' &= —_— U ants a1l L2 :

L{Primitive Jvel
!

Prodlecs + Jyvadoc Declarasson Refactorings &3 . Rudes View vl =
RBe 2ot (O IR WS Dr w0 O 3 1w Mo e O DO weth OOber s DM g
Reglace conditiona) wiehh polyrrorphamn P AL AP et Da S o g MG QAP S DA LSS ex
» e J e
Extract herarchy Seiheted_cond a3k Tyoe NELD , oryOjectficicVal vvalimatanceofMrimti we
e vt e AND
Remowe paramete scfore_meteod AR O e LiSfamaig 2339 QL AD Jednt
Be “r B | ~ ey AND)
Fe™ove Daramete ®
e * D tie :
Remowe suramcte
Ramowe 14 et 33CeS_methodl org. git. 12 Jod . Do rocndaiig 239" MO QLD
Remowe asvgnmert Lo pararmmete AND
Reslace ¢ 1ary w oy Y ' v SOly SN0 0 LM LS nSexfaaagry org.ail o ed
Re=owe puaramete
e
3 AR SO o0t D LiSag ar

/’ A O -
Refactoring detalls are linked Logic query is filled
to code elements \ [""" and expanded

S0 QA 30 Jeth. babts LMS S a3 e]

=
Microsoft SEIF Award -

RefFinder: An Extensible Framework for Refactoring Reconstruction

Professor Miryung Kim
The University of Texas at Austin

UT ECE Prof. Miryung Kim
Receives 2011 Microsoft
Software Engineering
Innovation Foundation
Award

MSR Visit & Collaboration

Studies on Refactoring
Challenges & Benefits

Re-architecting Windows

Refactoring Change Impact Analysis

[Napol’s Undergraduate Honors Thesis / ICSM’12 Rachatasumrit and Kim]

We integrate RefFinder with FaultTracer
dynamic change impact analysis [ICSM’
12]

While refactoring edits are only 8% of
changes, 38% of affected tests are
relevant to refactoring and a half of
failed affected tests include refactoring
edits.

Thankful to My Students

From Right to Left

Baishakhi Ray (PhD 2013 = Assistant Prof @ Columbia) Detecting Recurring Changes and Errors

Na Meng (PhD 2014 = Assistant Prof @ Virginia Tech) Automating Recurring Changes & Clone Removal

Tianyi Zhang (PhD 2019, Postdoc @ Harvard) Leveraging Redundancy for Code Review, Testing, APl Usage Mining
Muhammad Ali Gulzar (PhD 2020 = Assistant Prof @ Virginia Tech) Debugging and Testing for Big Data Analytics
Myoungkyu Song (Postdoc 2015 = Assistant Prof @ Nebraska, Omaha) Error Detection in Refactoring Edits

Thankful to ICSME “Community”

e e e N SRR

L ICcsME 2013 Einhoven

ICSM 2009 Edmonton ICSM 2011 Williamsburg
My first PC My first OC/ ERA co-chair

- '
- - - : 2 " : .
| 5 4 -
4 " N -
o 1)) S -
i A W Al {
R ' { g P Z l o 2 d
/ \ T : A g N
e - , ' I

ICSM 2012 Riva del Garda

36t IEEE International Conference on Software Maintenance and Evolution
(ICSME 2020) Adelaide, Australia

Most Influential Paper from ICSM 2010

“Template-based Reconstruction of Complex Refactoring”

by Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and
Miryung Kim

