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Wireless sensor networks monitor the physical world by taking measurements of physical phenom-
ena. Those measurements, and consequently the results computed from the measurements, may be
significantly inaccurate. Therefore, in order to properly design and use wireless sensor networks,
one must develop methods that take error sources, error propagation through optimization software,
and ultimately their impact on applications, into consideration. In this paper, we focus on location
discovery induced errors. We have selected location discovery as the object of our case study since
essentially all sensor network computation and communication tasks are dependent on geograph-
ical node location data. First, we model the error in input parameters of the location discovery
process. Then, we study the impact of errors on three selected applications: exposure, best- and
worst-case coverage, and shortest path routing. Furthermore, we examine how the choice of a spe-
cific objective function optimized during the location discovery process impacts the errors in results
of different applications.

I. Introduction

The impetus for research presented in this paper has two
main sources: (i) the emergence of wireless embedded ad-
hoc sensor networks (WEASN) and, (ii) the growing need
for development of optimization algorithms that operate on
noisy data and data with (potentially deliberately induced)
errors. Wireless embedded ad-hoc sensor networks consist
of a set of sensor nodes, each equipped with a number of
sensors such as temperature, light, acoustic, seismic, and
acceleration sensors. Nodes also contain digital communi-
cation systems, storage, processing resources, and in some
cases actuators. Sensor nodes typically communicate us-
ing multi-hop schemes of ad-hoc wireless networks [19].
WEASNs have the potential to bridge the gap between
the computational world of software and the Internet on
one side and the physical, chemical, and biological worlds
on the other [7]. One can easily envision numerous con-
sumer, business, environmental, and scientific applications
of WEASNs, ranging from early forest fire detection, in-
door energy consumption monitoring, environmental mon-
itoring [25], target tracking, and earthquake monitoring [7].

Accurate location information of each node is of crucial
importance for organizing both communication and sensor-
based measurements and calculations. Majority of the po-
tential applications mentioned above, require a certain de-
gree of knowledge of locations of nodes. Nodes could ac-
quire the estimates of their locations from outside sources,
where GPS [26] is one of the primary candidates for out-
door WEASNs. However, due to the large number of nodes
in a sensor network, it is not justifiable from economic
and energy preservation points of view to equip each node
with a GPS receiver. The alternative solution proposed
in [4, 15, 23, 22] is to design a location discovery algorithm
that uses measurements of the distances between nodes and
estimates of the locations of a small percentage of nodes
(acquired through GPS, for example) to determine the lo-
cations of all or majority of nodes in a network. Both types

of data, distance measurements and location estimates, are
inherently noisy. Our goal in this paper is to show the im-
portance of the estimation of the error in locations gener-
ated by location discovery algorithms.

The most obvious and maybe most important applica-
tion of knowledge about errors and their behavior are de-
velopment of localized optimization algorithms and cor-
responding objective functions. Applications that employ
localized optimization algorithms can define a termination
point and localized search boundaries based on the esti-
mates of accuracy of the locations. Network management
applications can use the estimate of error to detect intruder
nodes that disperse invalid location data. Other applica-
tions include watermarking of solutions, equipment cali-
bration, resiliency against skewing attacks, and reduction
of the run time of algorithms without reduction of the qual-
ity of results. Additionally, accuracy of the location dis-
covery process itself can improve if the error can be ac-
curately modeled and estimated. Information acquired in
different stages of the location discovery procedure can be
selectively used according to error estimates, and the lo-
cation discovery process can return confidence interval for
its results and help applications to evaluate solution of the
discovery process. In some instances, the estimate of error
may indicate such a large error that renders any optimiza-
tion effort ineffective. In such cases, as we show in Section
VII.B, precomputed statistical information can be used in-
stead of undertaking costly optimization steps.

Our discussions are organized around the following top-
ics:

1. Modeling of the error in the initial distance measure-
ments and location estimates: We define the sources of er-
ror in distance measurements and the initial locations of
nodes, and we model the errors generated by those sources.

2. Measuring the quality of a solution generated by the
location discovery procedure: There are situations where
an assessment of the quality of a solution generated by the
location discovery process may be necessary. We examine
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methodologies of estimating the performances of the lo-
cation discovery process and sensor networks application
based on parameters of the network. Then, we show how
the objective functions used in optimization-based location
discovery procedure can predict performances of applica-
tions.

3. Effects of the location error on the performance of
typical WEASN applications: The applications accept the
results of the location discovery procedure as inputs. We
examine how the error in inputs impacts the error in out-
puts. It is important to note that the knowledge about the
effects of location errors helps not only the evaluation of the
overall quality of service provided by a network, but also in
guiding the design and resource management of WEASNs.
We provide examples of applications that can determine the
level of error in locations above which the results of the
location discovery process are practically useless for that
particular application. Therefore, the resources should not
be consumed for the location discovery process under such
circumstances.

I.A. Paper Organization

The remainder of the paper is organized as follows: In Sec-
tion II, we provide a brief review of the related work. In
Section III, we describe the preliminaries of the location
discovery process, and we present an overview of five ma-
jor error sources. An error model for distance measure-
ments and initial locations is described in Section IV. Sec-
tion V contains a proposed methodology of evaluation and
estimation of the overall quality of the location discovery
results. In Section VI, we briefly describe the three appli-
cations that we use to evaluate the impact of location errors
on other WEASN tasks followed by Section VII with ex-
perimental results for both simulated and statistical data.
We then highlight some key points of this paper in the con-
clusions.

II. Related Work

Wireless ad-hoc sensor networks in general and location
discovery in particular, are intrinsically multidisciplinary
topics. Therefore, a wide body of related knowledge and
results exists in the literature. We focus our attention to
wireless ad-hoc networks, radio-propagation models, tech-
niques for location discovery in wireless environments, nu-
merical analysis aspects, and discrete optimization tech-
niques.

A number of applications are envisioned for WEASNs
with the potential to dramatically alter human life [7].
However, a number of challenging technical problems as-
sociated with wireless ad-hoc networks and sensor net-
works must be solved before the sensor networks are
widely used. The most important directions of research in
WEASNs include new types of signal processing [28, 17],
operating systems features [2], self-organization and de-
ployment [3], low power design [19], integration, issues
related to embedded systems [5], robotics [27], and inte-
gration with biological entities [1]. Location discovery in

wireless sensor networks is also recognized as one of the
basic tasks. Several location discovery systems have been
developed recently [4, 18, 9, 30, 23, 22]. A common char-
acteristic of location discovery algorithms in wireless net-
works is that they use distance measurements and initial
location estimates as inputs. In [24, 31] the distances are
measured using Time Difference of Arrival (TDOA). Two
sources of error in TDOA long-range distance estimates
are distinguished. The first source of error is the standard
system measurement noise, modeled as a zero-mean ran-
dom variable. The second type of error is the NLOS error,
a product of the reflection of the signal when the line-of-
sight path is obstructed. Since a reflected path is longer
than the line-of-sight path, the NLOS error produces a pos-
itive bias in distance measurements. Another RF-based
distance measurement technology estimates distances us-
ing Received Signal Strength Indicator (RSSI). It is used in
an indoor user location and tracking system [4], as well as
in [22]. In [4], a coverage map of the building lessens the
impact of the sources of errors. Similar approach can be
applied in mobile telephony, as proposed in [12]. However,
for WEASNs deployed in an ad-hoc manner across a re-
mote area, a profile of the area is likely not to be available.

Sources and characteristics of errors in wireless sensor
networks are similar to those in other wireless networks,
especially if the radio signal is used for the distance mea-
surements. Besides radio signal, sound is identified in sev-
eral projects as another candidate for ranging. In [23, 18]
the distances are measured using the time difference be-
tween simultaneously transmitted radio and ultrasound sig-
nals. Simulation results given in [23] show that with rang-
ing error and initial location error for nodes with GPS both
simulated as a 20 mm white Gaussian noise, the estimated
location of nodes are within 20 cm from the actual posi-
tions. It must be mentioned however that ultrasound has a
shorter range and lower tolerance for obstacles in the path
than radio signals, and is included in the design of a sen-
sor node solely for the purposes of localization. Acoustic-
based distance measurements are used in [8], where it is
reported that the precision of ultrasound is in the sub-cm
range, when the line of sight is not obstructed, and micro-
phones and speakers are directed at each other. In [8], it
is proposed that the ambiguities created from obstructed
line of sight can be solved either by employing additional
sensors, e.g. cameras to detect obstructed line of sight, or
using localization algorithms that detect inconsistencies.

Once the distances are measured and initial locations are
known, we can pose the location discovery problem as a
system of nonlinear polynomial equations and apply one
of the the standard numerical analysis techniques to solve
it. There are a number of excellent textbooks that dis-
cuss techniques for solving systems of nonlinear equations
within the context of numerical analysis [10, 20]. It is well
known that the numerical stability of polynomial equations
with errors, as in location discovery case, is often surpris-
ingly low [10, 20], and that very small perturbations in very
few coefficients can result in significantly different solution
than the intended one. Furthermore, numerical errors of-
ten accumulate quickly [10] and invalidate the final result.
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Figure 1: Multilateration Example

However, the exact analysis of error propagation is essen-
tially intractable [29]. Therefore, we adopted the widely
used practice in numerical analysis: statistical experimen-
tal evaluation of error propagation [20, 29].

III. Preliminaries

III.A. Location Discovery

Location discovery is a term used in WEASNs to describe
the process by which the nodes determine their relative or
absolute physical coordinates. In several existing schemes,
this process typically consists of two basic steps: (i) dis-
tance measurements (ranging), and (ii) atomic multilater-
ations. Node locations can be determined from measured
distances between nodes, and known locations of a sub-
set of the nodes in a network, such as the base stations in
wireless phone networks or GPS-equipped nodes in sensor
networks. The distance measurement techniques proposed
until now for use in sensor networks are:

1. Radio signal strength [22]: The distance between
two nodes in a network can be estimated by comparing the
transmitted power at the sender and the received power at
the receiver of the message.

2. Time of Arrival using radio signal and acoustic sig-
nal [23, 8]: Since the propagation speeds of radio and
acoustic signals are known, the distance between the sender
and the receiver can be calculated from the time difference
of arrival of two such signals.

After the ranging step, where the distances are measured
between the nodes that can hear each other, the next step
is the multilateration procedure. Multilateration combines
the measured distances and the known locations of GPS-
equipped nodes, or nodes which determined their locations
in previous multilateration procedures, to determine the lo-
cations of other nodes. An example of multilateration is
given in Figure III.A, where the node 0 can estimate its lo-
cation based on information received from the nodes 1, 2,
3, and 4. We refer to the nodes that send estimates of their
locations as beacons. To estimate its location, the node 0
computes a location for which the value of the chosen ob-
jective function is minimum. In our experiments in this

paper, we use three well established objective functions:

L1 =

n
∑

i=1

|Di0 − Ri0| (1)

L2 =

n
∑

i=1

(Di0 − Ri0)
2 (2)

L∞ = max
i=1..N

∣

∣

∣

∣

Di0 − Ri0

Ri0

∣

∣

∣

∣

(3)

Here, Rij is the estimated distance between the nodes i
and j, Dij is the distance between estimated locations of
the nodes i and j, and N is the number of nodes that send
their estimates to the node computing its location.

After the node 0 determines its location, it can become a
beacon for other nodes. There are several algorithms pro-
posed for propagation of estimated locations through the
network, such as those presented in [22, 16, 15]. We adopt
the iterative improvement based algorithm for the location
discovery optimization process as presented in [15]. Al-
though this technique has not been used in WEASN appli-
cation domain, our choice was directed by successful use
of iterative improvement algorithms for combinatorial op-
timizations [11] and continuous optimizations. Addition-
ally, iterative improvement is well suited for localized and
distributed implementation as detailed in [15].

III.B. Sources Of Error In WEASN

As mentioned in the introduction, we identify at least five
main sources of error that influence optimization results in
WEASNs:

1) Measurement
2) Finite precision
3) Objective function-specific
4) Intractable optimization tasks
5) Localized algorithms.
The first two, measurement and finite precision related

errors are inherent in all physical computing systems. Mea-
surement errors arise due to sensing technology limitations,
phenomena instability, and environment noise. Numerous
well studied techniques exist to reduce or compensate for
such errors in many domains. Examples of such techniques
are averaging methods that rely on several distinct mea-
surements, and digital signal processing (DSP) techniques.
Finite precision errors are the result of inaccuracies induced
in the result due to limited computation precision of digi-
tal computers. Since the WEASN hardware are typically
very resource constrained, such errors can be of significant
importance.

The second two sources of error are optimization-task
specific. The objective function used at the heart of the op-
timization process may not accurately or completely cap-
ture the essence of the problem and thus can lead to er-
roneous conclusions. The fourth source of error is due to
the inherently intractable nature of the many optimization
tasks tackled by WEASNs. Optimal solutions to intractable
problems are by definition very difficult to compute. Fur-
thermore, exceptionally limited resources such as energy,
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communication bandwidth, storage, and processing power
make tackling such problems and their associated errors (in
results) especially challenging in WEASNs.

As opposed to the sources of error described above,
which exist in many computation domains, the error as-
sociated with localized algorithms is unique to distributed
computation systems such as WEASNs. Localized algo-
rithms are especially suited to WEASNs due to the geo-
graphic structure of the network. In localized algorithms,
only nodes in spatial (or other) ”proximity” collaborate and
participate in a computation. Using local information in
computing inherently global metrics can be a very error
prone task. Understanding such errors and their behavior
is a fundamental task in designing successful localized al-
gorithms.

IV. Error Modeling

Appropriate error models for distance measurements and
GPS-generated locations are an important part of the de-
sign process for WEASN. Wireless sensor networks are in-
tended to be used, among other environments, in remote
and inhospitable areas, where the error characteristics of
different measurements cannot be examined in advance. As
we show in this paper, the knowledge of both, error sources
and the error propagation through the stages of the location
discovery process, can impact the design decisions at all
levels.

For two technologies for distance measurement in sensor
networks, RSSI and acoustic, described in Section III, we
have developed separate error models taking into account
the different sources and amplitudes of error specific for
each technology. The RSSI error model is based on the path
loss models in [21] and measurements from [23, 22, 31],
while the error model for acoustic ranging is derived from
measurements in [8, 23].

The main source of error in RSSI-based distance mea-
surements is the complexity of modeling of environmen-
tal effects in the propagation model. Reflection, scattering,
and diffraction, as well as antenna gains produce signifi-
cantly different path losses for equal distances. For exam-
ple, it is reported in [23] that placing a node 1.5 m above the
ground increased the transmission range of the radio signal
three times relative to when the node is on the ground, al-
though in both cases there is a direct-line-of-sight path be-
tween the transmitter and the receiver. From [21] (pg. 104),
the distribution of measured distances d̂ for the correct dis-
tance d, is given as:

10n log(
d̂

d0

) − 10n log(
d

d0

) = Xσ[dB], (4)

where Xσ is a zero-mean Gaussian random variable with
standard deviation σ, both given in dB. From Equation 4,
the distribution of the RSSI error is:

RSSI ERROR(d) = d̂ − d = d(1 − 10
Xσ
10n ) (5)

RSSI ERROR depends on the measured distance d. Stan-
dard deviation σ defines the one σ range as a percentage of
the measured distance. For example, σ = 1 generates 68%

of distance measurement errors within 6% of the measured
distance, for the value of the environment constant n = 4.
The dependence of the error on the distance d in the model
causes larger errors for larger distances, which is consistent
with the measurements from [23]. Finally, the simulated
distance measurements are generated as:

Rij = Dij + RSSI ERROR

where Rij is the measured distance between nodes i and j,
Dij is the correct distance, while RSSI ERROR represents
the RSSI error.

Acoustic ranging achieves much better accuracy than
RSSI [23, 6]. Such results make acoustic ranging a pre-
ferred technology for distance measurements. Our model-
ing of the ranging error in acoustic ranging systems is based
on the results reported in [8]. There are three important
sources of error in acoustic ranging that cannot be elimi-
nated by averaging distance measurements over time [8]:

1. Non-line-of-sight (NLOS) error: This error occurs
when there is an obstacle between nodes. We model it as
a distance dependent, uniformly distributed, positive error
NLOS=Un(0, d*NLOS ERROR MAX), where d is the mea-
sured distance, and the constant NLOS ERROR MAX be-
longs to the interval [0,1].

2. Speed of sound error: Atmospheric changes in
the environment, as well as different atmospheric condi-
tions in various parts of the network impact the speed of
sound. We model this as a distance dependent Gaussian
noise N(0,σSSE(d)). The speed of sound error is given as
SSE=N(0,σSSE(d)).

3. Orientation error: The emitter and the sound sen-
sor may not be aimed directed towards each other, which
produces error that depends on the angle between them.
We model this error as the angle-dependent Gaussian noise
OE=α*N(0,σOE(d)), where α is the angle between the
emitter and the sound sensor. Thus, the acoustic distance
measurement between the nodes i and j is simulated as:

Rij = Dij + NLOS + SSE + OE

For each simulation, a subset of nodes that have ini-
tial estimates of their locations (beacons) is randomly se-
lected. The initial locations of beacons are generated by
superimposing an error to the real locations as follows.
The real locations of sensor nodes Ai, i=0,..,n are repre-
sented as points Ai(xi, yi). Coordinates xi and yi are gen-
erated from two uniform distributions, one on the interval
[0, Xmax] and one on the interval [0, Ymax]. The error is
generated from Rayleigh distribution, by generating a pair
(∆xi, ∆yi), where both ∆xi and ∆yi are selected from a
zero-mean Gaussian distribution N(0, σloc). The average
location error is then:

µ =

√

π

2
σloc. (6)

Now, by selecting σloc, we can generate a location error
distribution with the desired mean value.
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V. Evaluation of Solution Quality

The output of a location discovery algorithm consists of the
estimates of locations of the nodes in a network. There are
two issues that we address here:

1. How does one evaluate the quality of a given solution
in a simulation environment, where the real locations of
nodes are known?

2. How does one estimate the quality of a solution in a
working environment, where the real locations of nodes are
not known?

Examples of applications that may require an estimate
of the quality of a solution are given in Section VI. The
notations used in the following definitions are as follows:

(xi,yi) - Real location of the sensor node i
(xs

i ,ys
i ) - Estimated location of the sensor node i in the

solution s
d(ni,nj) - Measured distance between the nodes i and j
Two quality functions that evaluate different properties

of a solution are:
1. Average location error:

QF1(s) =
1

N

N
∑

i=1

√

(xs
j − xi)2 + (ys

j − yi)2

2. Maximum location error:

QF2(s) = max
i=1..N

√

(xs
j − xi)2 + (ys

j − yi)2

The quality function QF1 calculates the average location
error, implying that all nodes are taken into account. QF1

is aimed at applications whose performance depends on lo-
cations of majority of the nodes in the network. However,
information about the average location error may not sat-
isfy requirements of applications that rely on a subset of
nodes in the network. Performances of such applications
may depend more on a maximum location error in a solu-
tion. The quality function QF2 measures this property of a
solution.

Now, in order to answer our second question, we accept
that the quality functions QF1 and QF2 represent valid as-
sessments of the quality of a solution. Our task now is to
establish functions that estimate the quality of a solution
based on information available during location discovery
process, i.e. the estimates of the locations of sensor nodes
and the measured distances between them. Also, two es-
timation functions must correlate to the quality functions,
so that applications can use either of the estimation func-
tions, depending on what property of a solution is to be
estimated. The evaluation functions that correspond to the
quality functions QF1 and QF2 are:

1. Sum of distance inconsistencies:

EF1(s) =
N

∑

i=1

i−1
∑

j=1

∣

∣

∣
d(ni, nj) −

√

(xs
j − xs

i )
2 + (ys

j − ys
i )

2

∣

∣

∣

2. Maximum inconsistency:

EF2(s) =

max
i,j=1..N

i6=j

∣

∣

∣
d(ni, nj) −

√

(xs
j − xs

i )
2 + (ys

j − ys
i )

2

∣

∣

∣

The first estimation function EF1 calculates the sum of
the differences between the measured distance from the
node i to the node j, and the distance between the estimated
locations of the nodes i and j in the solution s, for each
pair of nodes (i,j). EF1 estimates the quality of a solution
taking into account all nodes in a network and therefore
corresponds to QF1.

The second estimation function EF2 estimates the qual-
ity of the solution s based on the largest difference between
a measured distance and distance between estimated lo-
cations. The objective function EF2 informs applications
about the maximum location error that can be expected to
occur in the solution by measuring the largest inconsistency
between a measured distance and the distance between cor-
responding nodes . EF2 corresponds to QF2.

In the following experiments, we examine the degree of
correlation between the evaluation functions and the qual-
ity functions. We generate random sensor network topolo-
gies with 50 sensor nodes placed in a 40m x 40m field. The
transmission range of the nodes’ radios is 10m, and we sim-
ulate the error in the locations of sensor nodes by adding
random location errors to the real locations. The average
location error, i.e. average distance between the real loca-
tions of nodes and the estimated locations from the solution
s, is a parameter, and can be controlled as given in Equation

EF
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Figure 2: Correlation between the estimation function EF1

and the average location error (QF1).
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Figure 3: Correlation between the estimation function EF2

and the maximum location error (QF2).
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6 in Section IV. For each value of the average location er-
ror, a set of 100 networks is generated. The average values
for two quality and two estimation functions are calculated
for each set. Figure 2 and Figure 3 show correlation be-
tween these values. The coefficient of correlation is 0.99
for both pairs of functions.

VI. Effects Of Location Errors On
Applications

We now turn our attention to studying how the location er-
rors discussed so far impact different applications that may
rely on the faulty information. We have two main goals in
our study: (i) to see whether estimating errors in locations
can predict certain errors in the results of the algorithms
which rely on the location information, and (ii) which esti-
mation function performs better for a specific application.
Clearly, a countless array of application algorithms exist
that may rely on faulty data. Since WEASNs have been
the focus of our case studies, the applications can include
wireless network management and operation related tasks
such as finding optimal routing paths and clustering, or sen-
sor network specific tasks such as sensing, tracking, and
coverage. Although one can expect that errors will effect
each application differently, as mentioned before, we opt
to focus our attention on the following three: (i) best-case
(maximal support) and worst-case (maximal breach) cov-
erage, (ii) minimal exposure, and (iii) shortest paths. As
we will discuss, these three inherently different location
dependent applications each have distinct properties that
we believe are important in studying the performances of
different location-error estimation functions. We discuss
these specific properties along with some intuitive observa-
tions after presenting a brief introduction and background
for each case. The experimental results provided in the sub-
sequent section serve as a guide in studying what real im-
pacts location errors may have on the results produced by
the selected applications and whether certain predictable
behavior patterns exist.

VI.A. Maximal Breach and Maximal
Support

Recently, [13] presented the maximal breach and maxi-
mal support paths and algorithms for their calculation as
a method for characterizing and computing the worst- and
best-case sensor coverage in sensor networks. The maxi-
mal breach path there is defined as a path through the sen-
sor network connecting a given starting point to a given end
point such that the closest point on the path to any sensor
is maximized. We refer to the closest distance to a sensor
along the maximal breach path as breach. The significance
of breach is that if an object is traveling through the sensor
field, it must be within breach distance of a sensor, at least
once, even if it optimally tries to avoid the sensors (be as
far as possible).

Similarly, the maximal support path is defined as a path
through the sensor network connecting a given starting
point to a given end point such that the farthest point on

the path to the closest sensor is minimized. We refer to the
farthest distance to a sensor along the maximal support path
as support. Analogously to breach, the significance of sup-
port is that if an object is traveling through the sensor field,
it must be at least support distance away from the closest
sensor, at least once.

Here, we are mainly interested to see how location errors
affect the computation of the values of breach (worst-case
coverage) and support (best-case coverage). For this ap-
plication, typically the location of two nodes determine the
final outcome of the computation. In the case of breach,
this is where the maximal breach path is closest to sensors
while for support, the nodes farthest from each other along
the maximal support path are most relevant. As we will see
below, here the location error of a small set of nodes may
strongly influence the outcome, which is in strong contrast
to the other two cases where the locations of a larger num-
ber of sensors potentially impact the results.

VI.B. Minimal Exposure Path

As presented in [14] exposure in a sensor networks can be
used as a measure of how well the sensors observe mov-
ing objects in a field. In general, [14] defines the exposure
for an object moving in the sensor field during an interval
[t1, t2] along the path p(t) as:

E(p(t), t1, t2)
4
=

∫ t2

t1

I(p(t))

∣

∣

∣

∣

d(p(t))

dt

∣

∣

∣

∣

dt

where I(p) is a non-negative sensor field intensity function
representing the sensor field strength at a point p. Hence,
the minimal exposure path is a path connecting a given
starting and ending point along which the exposure integral
is minimized. The exposure of an object traveling along a
path through the sensor field is one measure of the like-
lihood that the sensor nodes will detect and observe that
object. Consequently, one can compare the sensor cover-
age provided by two different sensor network instances by
computing the exposure along the minimal exposure path
in each network, with the network with higher exposure
along its minimal exposure path providing the higher cov-
erage level.

Unlike in breach and support calculations where the fi-
nal results ultimately depend on the locations of one or
two sensors, the computation of the minimal exposure path
is typically affected by the location of several (if not all)
nodes in the network. The exposure along each segment
of the path is potentially influenced by several sensors that
are geographically close to the region. Thus one can expect
that the overall error in locations of the nodes will influence
the outcome of the calculations more significantly than the
error in the location of a particular node or set of nodes.
This effect can be more prevalent if systematic errors exist
in the computed node locations since random errors may
cancel each other.

VI.C. Shortest Paths

Geographically short paths connecting nodes have several
interesting applications in WEASNs. For example, if we
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assume that node transmission ranges are fixed, then trans-
mitting along the geographically shortest path connecting
an arbitrary pair of nodes may be one method of reduc-
ing communication energy costs. Although finding routing
strategies that minimize and/or balance the overall energy
consumption is an interesting and challenging task, here
we focus our attention on how location errors affect the
computation of shortest paths connecting arbitrary pairs of
nodes. To analyze this application, we assume that each
node has a predefined communication range d. For every
pair of nodes i and j, we define Dij as the Euclidean dis-
tance between the nodes i and j, computed based on the
given (possibly faulty) location information. We then build
a weighted graph G(V,E) corresponding to the topology of
the WEASN where for each pair of nodes i∈V and j∈V
with Dij ≤d we add the edge eij in E. The weight of each
edge eij is simply set as Dij . We then compute the all-
pairs-shortest paths in G. We measure the application error
by computing the shortest paths using the known real lo-
cations and the faulty locations produced by the location
discovery algorithm and counting the number of paths that
are different in each case. Note that for n nodes, we have
at most n2 paths to consider. Clearly numerous other error
metrics can be used to analyze this application. Indeed, se-
lecting the appropriate application error model may signif-
icantly impact the way application performance is judged.
However, our main focus here is to study how errors in one
level impact the computations at another level so the spe-
cific choice of error models is less relevant.

One of the aspects that sets this application apart from
the other two is that in essence, some nodes are more
important than others when shortest paths are concerned.
For example, in instances where nodes are uniformly dis-
tributed in a field, those in the middle of the field are clearly
more likely to participate in shortest paths connecting arbi-
trary nodes in the network. Thus, the location errors of
such nodes may play a more pivotal role in affecting the
final results than the location errors in nodes that are rela-
tively isolated or along the boundaries of the field.

VII. Application Results

In our experimental setup we create a random network
topology for which we know the exact node positions. We
refer to this data as true locations. The results of the loca-
tion discovery process, referred to as faulty locations, are
then processed by each application and compared to the re-
sults obtained using the true locations to compute the error
metrics. The goal here is to compute the error in results us-
ing the available faulty location information and the results
which would have been obtained if true location informa-
tion were available. Unless specified otherwise, for each
case, we deploy 50 nodes in a square field that is 40 me-
ters wide. For all minimal exposure, breach, and support
calculations we assume that an agent is traveling from the
boundary line x=0 to the opposite boundary line x=40m.
Note that the apparent clustering of data points in the fol-
lowing plots are the result of the granularity at which we
varied the error levels in the simulations.

VII.A. Application Errors Caused by
Faulty Location Data

In Figure 4 we determine the correlation between the
location-error evaluation functions and the errors observed
in the minimal exposure, breach, and support applications.
We ran 2000 different simulations. For each case we es-
timated the location error using both evaluation functions
described in section V. Then, for each case, we calculate
the percentage difference between application results with
the real locations and the results with faulty locations. The
values for the quality functions are normalized. As noted
on the figure, data points marked by a ’.’ correspond to val-
ues obtained using the maximum inconsistency (EF2) and
the data points marked by a ’+’ correspond to values ob-
tained using the sum of inconsistencies (EF1) estimation
functions.

The top two plots in Figure 4 show the % error in the
computed minimal exposure to cross the field relative to
the minimal exposure along the path obtained using the true
sensor locations using the all-sensor and the closest-sensor
exposure models respectively. Since in practical instances,
the true locations of the nodes will not be known (hence the
need for a location discovery process), one must consider
the impact of following optimization decisions based on
faulty data. Consequently, the middle two plots in Figure
4 provide an alternative to measuring the errors reported in
the first row. Here, the % error is computed by comparing
the exposure along the minimal exposure path found using
faulty locations to the exposure along the same path using
the true node locations. The final row of plots show the
breach and the support errors. For both these cases, the
errors are computed by comparing the breach and support
obtained using the faulty data with those computed using
the true locations. In all plots in Figure 4, the solid line
represents the linear regression of the ’.’ data set while the
dotted line is the regression line corresponding to the ’+’
data set.

The data in Figure 4 shows the correlation trends be-
tween the reported objective functions and the observed er-
rors. Although at a fine grained level this correlation is not
obvious, the overall picture is similar for all the cases. In
almost all cases the regression line has a smaller slope for
the sum data set which may indicate a slight advantage in
using this estimation function. However, statistical analy-
sis reveals that based on this data, no definitive conclusions
can be drawn on which estimation function is better.

Figure 5 presents the results for the shortest path appli-
cation, for varying transmission ranges. The graphs are ob-
tained by plotting the measured % error versus the normal-
ized estimation function reported by the location discovery
process for each shortest paths application. The plots cor-
respond to preset communication ranges of 4, 6, 8, 10, 15,
and 20 meters. Note that the horizontal axis, corresponding
to the normalized location discovery estimation function,
has a logarithmic scale. With this scale choice, the cor-
relation between the measured application errors and the
location errors become strikingly evident. As stated above,
the application error here is measured by counting the num-
ber of shortest paths connecting arbitrary nodes determined
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Figure 4: Error in min exposure, breach, and support vs. location discovery estimation function values. The top two plots
show the min exposure error relative to the true min exposure (real locations). The middle row plots show the error in min
exposure computed along the (faulty) path using faulty and real location information.

using faulty locations that are different from the paths ob-
tained using the true locations. As in Figure 4, data points
marked by a ’.’ correspond to values obtained using the
maximum inconsistency (EF2) and the data points marked
by a ’+’ correspond to values obtained using the sum of in-
consistencies (EF1) estimation functions. It is interesting
to note here that for medium communication ranges (i.e.
8m and 10m) the correlation between the estimation func-
tion value and the application error seem to be very differ-
ent for relatively small objective function values compared
to larger ones. While there seems to be a strong correlation
between the errors for smaller values of estimation func-
tion, there seems to be almost no correlation for larger val-
ues. The communication range of 6m is most interesting
since it is the most chaotic of all six cases. These trends
confirm our intuition that for very short and very long com-
munication ranges, location errors have a more predictable
effect than for medium range communication ranges.

VII.B. Statistical Comparison

In the previous subsection, we studied the correlation be-
tween the location error estimation functions and applica-
tion errors. In this subsection, we study how the informa-
tion provided by the estimation functions can be useful.
More specifically, we address this question: At what point
are the results produced by the location discovery process
useless to the application? The specific answer to this ques-
tion will clearly be different for each application. How-
ever, in some instances such as breach, support, and mini-
mal exposure, statistical profiles based on random network
topologies can be used to obtain answers without relying on
the costly and error prone location discovery process. To il-
lustrate this point, Figure 6 shows histograms of statistical
results obtained by considering 2000 instances of randomly
deployed sensor networks in our 40m square field. For each
case, the figures list the mean and the standard deviation of
the obtained results. For example, we can expect that on
average, the exposure along the minimal exposure path for
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Figure 5: Shortest paths application error vs. the location discovery estimation function values at different preset commu-
nication range levels: 4m, 6m, 8m, 10m, 15m, and 20m.
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Figure 6: Statistics of minimal exposure, breach, and support for random 50-node sensor network topologies.

randomly deployed sensor networks with 50 nodes will be
around 12.5. As we will see, in instances where location
errors are large, this statistically obtained result based on
random networks may be closer to the actual result than if
we compute the minimal exposure path based on the faulty
location information.

To compare these statistical results with our experimen-

tal data, consider the plots in Figure 7. Here, we consider
700 location discovery results for the same network of 50
nodes with varying average location errors. The horizon-
tal axis for each plot represents the index of the data set.
The vertical axis represent the actual computed value for
all-sensor minimal exposure, closest-sensor minimal expo-
sure, breach, and support using the faulty location data for
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Figure 7: Computed (optimized) application data compared to statistics of random solutions (Fig 6). Horizontal axis
indicates distance measurement errors ranging from 1% (0) to 40% (700) changed at the granularity indicated by vertical
dashed lines.

each instance. The vertical grid lines show the granularity
at which the initial location error levels were set that range
between 1% to 40% respectively. The horizontal dashed-
and dotted-lines indicate the mean and standard deviation
corresponding to the statistical data. Note that the data in
Figure 6 correspond to random 50-node network deploy-
ments while the results in Figure 7 are all from the same
network instance. The variations in Figure 7 are purely the
results of errors in node location. By simple inspection of
these figures it is easy to see that roughly beyond the 500-th
experimental instance, the computed results are less accu-
rate on average than the statistically expected results. We
can actually confirm this observation mathematically, since
on average, the statistical mean (obtained from Figure) 6
is closer to the actual result than what we obtain through
the optimization process. This implies that the measure-
ment errors and errors inherent to the location optimiza-
tion process are too large when propagated through the ap-
plication level algorithms, starting at the 500-th instance

(above 30% average location error). For example, in the
case of the all-sensor-minimal-exposure application, statis-
tical data indicate that we should expect an exposure level
with mean 12.508 for a random 50 node network. Our spe-
cific network instance in Figure 7 has a minimal exposure
level of roughly 15.25 (when the error is low). However,
as the top-left graph in Figure 7 clearly indicates, as the er-
rors increase along the horizontal axis, the statistical mean
can predict the correct result with better accuracy on aver-
age than the results produced using the location discovery
process.

VIII. Conclusion

We presented a discussion on location discovery errors
in sensor networks and their effects on optimizations in
WEASNs. We focused on location discovery induced er-
rors in WEASNs since essentially the quality of service
provided by WEASNs are dependent on accurate geo-
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graphical node location information. In order to make
our study tangible, we conducted statistical study of error
sources, ways of propagations, and their impact on differ-
ent applications. We described several different sources of
error, whether and how different estimation functions cap-
ture different aspects of location errors, and then how the
choice of a specific estimation function optimized during
location discovery impacts the errors in results of differ-
ent applications. Furthermore, we analyzed the impact of
initial error measurements on the location discovery proce-
dure and the effects on three fundamental yet distinct appli-
cations: exposure, worst- and best-case coverage (breach
and support), and shortest paths (routing). We also demon-
strated how such study of errors and their propagation can
be used in the design and development of WEASN-specific
algorithms. For example we showed how above a threshold
error level (in distance measurements for example), exist-
ing statistical data can be used in computations instead of a
costly optimization process which will essentially optimize
noise and not useful data.
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