Resource Driven Synthesis in the HYPER System

J. Rabaey and M. Potkonjak
University of California, Berkeley

ABSTRACT

A global optimization strategy for design synthesis is
presented. This strategy, which drives the transformation, alloca-
tion, assignment and scheduling phases of the synthesis process
uses a resource utilization table to estimate the quality of the solu-
tion and to select the next step to be taken.

The presented technique is implemented in the HYPER sys-
tem, a synthesis environment targeted at high performance real
time systems. The effectiveness of the techniques is demonstrated
with a number of small examples.

INTRODUCTION

The computationally intensive parts of high performance real
time systems, such as HDTV or speech recognition, are usually
implemented on clusters of heavily pipelined data paths, controlled
by a relatively simple finite state machine. The amount of resource
sharing is limited. The HYPER system addresses the synthesis
problem for this class of architectures, starting from an applicative,
signal flow language SILAGE [Hil85] all the way down to the final
layout.

The most important feature of HYPER, which distinguishes it
from other synthesis systems, is a single global optimization stra-
tegy, which is used to drive not only the resource assignment and
scheduling process but also the preceding optimizing transforma-
tions. In all those phases of the synthesis process, HYPER attempts
to optimize a so called resource utilization table, which maps the
utilization of the different resources (such as execution units,
memory, interconnect and 1/O bandwidth) onto the allotted time
period. A resource in the table which is underutilized over periods
of time is a good candidate for reduction through transformations.

SYSTEM OVERVIEW

The HYPER system [Chu89] consists of a library of software
modules, operating on a centralized flowgraph database. The algo-
rithm (described using SILAGE or entered in a schematic format)
is first compiled into an intermediate control data flowgraph
(CDFG), stored in the OCT database [Har86]. The CDFG
represents the algorithm essentially as a data flowgraph, extended
with some macro control flow operations such as loops and if-
then-else blocks. The introduction of those control statements
results in a hierarchical graph : the body of a loop or a conditional
is represented by a sub-graph, which is contracted into a single
node at the next hierarchy level.

During the synthesis process, a number of equivalence
transformations are performed on the graph. Furthermore, struc-
tural information such as the hardware assignment and scheduling
information is back-annotated onto the graph nodes. Once the syn-
thesis process is completed, the graph is mapped into a hardware
structure and silicon is generated using the LAGER-IV silicon
compiler [Chu89].

This paper concentrates on the global optimization procedure,
used in the different phases of the behavioral synthesis process,
being the estimation, transformation, allocation, assignment and
scheduling phases.

ESTIMATION

In the estimation phase, min and max bounds on the required
resources are deduced. These bounds are important for several rea-
sons : first of all, they delimit the design space, thus speeding up
the search in the hardware allocation phase. Secondly, they serve
as entries in the resource utilization table, which helps to guide the
transformation, assignment and scheduling operations. In order to
be useful, it is essential that these bounds are as accurate as possi-
ble. To obtain this goal, we have adopted a technique of gradual
refinement. Let us consider first a flat graph with a max bound on
the execution time ¢ max.

The estimation starts with a topological ordering and leveling
of the graph with respect to the input nodes and the output nodes,
yielding a minimum and maximum execution time for each opera-
tion Oi (rQi, and tQi,). The length of the critical path is also
obtained.

An upper bound on each resource is easily obtained from the
ordered graph by computing for each clock cycle the maximal pos-
sible usage of a that resource (in other words, the maximal parallel-
ism available in the graph) and by maximizing this value over the
complete time period. Notice that a resource could be an execution
unit, a register, an interconnection between execution units or an
input/output bus. For the sake of brevity, we will concentrate our
description on execution units.

This procedure is demonstrated for the example of a 7th order
biquadratic low pass filter, whose signal flow graph is given in Fig-
ure 1. The maximal number of add and shift operations, which can
be performed in each cycle is plotted in Figure 2. It is assumed
here that a maximum of 13 clock cycles is available and that each
operation takes exactly one clock cycle. It is clear from this Figure
that a maximum bound on the number of adders equals 9, while the
max bound on shifters is 10.

CH2868-8/90/0000-2592$1.00 © 1990 IEEE

D
I Biquad Biquad Biquad m “
Seventh Order Filter
O (+)
N/
Oan O
Biquad &!asetr

Figure 1 : Signal Flow Graph of 7th Order Biquadratic Filter

10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
200
1.00
0.00

o
LY

N

N

/
|
|
|
|
|

/

0.00 5.00

Figure 2 : Available Parallelism (add and shift) in 7th Order Filter
(with £,,,=13)

Deriving a precise lower bound is somewhat more compli-
cated. A first, but crude, guess can be obtained by observing that,
given a number of resources of class Ri (Ng;), at most
Npi * tmax / Lp; operations can be performed on those resources
(with Lg; the length of a single operation). The required number of
operations (Og;) can be easily derived from the computation graph,
resulting in the following lower bound on N, :

> Ogi*Lp;

Np (1

Tmax

However, by inspecting the topologically ordered graph, it
might be noticed that the actual resource availability will be
smaller than Ng; * 1, (assuming here that Lg;=1) , due to the
fact during certain cycles the available parallelism in the algorithm
will be smaller than Ng;, leaving some units idle. This is demon-
strated in Figure 2, where the availabie number of additions drops
below 3 after cycle 11. This observation results in a more precise
min bound :

@

Since the number of Unused Resources actually depends on
Npi, (2) has to be solved iteratively, starting from the initial
solution obtained from (1).

An even sharper lower bound can be obtained by performing
an as soon as possible list schedule on the computation graph, con-
sidering only operations of class Ri and using the slack as the
scheduling heuristic. Once again, this is an iterative procedure,
starting from the min-bound obtained in (2) and increasing Np; till
a non-feasible schedule is encountered.

The min and max bounds, obtained by the above algorithms
for the example of Figure 1 are shown in Table 1. Note that the
multiplications are performed as shift/add operations.

ORi <tyax * Np; — Unused Resources

2593

Resource #Operations | MinBound | MaxBound
adder 28 3/3 9/11
shift 14 2/2 10/10
subtract 6 1/1 6/6
adder-adder 36 3/3 16/17
adder-shift 13 2/1 5/6
adder-subtract 2 1/1 1/1
shift-adder 10 2/2 8/8
shift-inverter 4 1/1 4/4
subtract-adder 6 1/1 6/6

Table 1: Min and Max Bounds on Execution Units and Interconnect
for 7th Order Biquadratic Filter (Fig. 1). Available time is 13/15 cycles.

The situation becomes more complex when considering
hierarchical graphs. Since the only time given is the total execu-
tion time for the complete graph, the time allotted to each subgraph
is unknown and is a subject of optimization itself. The approach
taken in HYPER is to first divide the total available time over the
different sub-graphs proportional to the length of their critical
paths. This division will be further refined in the Transformation
Phase, described below. Once the execution times for the sub-
graphs are defined, the estimation can be performed as described
above. A global result can be obtained by combining the results of
all subgraphs.

TRANSFORMATIONS

Due to the real time aspect of the systems, targeted by the
HYPER system, the optimizing transformation phase is the crucial
step in the synthesis process, resulting most of the time in a much
larger payoff than subsequent steps such as hardware assignment or
mapping. In general, we can divide the optimizing transformations
in two classes, being performance optimizing and implementation
optimizing transformations.

The performance transformations reshuffle the signal
flowgraph such that the performance requirements (such as the
maximal execution time) for the application can be met. It is well
known from software compilers for parallel computers that the
most efficient transformations in this class are the loop transforma-
tions. Real time systems, working on infinite streams of data, have
the advantage that an infinite loop (over time) is always available,
Typical (and most effective) transformations in this class are (loop)
retiming [Lei83], software pipelining [Lam85], (partial) loop
unrolling and scattered look-ahead [Mes88).

An example of how the inner loop of a dot-vector product
computation (as described in equation (3)) can be optimized using
first retiming followed by software pipelining is shown in Fig. 3.

forG=1,--- Ny sumfi] = sumfi-1] + afi] * bli] (3
The D nodes in the graph stand for delay nodes. The retiming pro-
cess moves the delay nodes around in the graph, such that the criti-
cal path is minimized. The software pipelining transformation
transfers operations to other iterations of the loop, resulting once
again in a shorter critical path. Notice that the pipelining is a spe-
cial case of the retiming and can be performed using the same algo-
rithm. The application of the above transformations on the dot-
vector example reduce the critical path from 4 cycles/iteration to 1
cycle / iteration.

TINE
[cead] [read] [read] [read]
b b
= —
O pren O Soare
T

Cpiga! 4 3 1

Figure 3 : Performance Optimizing Transformations

Implementation improving transformations change the
flowgraph in such a way that the available resources can be
exploited in a better way or that less resources are needed. For
instance, an examination of Figure 2 reveals that the flowgraph of
Fig. 1 is very inefficient when considering only additions : all the
parallelism is available in the first cycles, so that it is highly prob-
able that the available adder resources will be underexploited after
cycle 9. This can be solved by applying a modified retiming algo-
rithm, which moves delays around in the flowgraph such that the
demand on resources becomes more equalized over time. Figure 4
shows how such a retiming (combined with some extra pipelining)
improved the minimal and average available parallelism (with
respect to add and shift operations) for the 7th order filter.

——
14.00 Josdder
set shifter
12.00 /
10.00 -,
':f I ‘n'
8.00 %
6.00 0
4.00
2.00 __:_‘:__,,7,_“_5_
0.00 5.00 10.00

Figure 4: Available Paralielism (in adds and shifts) for 7th Order Filter
After retiming (with tmax=13)

Other typical transformations at this level are algebraic
transformations such as associativity, strength reduction, loop jam-
ming, etc. Another transformation in this class simply redistributes
the time allotted to the subgraphs, easing in this way the demand
on a particular resource.

The problem when applying optimizing transformations is to
determine which transformation to apply when and where. Most
compilers and synthesis systems use a peephole optimization stra-
tegy, where the code is examined locally (a few lines at a time) for
possible transformations. The disadvantage of this technique is the
locality of the search and the lack of a global view.

DESIGN SPACE EXPLORATION AND RESOURCE ALLOCATION

The HYPER strategy is to use the Resource Utilization Table,
obtained from the estimation phase as the global view on the qual-
ity of the current graph and as the guideline of where and what
transformations to apply or how many resources to allocate. The
table lists the bounds on the resources over time. Since the graph is
normally hierarchical, the table is also constructed in a hierarchical
fashion : a subgraph is represented at the next higher hierarchy
level by its global min and max bounds. A sample table is shown in
Table 2.

block | critical | cycles | 10fcycle | */cycle | +/cycle
path
graphl cl t1 1 0 1
graph2 c2 2 0 .5 4
graph3 c3 13 3 2 N
total c=Y¢; =Yt 1 2 4

Table 2 : Sample Resource Utilization Table

The overall design space search and resource allocation pro-
cess can now proceed as follows : First, it is checked if the graph
can meet the performance requirements by analyzing the critical
paths. If not, performance optimizing transformations are applied.
Next, the resource allocation process is initiated. The task of this
process is to come up with a minimal hardware configuration,
which will meet the performance constraints.

An overall view of the resource allocation process is given in
Figure 5. The search mechanism forms the core of the system. Its
task is to determine where to pipeline, which transformations to
apply here and what resources to provide. The search is driven by
information from the resource utilization table, as obtained by the
estimation routines, as well as by the feedback from the assignment
and scheduling process. This feedback contains information why
the scheduling process failed to complete, more specifically which
resources where in short supply or in high demand during some
phase. Obviously, relaxing those tensions increases the chances of
successful completion.

Transformations

Assignment
Scheduling

Figure 5: Design Space Exploration and Resource Allocation Process

2594

The search mechanism attempts to minimize hardware by
iteratively trying to remove some components. A resource is a
good candidate for removal if it is expensive in area or if the utili-
zation of the resource is not spread equally over time. For instance,
in Table 2, the number of required adders in subgraph 2 is in
disproportion with the required resources in the other subgraphs. A
possible transformation is to extend the time allotted to subgraph 2
or to select a transformation (such as retiming) which reduces the
min-bound on the additions in this sub-graph and in effect the
overall min-bound (as is expressed in the bottom row of the utiliza-
tion table). It must be noted that decreasing one resource might
increase the requirements on other resources. The search will how-
ever favor those transformations, which have an overall positive
result.

Since the search mechanism simultaneously has to address
resource allocation and transformations, it is obvious that the
optimization strategy should be flexible enough to handle the
variety of constraints imposed by those problems. This suggest a
probabilistic iterative improvement algorithm such as simulated
annealing. However, the application of transformations (as well as
the scheduling and the assignment process) is computationally
expensive. We have therefore adopted a rejectionless probabilistic
iterative search technique, where moves are always accepted, once
executed [Wel84). First experiments (the search mechanism is still
under development at the time of writing) have demonstrated that
convergence is normally obtained with a fairly small number of
steps.

The effects of transformation process on the implementation
of the 7th order filter are demonstrated in Table 3. The first row
shows the resources, required to schedule the original graph in 13
cycles. The second row shows the requirements after a simple pipe-
lining of the graph, while the third row contains the results for a
pipelined and retimed graph (cfr. Fig. 4).

ASSIGNMENT AND SCHEDULING

The assignment and scheduling process is iteratively called by
the search mechanism to determine if a given hardware implemen-
tation is feasible and, if not, to determine what resources are in
short supply.

To obtain an overall good solution, it is essential that the
scheduler simultaneously considers all resources (execution units,
registers and interconnect) instead of handling them sequentially as
is typically done in existing systems. The basic ideas and imple-
mentation details of the HYPER scheduling and assignment tools
are described in [Pot89]. In short words, the scheduler can be
described as a list scheduler, where a resource urgency measure is
used as heuristic instead of the traditional time urgency measure.
Some improvements have been introduced with respect to the pub-
lished system : where the original system performs assignment and
scheduling simultaneously, the current implementation assigns
before scheduling. This simplifies the implementation dramatically,
while compromising the solution only in a minor way. Further-
more, some more accurate heuristics have been introduced to
measure the resource urgency.

The experimental results obtained for the 7th order filter in
three different realizations is given in Table 3.

2595

A[SH|[SU|C|M|R|CP
5 3 1 9 12842 13
4 2 1 7121]3| 8
3 2 1 6 120133} 7

Table 3: A is number of Adders, SH is number of Shifters, SU is number
of Subtractors, C number of Connections, M number of Multiplexers, R
is number of Registers, and CP is Critical Path for three different realiza-
tions of 7th Order Biquadratic Filter

CONCLUSIONS

A global optimization strategy for design synthesis has been
presented. The red thread through the whole procedure is the
resource utilization table, which measures the quality of the solu-
tion at a given point and helps to guide the overall control of the
synthesis process. The majority of the algorithms described in this
paper (such as the estimation, assignment and scheduling) have
been implemented at the time of writing. Implementation of the
transformation environment is currently under way.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of P. Hoang and
C. Chu. This research is sponsored by the Semiconductor Research
Corporation (Contract No. 88-DC-08), DARPA (N00039-87-C-
0182) and the Sony Corporation.

REFERENCES

[Chu89] C. Chu, et al., "HYPER : An Interactive Synthesis Environment for
High Performance Real Time Applications”, Proc. IEEE ICCD Conf.,
Nov. 1989,

[Goo89] G. Goossens, et al., "Loop Optimization in Register Transfer Schedul-
ing for DSP Systems", Proc. Design Automation Conf., pp. 827-831, June
1989.

[Har86) D. Harrison et al,, "Data Management and Graphics Editing in the
Berkeley Design Environment”, Proc. IEEE ICCAD Conf,, Santa Clara,
Nov. 1986.

(Hil85] P. Hilfinger, "A High-level Language and Silicon Compiler for Digital
Signal Processing”, Proc. IEEE Custom Integrated Circuits Conference,
pp. 213-216, May 1985.

[Lam85] M. Lam, "A Transformational Model of VLSI Systolic Design", Com-
puter, pp. 42-52, Feb. 1985.

[Lei83] C. Leiserson and F. Rose, "Optimizing Synchronous Circuitry by Retim-
ing", Third Caltech Conf. On VLSI, March 1983.

[Mes88] D. Messerschmitt, "Breaking The Recursive Bottleneck”, in Perfor-
mance Limits in Communication Theory and Practice, Kluwer Academic
Publishers, 1988.

[Pot89] M. Potkonjak and J. Rabaey, "A Scheduling and Resource Allocation
Algorithm for Hierarchical Signal Flow Graphs", Proc. Design Automa-
tion Conf., pp. 7-12, June 1989.

[WelB4] Welsh, D.J.A.: Correlated percolation and repulsive particle systems,
Stochastic Spatial Processes, ed. Tautu P., Springer Lecture Notes 1212,
pp-300-311, 1984,

