Techniques for Implementation of At-Speed Testable,
High Performance, and Low Cost Linear Designs

Miodrag Potkonjak Sujit Dey Kevin T. Kornegay
C&C Research Labs C&C Rescarch Labs ~ Department of ECE
NEC USA NEC USA Purdue University
Princeton, NJ Princeton, NJ West Lafayete, IN

Abstract: Linear computations are most widely used type of ASIC computations.
Due to their exceptional theoretical tractability and practical importance, numerous
schemes for their implementation have been proposed. The canonical schemes have
been widely studied and evaluated according to a number of important criteria, includ-
ing the number of operations, number of bits, area, throughput and latency, and power
metrics. However, until now the testability of linear systems was not studied. After we
show that all the most widely used implementation structures require a significant test-
ing related cost, we derive a new structure which is amenable for at-speed testing with
no additional hardware overhead. Furthermore, the new structure provides a high
throughput, low cost, and low power implementation for an arbitrary linear computa-
tion.The key technical novelties of the paper is a novel approach for use of transforma-
tions and coordinate use of transformations and scheduling for producing highly
testable implementations.

INTRODUCTION

Motivation .

ASIC designs, and in particular DSP ASIC components, form one of the fastest
growing segments of the semiconductor market. For example, while in recent years
the compound growth of overall semiconductor market was about 20%, the
compound annual growth of the DSP ASIC market was almost 40%. At the same
time, it has been realized that cost of testing is an increasingly important part of
DSP ASIC chip costs’ [19], sometimes as high as 40% of the overall cost. As
behavioral level synthesis tools mature, a large percentage of DSP ASIC designs is
done using CAD environments. However, until recently very few high level
synthesis tools addressed testability. Our goal in this paper is to develope a method
for VLSI ASIC realization of linear computation so that final implementations have
not only high throughput, low area, and low power, but also are highly testable. By
considering simultaneously effects of several transformations and scheduling and
assignment tasks, we have developed an approach which enables generation of high
performance, low area, and low cost circuits which are highly testable with no test
hardware overhead.

0-7803-2612-1/95 $4.00 © 1995 |[EEE

227

Linear systems are defined as systems which satisfy two axiomatic properties:
homogeneity and additivity [17]. The first property states that if the response of the
system to a signal x is a signal y, the response of the system to signal ax is signal ay.
The additivity property states that if the response of the system to a signal x is a sig-
nal v, and to a signal y is a signal w, the response of the system to signal x + yis v +
w. Linear systems are the most widely studied type of systems due to their intrinsic

" conceptual simplicity. More importantly, linear system form by far the most domi-
nant component of today VLSI ASIC and application specific programmable mar-
ket [16]. For example, portable phone DSP functions are mainly linear
computations [16]. Linear systems are modeled and optimized using linear compu-
tations. Linear computations can be characterized as computations which use only
additions/subtractions and multiplications with constants. Note that this definition
is not restricted to traditional arithmetic algebraic structures.

What is New?

The first procedure for synthesis of at-speed testable linear systems is presented.
By considering simultaneously effects of several transformations and scheduling
and assignment tasks, we have developed an approach which enables generation of
high performance, low area, and low cost circuits which are highly testable with no
test hardware overhead.

PRELIMINARIES

In this section we outline all relevant assumptions information about the
targeted computational and hardware models, and am assumed testing approach.

Computational and Hardware Model

We assume a synchronous data flow computation model [12], [14], which is
often used in high level synthesis for DSP applications. This model assumes a
periodic computation done on a seminfinite stream of data along the time loop. A
majority of DSP, video, control, and graphics applications follow the selected
computational model. Synchronous data flow computation model is also well suited
for the application and CAD treatment of transformations. This is mainly because
the relatively strict timing discipline imposed by the mode! provides a convenient
basis for the evaluation of changes in the structure of the computations, and enables
accurate and rapid predictions of the properties of the final implementation.

Besides the assumed computation model, the selection of targeted hardware model
also has numerous consequences. We adopt the dedicated register-file model, in
which all registers are grouped in a number of register files. Each register file is
connected to only one input of an execution unit, while each execution unit can

228

send data to an arbitrary number of registers files. There are several reasons behind
the decision to select the register file model of architecture. First, the model dictates
grouping of single read, single write register files which enables area-efficient lay-
out. This is the main reason that the register file model is widely used in general
purpose architectures [19] as well as custom ASIC designs [23]. Next, it has been
demonstrated that the dedicated register file model reduces the number of intercon-
nect at the expense of a somewhat higher number of registers. As the technology
scales, the reduction of interconnect is becoming more important, making the dedi-
cated register file model even more attractive. Finally, availability of accurate and
computationally inexpensive area prediction models [3] is an added attraction to
use the register file model.

Testability Methodology

It is also important to explicitly state assumptions about the targeted testability
methodology. We target testability assuming a single stuck-at fault model, and gate-
level sequential ATPG. It is widely accepted that the elimination of all sequential
loops, beside self-loops, is most often sufficient to achieve high testability. We tar-
get the elimination of all non-trivial sequential loops only in the data-path, assum-
ing full scan of the control logic. For majority of numerically-intensive designs, the
data-path completely dominates the area and FF requirements of the design [23],
[31. An effective DFT technique to make circuit testable is partial scan where a set
of flip-flops (FFs) are scanned which breaks all non-trivial loops in the circuit [4],
[13]. we assume employment of partial scan DFT methodology, and consider the
number of partial scan FFs needed to make circuit highly testable as the measure of
testability overhead.

In the rest of the paper, we will restrict our attention to the synchronous data flow
model of computation and sequential gate-level ATPG of the datapath. It is impor-
tant to emphasize that all the transformations presented. in this paper can be directly
explored in other popular computational and hardware models, as long as the elim-
ination of non-trivial sequential loops is a dominant measure of testability.

RELATED WORK

Related work is traced along two lines of research: high ievel synthesis techniques
for testability and transformations.

The mandatory tasks during high level synthesis include allocation, scheduling, and
assignment [15],Wal91], all of which have been shown to have significant impact
on the testability of the synthesized designs [9]. Existing high level synthesis for
testability techniques can be broadly classified according to the testing methodol-

229

.
ogy targeted: BIST, gate-level sequential ATPG, or hierarchical test pattern genera-
tion. Four most notable efforts which target BIST have been reported from Case
Western Research University [71, [18], Stanford University [2], and University of
California at San Diego [11].

Several research groups have developed high level synthesis systems which target
sequential ATPG testability. These systems synthesize data paths without loops, by
using proper scheduling and assignment, and scan registers to break data-path loops
[8]. A datapath synthesized from a behavioral specification may contain several
types of loops, e.g.: CDFG, assignment, and sequential false loops [8]. A CDFG
loop is formed in the datapath when there exists a cycle consisting of data-depen-
dency edges in the CDFG. The other types of loops are introduced in the data path
during behavioral synthesis, specifically due to hardware sharing. For instance,
when operations along a CDFG path from operation u to operation v are assigned to
n separate modules, with u and v assigned the same module, an assignment loop of
length n is created in the datapath. A comprehensive analysis of the formation of
loops, in circuits synthesized by high level synthesis techniques, is presented in [8].

Other works addressing testability during high level design is related to use of
architectural information to guide test pattern generation [251, [5], [6].

Transformations are alternations in the structure of a computation so that a particu-
lar objective is achieved, while the initially specified functional and timing depen-
dencies between the inputs and the outputs are preserved. Transformations have
been successfully used in a number of computation-related areas, including compil-
ers, databases, VLSI algorithms, parallel algorithms, logic synthesis, and computer
architecture. Transformations have been successfully used in high level synthesis
for optimization of variety of goals, including area, throughput, latency, power, and
transient and permanent fault-tolerance.[20], [24], [3], [10}, [21].

Recently, a new transformation technique was developed which increases the com-
plexity of the behavioral description while reducing the structural complexity of the
resulting datapath [9]. Application of the new transformation technique, hot-potato,
to reduce the partial scan overhead for generating easily testable data paths was
demonstrated [9]. Recently, Potkonjak et al. demonstrated a high effectiveness of a
transformation-based approach for simultaneous optimization of testability and
area under throughput constraints [22].

TRANSFROMING AND SCHEDULING LINEAR
COMPUTATIONS FOR TESTABILITY

Table 1 shows several design metrics of six different structures of the eighth
order IIR Avenhaus bandpass filter [1]. The filter is widely used benchmark in DSP

230

and high level synthesis literature. The table compares various parameters of the
resulting implementations: number of registers, area, power, and word-length
required for a given frequency response, for a sampling rate of 580ns. None of the
different filter implementations were originally testable. Table 1 shows the number
of scan flip-flops (FFs) required by BETS [8], a behavioral test synthesis system, to
make the corresponding implementations 100% testable. BETS provides
algorithms which support testability optimization during resource allocation,
scheduling and assignment. BETS targets simultaneously both resource utilization
(i.e. area for a given timing constraints) and testability. In all cases a significant
test-hardware overhead (scan FFs) is induced. The analysis of the six
computational structures indicates that this test hardware overhead is significant
and unavoidable, due to the structure of control-data flow graph (CDFG) loops and
directed paths in CDFG which have to result in assignment or false loops in the
corresponding circuits [8].

structure direct | cascade | parallel | ladder cg:tcl:nigzd gzr;i
mber of scan FFs {6307 7 T2 161 08 |
number of registers [20 28 38 26 24 32
area [mm <] 3091 [16.90 16.40 27.58 33.71 14.79
power [nJ/sample] [44.55 [24.04 17.13 38.73 55.59 15.41
wordlength 21 12 11 14 23 9
Table 1: Comparison of different structures for implementation of linear
computations.

However, the following simple procedure transforms an arbitrary linear computa-
tion in a form which is highly testable with no test hardware overhead. The proce-
dure is introduced by the following pseudo-code.

Algorithm for producing a highly testable implementation of a linear compu-
tation(CDFG) {

Express the states and primary inputs of the CDFG as independent linear com-
binations of inputs and states;

Unfold the CDFG k times;

Restructure all additions so that they form balanced trees and that all primary
inputs are neighbors;

Schedule and assign addition to adders in a such a way that each adder has at
least one addition which depends only on the primary inputs (and there-
fore is fully controllable);

231

The level of unfolding, k, is dictated mainly by the throughput requirements. k
has to be high enough not just to satisfy throughput requirements but also that
enable that to each adder can be assigned at least one addition which depends only
on primary inputs. Note that as the level of unfolding increases the number of
primary inputs increases, while the number of states remains unchanged. Therefore,
by using unfolding, one can always create as many additions as required which
depend only on the primary inputs. Probably the most important relevant
observation is that all newly created primary inputs can be assigned to the same
physical pins due to hardware sharing.

The initial and final CDFG (after the application of the procedure for making linear
systems testable) of the second order single input single output linear system are
shown in Figures 1 and 2 respectively. Figure 1 shows the second order IIR direct
form filter. Figure 2 shows the same filter after unfolding and the algebraic restruc-
turing. Note that the variables denoted by R1 and R2 are assigned to fully controlla-
ble registers. Using hardware sharing those registers are used to store the state
variables and therefore provide controllability to all registers in the design. We
proved that after the sufficient level of unfolding all nodes in the hardware graph
can be made fully controllable and observable by using hardware sharing and con-
nections from primary inputs and to primary outputs.

Figure 3 shows the same filter after unfolding and the application of the algorithm
for producing a highly testable implementation of a linear computation. The
assumed hardware model now is the dedicated register file model. Note that in this
case again hardware sharing provides full controllability of all state variables.

Figure 1:Illustrative Example: The second order recursive linear system

We have applied the new approach to the filter structures shown in Table 1. In each
case, the resuitant CDFG had an implementation which is 100% testable without
the use of scan (no test area overhead), and hence can be tested at-speed. For exam-
ple, after the application of the new approach to the parallel 8th order Avenhaus fil-
ter, the resulting CDFG has an implementation with an area of 9.08 mm Zand
power consumption of 8.24 nJ/sample. The design is 100% testable with no use of

232

Ing

Iny

Outy
R,

Figure 2: The second order recursive linear system form Figure 1, after the
application of synthesis procedure for high throughput, low cost, low
power, and high testability implementation.

In, In,
{ :
cl € cy C4q cd S, o g cq, €
* * * * * * * *
Ry +) Ko (4 Ry (4 Ry +
+ + R G
Olltl Outz

Figure 3: The second order recursive linear system form Figure 1, after the
application of synthesis procedure for high throughput, low cost, low
power, and high testability implementation. Dedicated register file is the
assumed hardware model.

scan registers, hence at-speed testabie, and no test area overhead. Similar applica-
tions on 7 other linear systems (4 linear controllers (3rd, 4th, 5th, and 3 input
3output 12th order) and 3 IIR (10th, 12th, and 18th order) filters) could also pro-
duce 100% testable circuits with no test hardware addition. Finally, we note that
only a slight modification is required to apply the synthesis for test procedure on an
important subclass of non-linear computations, called feedback linear computa-
tions.

SISO LINEAR COMPUTATIONS

Single input single output (SISO) lincar time-invariant (LTI) systems are
important, widely used special type of linear systems. In particular, SISO LTI
systems with zero initial state are often studied and used in many applications. An
arbitrary SISO LTI discrete system with a rational system function can be

233

represented in any of numerous canonical forms [17]. Historically most popular
canonical forms are direct, cascade, and parallel [17]. Other forms commonly used
in practice include ladder, continued-fraction, and wave-digital. Recently,
Srivastava and Potkonjak presented an efficient CAD-based approach for
transforming a system form one canonical form to another canonical form [24].

Figure 4: 8th-order parallel IR filter: example of a starting point for
testable, low cost implementation of an arbitrary SISO LTI system.

In the previous section, we presented a method which provides 100% at-speed test-
able solution for an arbitrary linear computations with no hardware overhead. This
solution can be even further improved when a synthesis target is a SISO LTI com-
putation. This is so because the size of the final implementation of the design can be
additionally reduced and therefore both the number of faults and test vectors

234

reduced if the required bitwidth and the number of execution and memory units of
the design are reduced. To reduce the bitwidth requirements we use a preprocessing
step where an arbitrary SISO LTI system is first transformed to the corresponding
parallel structure. Figure 4shows an example of a such structure, 8th order IIR par-
allel filter.

Consequently the procedure described in the previous section is applied. The paral-
lel structure has two advantageous properties. Firstly, it is numerically stable and
therefore requires a short bithwidth. We Secondly, when unfolding is applied it
results in significantly lower hardware requirements, due to the fact that there is no
interaction between computations done in parallel branches of the structure, regard-
less of the used level of unfolding.

CONCLUSION

We introduced a procedure which transforms an arbitrary linear computation in
a form which is highly testable. In some sense the procedure provides an ultimate
solution for testing ASIC implementations of lincar designs, since the resulting
implementation can be tested at-speed with no test hardware overhead while
satisfying an arbitrarily high throughput requirements. For an important special
case of SISO linear computation, additional optimization steps are providing an
additional level for optimization while preserving all advantages of the generic
synthesis procedure. Experimental results support the theoretical analysis and
optimization algorithms.

REFERENCES

[1] E. Avenhaus: “On the design of digital filters with coefficients of limited word
length”, IEEE Trans. on Audio and Electroacoustics, Vol. 20, pp. 206-212, 1972.

[2] L. Avra: “Allocation and Assignment in High-Level Synthesis for Self-Testable
Data Paths”, Proceedings of the International Test Conference, 1991.

[3] AP Chandrakasan et. al.: “Hyper-LP: A Design System for Power Minimization
using Architectural Transformations”, Intl Conf. Computer-Aided Design, Santa
Clara, CA, 300-303, November 1992

[4] K.T. Cheng, V.D. Agrawal: “A Partial Scan Method for Sequential Circuits with
Feedback”, IEEE Trans. on Computers, Vol. 39., No. 4, pp. 544-548, 1990.

[5] C.-H. Chen, D. G. Saab: “BETA: Behavioral Testability Analysis”, Proceedings of
the International Conference on Computer-Aided Design, pp. 202 - 205, 1991.

[6] V. Chickermane, J. H. Patel: “An Optimization Based Approach to the Partial
Scan Design Problem”, Proceedings of the International Test Conference, 377-
386, September, 1990.

[7] 5.5.K. Chiu, C. Papachristou: “A Built-In Self-Testing Approach For Minimizing
Hardware Overhead”, Proceedings of the International Conference on Com-
puter Design, 1991.

235

[8] S. Dey, M. Potkonjak, R. Roy: “Exploiting Hardware-Sharing in High Level Syn-
thesis for Partial Scan Optimization”, pp. 20-25, ICCAD93, 1993.

{91 S. Dey, M. Potkonjak, R. K. Roy: “Synthesizing Designs with Low-Cardinality
Minimum Feedback Vertex Set for Partial Scan Application”, pp. 2-7, VLSI Test
Symposium, 1994

[10] L. Guerra, M. Potkonjak, J. Rabaey: “High Level Synthesis for Reconfigurable
Datapath Structures”, ICCAD93, pp. 26-29, November 1993.

{11] L.G. Harris, A. Orailoglu: “SYNCBIST: SYNthesis for Concurrent Built-In Self-
Testability”, Proc. IEEE Conference on Computer Design, 1994.

[12] E. A. Lee and D. G. Messerschmitt: “Static Scheduling of Synchronous Data-
flow Programs for Digital Signal Processing”, IEEE Trans. on Computers, 1987.

[13] D.H. Lee, S.M. Reddy: “On Determining Scan Flip-Flops in Partial-Scan
Designs”, pp. 322-325, 1990.

[14] E.A. Lee, T.M. Parks, “Dataflow Process Networks”, Proc. of the IEEE, Vol. 83,
No. 5, pp. 773-799, 1995.

[15] M.C. McFarland, A.C. Parker, R. Camposano: “The High Level Synthesis of
Digital Systems”, Proc. of the IEEE, Vol. 78, No. 2, pp. 301-317, 1990.

(16} SK. Mitra, J.F. Kaiser: “Handbook for Digital Signal Processing”, John Wiley &
Sons, Inc., New York, NY, 1993

[17] A.V. Oppenheim, R.W. Shafer: “Discrete-time Signal Processing”, Prentice Hall,
Englewood Cliffs, NJ, 1989.

[18] C. Papachristou, et al.: “SYNTEST: a method for high-level SYNthesis with self
TESTability, ICCAD, pp. 458-462, 1991.

[19] D.A. Patterson and J.L. Hennessy: “Computer architecture: a quantitative
approach”, Morgan Kaufman Publishers, San Mateo, CA, 1989.

[20}] M. Potkonjak,]. Rabaey: “Maximally Fast and Arbitrarily Fast Implementation
of Linear Computations”, IEEE International Conference on Computer-Aided
Design, pp. 304-308, 1992.

[211 M. Potkonjak, J. Rabaey: “Optimizing Resource Utilization Using Transforma-
tions” IEEE Transactions on CAD, Vol. 13, No. 3, pp. 277-292, March 1994.

{22] M. Potkonjak, S. Dey, R. K. Roy, "Considering Testability at Behavioral Level:
Use of Transformations for Partial Scan Cost Minimization Under Timing and
Area Constraints”, IEEE Transactions on CAD, Vol. 14, No. 5, pp. 531-546, 1995.

[23] J. Rabaey, C. Chu, P. Hoang, M. Potkonjak: “Fast Prototyping of Datapath-
Intensive Architectures”, IEEE Design and Test of Computers, Vol. 8, No. 2, PP-
40-51, June 1991.

[24] M. B. Srivastava, M. Potkonjak: “Transforming Linear Systems for Joint Latency
and Throughput Optimization”, EDAC-94 European Design Automation Con-
ference, pp. 267-271, 1994.

[25] P. Vishakantaiah, J.A. Abraham, M. Abadir: “Automatic Test Knowledge
Extraction from VHDL (ATKET), Design Automation Conf., pp. 273-278, 1992.

236

