AREA-TIME HIGH LEVEL SYNTHESIS
LAWS: THEORY AND PRACTICE

Miodrag Potkonjak Jan Rabaey

NEC C&C Research Laboratories University of California at Berkeley
4 Independence Way Dept. of EECS

Princeton, NJ Berkeley, CA

Abstract - We introduce three AT DSP high level synthesis laws that relate different
components of the area of ASIC implementation cost, namely foreground memory, exe-
cution units, and interconnect to the sampling period (available time). The laws state
that: A = const, AT = const, and AT? = const for the area of registers, execution units,
and interconnect respectively. We validate the AT laws using case studies and statistical
analysis of synthesis results of 80 real life designs.

Several applications of the AT laws for development of high level synthesis tools are
presented. Use of the AT high level synthesis laws as an effective method for encapsula-
tion of high level synthesis knowledge is also studied. The effectiveness of the AT laws
applications is documented on numerous designs.

INTRODUCTION

We study the following design space exploration problem in DSP high level
synthesis. An arbitrary ASIC computation is given. When the computation is
implemented under a timing constraint that the available time (sampling period) is
T, the area of implementation is A;. The question which we are interested in is, if
the available time is changed to T,, what is the area of implementation.
Furthermore, we are interested not only in the relationship between the total area of
an implementation as a function of the sampling rate, but also in the decomposition
of the area requirement over the various design resources: memory elements in data
paths (also called foreground memory), functional elements and interconnect. The
just outlined problem is a backbone for the crucially important high level synthesis
and system level synthesis design exploration task.

Motivational Experiment Efficiency vs. Throughput

The widespread belief is that efficiency and throughput are inversely correlated
requirements. The following experiment, however, indicates a surprising evidence:
that resource utilization and throughput are strongly positively correlated in high
level synthesis ASIC designs.

Table 1 shows the relationship between the AT product and the sampling rate for
the 8th order Avenhaus cascade filter [2] obtained using the HYPER [10] high level
synthesis system. The data is measured by the size of the datapath at the RT level.
AT product is the product of the area of implementation and the sampling period.
The following conclusion is apparent: As the sampling period (available time T')

0-7803-2123-5/94 $4.00 © 1994 |IEEE
53

decreases, the AT product either improves or at worst stays constant,

Sampling period 50 40 30 25 20
EXU (mm?) 0.52 0.77 0.89 1.09 140
EXU AT 26.00 30.8 26.7 27.25 28.00
Registers (mmZ) 2.68 2.68 2.68 2.68 2.68
Interconnects 18 24 36 14 60
INT AT!33 3539 3491 3552 2294 3424
Active Area 37 417 5.24 5.70 6.17
Active Area AT 26.23 26.37 2746 26.35 27.59

Table 1: The size parameters of the 8th order IR Avenhaus cascade filter at
the RT level
TIME 50 40 30 25 20
EXU (mm?) 0.52 0.72 0.89 1.09 1.40
EXU AT 26.00 28.8 26.7 27.25 28.00
REG 27 27 27 27 27

Table 2: The “lower bounds on the size parameters” of the 8th order IIR
Avenhaus cascade filter at the RT level

One can argue that “counter-intuitive” experimental results are actually conse-
quence of peculiarities of the high level synthesis tools used. In order to dismiss
that objection, Table 2 presents the relationship between min-bounds and the avail-
able time. The min-bounds are again provided by the HYPER system, and they
indicate lower bounds on the amount of the required resources [10] regardless of
the tools used. Again, the experimental data strongly supports the previous conclu-
sion.

TIME 50 40 25
AREA 8.19 8.99 12.65
AT product 57.91 56.86 63.25
Table 3: The size parameters of the 8th order IIR Avenhaus filter at the
physical layout level

Furthermore, comparison at the layout level shown in Table 3 indicates again the
claimed relationship. The layouts were automatically produced using HYPER and
LAGER (3] tools.

In the rest of the paper we demonstrate that the observed relationship in the intro-

54

ductory experiment is not just a fascinating high level synthesis paradox, but a con-
sequence of widely applicable high level synthesis AT laws. The AT laws also
present a surprisingly powerful starting point for the development of tools and
methodologies, not only in design space exploration and many other high level syn-
thesis tools, but also in a general design process.

Related work

Although CAD and engineering literature describes a number of interesting and
important laws (e.g. the famous Brooks [4], Grosch’s [6], and Amdahl’s [1] laws
and Rents rule [5]), the most relevant research efforts are high level estimation
techniques and VLSI AT laws in theoretical computer science research.

Jain [7] established the lower-bound area-delay trade-off law which says that the
AT product is constant. However, he posed some important assumptions and
restrictions in deriving this result: 100% utilization rate of all resources is assumed
and only the area of execution units is taken into account. We will show that for the
area of execution units this law is valid for a large class of designs, regardless of the
resource utilization rate.

The VLSI theory got the initial impetus from the work by C.D. Thompson [14] and
was, thereafter, rapidly developed within the theoretical science community.
Recently, it has been recognized as an important methodology for parallelism
exploration [12]. For excellent treatments on the VLSI AT laws, we refer to [15].
The VLSI AT laws establish bounds on what can be achieved in a given silicon area
assuming 100% utilization of all available hardware resources.

HIGH LEVEL SYNTHESIS AT LAWS

This section is devoted to the introduction of three fundamental high level
synthesis laws. They are:

1. Register AT law: The area of registers in a datapath does not depend on the
throughput of the design. So A = const for registers.

2. Execution Unit AT Law: The product of the area of execution units and
throughput is constant, regardless of a targeted throughput. So AT = const for
execution units.

3. Interconnect AT Law: The product of the square of the number of
interconnects in design and throughput is constant for any throughput. So, AT?
= const for the number of interconnect,

The following assumptions are instrumental in the derivation of the laws. All
designs have in its behavioral description a very large number of operations. Fur-
thermore, for each type of operations present in behavioral description there are
many instances.

The available time is significantly larger than the critical path of the computation,
but at the same time it is short enough that for all types of operations a large num-
ber of execution units is required. There is no structure in the behavioral description
of computation and in particular there are no restrictions and regularity in the inter-

55

connect pattern of communications (i.e. all communication is global).

Although the presented restrictions appear strict and limiting, the experimental
studies show that all restraints can be relaxed, such that the laws can be applied on
surprisingly small designs. The only exception is the last constraint (which implies
that all communication has to be global),

Experimental Verification

We performed a comprehensive experimental study on 80 DSP, video, image,
telecommunication, control and information theory applications examples in order
to empirically and statistically validate the high level synthesis AT laws. Particular
attention was devoted to ensure a variety of structural characteristics among the
considered examples. The diversity of the examples with respect to a number of
important design parameters is shown in Table 4.

All examples were studied using the following procedure. Each example was
scheduled for at least 5 different available times, starting from the fastest possible
(when the available time is set to the critical path time) to the most inexpensive
possible implementation (when for each type of resources only one instance of each
execution unit type is used). However, in the analysis of results presented in the
remainder of this section, only implementations where the available time is at least
4 control steps and at least 10% longer than the critical path are considered, the rea-
son for which will be explained in the next section.

Parameter min max average median
Number of nodes 20 7,376,121 145,000 159
Number of node types 3 5 407 4
CP/ Available Time 0.01 1.0 043 044
Iteration bound 1 133 7.1 4
Resource Utilization 19% 88% 42% 41%
Area Reg/Exu 0.03 7.14 152 1.02

Table 4: Physical parameters of the analyzed examples

By far the most convincing experimental confirmation was obtained for the register
AT laws. For 69 examples (86%) the greatest discrepancy in the number of registers
at any two different available times was less than 10%. On almost one quarter of
examples (19) there was no discrepancy at all. On only 5 examples (6%) the dis-
crepancy was larger than 15%, and the largest discrepancy was only 23%. There

were no examples with more than 30 registers which had discrepancy larger than
10%.

The results for the area of the execution units showed larger discrepancy, but still it
was apparent that even for small examples the proposed AT law is exceptionally
good approximation. For more than half of the examples (45), the largest discrep-

56

ancy was smaller than 10%. For only 8 examples the largest discrepancy was
greater than 25%. The largest discrepancy was 50%. When examples with more
than 10 units were considered all examples were within an 11% error margin. For
examples with more than 20 units, the largest deviation was less than 5%. Here are
two reasons that explain why the register AT law was superior. The first reason is
that in all examples, the number of registers was significantly larger than the num-
ber of execution units. Recall that the laws were derived under the assumption of a
large number of instances of each resource. The second reason is that in several
examples the area of the execution units is dominated by the area of the big array
multiplier, and a change in the number of multipliers between a narrow range of
available times results in big difference in the corresponding AT product.

The interconnect AT? law results from the assumption that the interconnect pattern
is fully randem and fully global. We did not find a single example for which this
law was completely correct. However, for all examples the number of interconnects
was between the AT and ATZ, It is interesting to note that actually almost all exam-
ples were following curves dictated by functions of the type AT, where r is varying

between 1.2 and 1.5. Nevertheless, we decided to preserve the original AT? inter-
connect law in our presentation for the sake of simplicity of intuitive reasoning and
because it is implied by the set of assumptions. Obviously, when this law is used
the just mentioned observations have to be taken into account,

APPLICATIONS OF HIGH LEVEL SYNTHESIS AT LAWS
FOR DESIGN SPACE EXPLORATION AND IN ASIC DESIGN
PROCESS

This section presents a brief description of the wide spectrum of applications,
for which the AT high level synthesis laws are of interest. They can be divided in
two groups. The first group covers the application of the high level synthesis AT
laws for CAD tool development. The second group includes applications where the
AT laws are used for efficient encapsulation of design knowledge, which
consequently can be used either to guide design process or to reason about
fundamental qualities of high level synthesis approaches and algorithm.

Using High Leve!l Synthesis AT laws for Estimations and Development
of High Level Synthesis Algorithms

The applications of the AT laws itself can be divided into two categories. The
laws can be used to derive time efficient, accurate and consistent prediction tools.
This tools can be used as an objective function when conducting optimization on a
higher level of abstraction. The use of AT laws for the development of high level
synthesis techniques (such as module selection, clock cycle selection for power
optimization, and hierarchical allocation and scheduling) is described in a related
technical report [9].

It is currently being recognized that fast and accurate prediction (estimation) tools
are an integral component of high level synthesis [7], [10]. The AT high level syn-
thesis laws provide a base for development of prediction tools with a variety of

57

accuracy/speed trade-off’s.

For example, if the highest priority is rapid prediction, we can use the following
two step procedure for the estimation of the area of execution units for some arbi-
trary available time T.

(1) Allocate for each type of execution unit resource only one instance.

(2) Schedule the given CDFG in the shortest possible time under the outlined
resource allocation resources. Note that the scheduling task can be done very rap-
idly in this case (in contrast to general scheduling and assignment), as the whole
assignment is fixed and known.

(3) Using that AT = const for execution units, calculate the area requirements for a
given T,

200.0 d v 40.0

1500 } 30.0 }

100.0 200}

50.0 ¢ 1 10.0

0.0 ' . . 0.0 . . .
00 500 1000 1500 2000 00 100 200 300 40C

(@)

Figure 1: (a) Building prediction models using the AT laws theory:
Predicting the number of registers; (b) Building prediction models
using the AT laws theory: Predicting the area of execution units

A similar procedure can be used for the number of interconnect (which can be
done only in one way when only one instance of each type of execution units is
available) and registers. However, note that in the case of interconnect, it is manda-
tory to obtain the measure of globality of transfers in the corresponding CDFG.
Figures 1a and 2b show the prediction models using linear regression.The correla-
tion analysis shows that the correlation between the prediction variable and data

obtained after scheduling is 99% for both registers and execution units models
build using the AT laws.

The AT laws prediction tool can be directly used in many high level synthesis tools
to replace currently used objective functions. For example, it can be used for algo-
rithm and architecture selection, partitioning, transformations, and allocation,

assignment, and scheduling. For details of all mentioned applications of estima-
tions tools see [10], [11].

High Level Synthesis Knowledge Encoding

As high level synthesis matures, a growing need for development of a sound
theoretical foundation arises. The AT high level synthesis laws are an effective way

58

to encapsulate a part of the high level synthesis knowledge. We now demonstrate
how AT laws can be used to encode synthesis knowledge and therefore guide the
design process. A more comprehensive description of several other methods and
applications of the high level synthesis AT laws is given in [9].

Throughput-Efficiency Relationship. We start by identifying criteria for positive
correlation between throughput and efficiency. There are at least two situations
when the AT product can be significantly improved, while simultaneously increas-
ing the throughput of the implementation:

1. When the cost of design is dominated by the cost of registers. This situation is
common when a high level of hardware sharing is used, or when the cost of
registers is relatively high to the cost of execution units and interconnect (e.g.
a fixed point computation without multiplication, which uses relatively few
bits in its data representation).

2. The second situation can be spotted by analyzing if an assumption used in the
derivation of the AT laws is not fulfilled. For example, when some type of
nodes (in particular with high implementation cost, ¢.g. multiplications) have
very few instances in the considered CDFG. For example, if we have only 2
multiplications in the CDFG and use 10 control steps, the design is bound to
be inefficient. Changing the available time to very few control steps will
improve resource utilization.

Example Area Area x Time
T=20 T=40 T =60 T=20 T=40 T=60
FIR Hamming 11.26 6.84 6.17 2-2-5 274 370
DS FIR 890 7.55 6.50 178 302 390
1iré 4.44 3.26 2.00 89 130 120
gm 2.03 1.68 1.18 41 67 71

Table 5: Improving the AT products due to constant register requirements. T denotes

the available time. The area of registers for all examples were uniform regardless of the

sampling rate. The area of registers were 5.22, 5.17, 1.62, and 0.96 for FIR Hamming,
DS FIR, iir6, and gm respectively.

Table 5 shows 4 examples which clearly confirm the first claim at the RT level. The
reported area is the active area which includes the area of execution units, registers,

TIME 1 2 3 4 6 10 15

AREA 73.58 84.90 75.90 73.83 62.40 23.83 7.44

AT 74 170 228 295 374.40 238 112

Table 6: Improving the AT products - Physical layout data - COLOR
transform example

59

and multiplexers. Table 6 reports data at the physical layout level for a COLOR
transform example. The AT product has improved more than twice as time is
reduced from 6 control steps to 2 control steps. The implementation with no hard-
ware sharing (when the available time is 1 control step) is even smaller, but here the
analysis indicates that the improvement is coming mainly from the absence of the
complex hardware sharing control logic. The AT product of the two slowest imple-
mentations is reduced due to drastically reduced interconnect. The typical example
which supports the second claim is the 2nd order pipelined Volterra filter where we
see only slightly more than 10% change in the area as the throughput is doubled as
shown in Table 7. This is due to the fact that for all implementations only one mul-
tiplier is sufficient and dominates the total area.

TIME EXU AREA AREA AT product
15 13.44 2342 351
20 13.19 22.65 453
30 12.69 21.22 637

Table 7: The active area of the 2nd order pipelined Volterra filter

Interconnect importance. Next, the AT laws reaffirm well known observations
that the importance of local interconnect cannot be overstated in high performance
designs. Since interconnects grow as the second order polynomial with the through-
put improvement, while register requirements are constant and execution unit cost
grows only linearly with increased throughput, it is apparent that interconnect cost
will eventually dominate cost of high performance designs. The results from Table

T=20 T=40 T=60
Example
Mux Tot Mux Tot Mux Tot
FIR32 3.02 7.41 0.85 473 0.52 447
Conv5s 1.54 345 0.37 1.51 0.22 1.36
ellip 3.13 6.69 0.84 3.36 0.35 2.15
126FIR 10.85 1427 2.61 6.68 0.62 3.38

Table 8: Importance of optimizing Interconnect at high speed. T is the
available time. The area of multiplexers (Mux) is rapidly becoming the
dominant part of the overall implementation area (Tot)even when only
associated control logic is considered
8 strongly support this conclusion.

Researchers and developers can also use the developed AT laws in many other
ways. Due to space limitation, we will mention only one of them.

Benchmark and Driver Example Selection. There exists one more very impor-

60

tant and, at first. paradoxical consequence of the AT laws: When a high resource
utilization is targeted, implementation in close or equal to the critical path length
should be avoided. For this class of implementations, a much higher additional cost
has often to be paid for very small increase in performance.

Scanning the high level synthesis literature it is evident that almost all published
benchmark examples are done so that available time is either set to the critical path
or just slightly longer. For example, a number of high level synthesis systems
require 3 adders and 3 multipliers when implementing the Sth order elliptical wave
digital filter in 17 control steps. This is proven to be the minimum hardware config-
uration. When 21 control steps are available, only 2 adders and 1 multiplier are suf-
ficient. So, we see that for a 19% increase in throughput, almost a 3 times higher
price (a multiplier is significantly more expensive than the adder in fixed point) in
the number of execution units has to be paid. The difference in required intercon-
nect is even more dramatic. Analysis of the results reported in Tables 9 and 10 once
again convincingly demonstrates the correctness of the consequence of the AT laws

Name | CP | CPArea | TimeTi | AreaTi | cpmi | CP AT
AreaT1
iirtiICh | 28 88.67 40 31.83 0.70 2.79
wave5 15 8.57 20 450 0.75 ' 1.90
TIR-df 18 67.50 20 23.40 0.90 2.88

Table 9: Exceptionally high cost when scheduling in the critical path time. The reported
area is the active area

Name | CP | CPArea | Timer1 | Arear1 | cerm1 | CPATed
AreaT1l
cascade | 10 67.54 25 8.19 0.40 8.28
GM 21 1322 30 5.15 0.70 2.57
CF 28 36.94 30 18.41 093 201

Table 10: Exceptionally high cost when scheduling in the critical path time. The

reported area represents the physical layout data (in mm?).

CONCLUSION

We established the following three fundamental AT Iaws in high level synthesis:
A = const for registers, AT = const for execution units, and AT? = const for
interconnect. The laws are experimentally verified and used as a basis for the
development of a number of high level and system synthesis tools.

61

REFERENCES

[1] GM. Amdahl, et al. : “Architecture of the IBM System/360”, IBM Journal of Research
and Development, Vol. 8, No. 2, pp. 87-101, 1964.

[2] E. Avenhaus: “On the design of digital filters with coefficients of limited word length”,
IEEE Trans. on Audio and Electroacoustics, Vol. 20, pp. 206-212, 1972.

3] R.W. Brodersen, ed.: “Anatomy of a Silicon Compiler”, Kluwer Academic Publishers,
Boston, MA, 1992.

[4] EP. Brooks: “The mythical man-month: essays on software engineering”, Addison-Wes-
ley, Reading, MA, 1975.

[5] WE. Donath: “Wire length distribution for placement of computer logic”, IBM Journal
of Research and Development, Vol. 25, No. 3, pp. 152-155, 1981.

[6] H.R.J. Grosch: “High Speed Arithmetic: The Digital Computer as a Research Tool”,
Journal of the Optical Society of America, Vol. 43, No. 3, pp. 306-310, 1953.

[71 R. Jain: “High-Level Area-Delay Prediction with Application to Behavioral Synthesis”,
Technical Report CENG 89-23, Electrical Engineering- Systems Department, University
of Southern California, Los Angeles, CA.

[8] M.C. McFarland, A.C. Parker, R. Camposano: “The High-Level Synthesis of Digital
Systems”, Proc. of the IEEE, Vol. 78, No. 2, pp. 301-308, 1990.

[91 M. Potkonjak, J. Rabaey : “Area-Time Laws in High Level Synthesis: Theory, Valida-
tion, and Applications”, Technical Report, NEC USA, 1994.

[10] J.M. Rabaey, at al. “Fast Prototyping of Datapath-Intensive Architectures”, IEEE
Design and Test, pp. 40-51, 1991.

{11] J.M. Rabaey, M. Potkonjak: “Estimating Implementation Bounds for Real Time DSP
Application Specific Circuits”, IEEE Trans. on CAD, Vol. 13, No. 6, to be published,
1994.

[12] C.L. Seitz: “Concurrent Architecture”, in “VLSI and Parallel Computation”, ed. by R.
Suaya, G. Birtwistle, Morgan Kaufmann, San Mateo, CA, 1990.

[13] R.A. Thisted: “Elements of Statistical Computing”, Chapman, New York, NY, 1988.

[14] C.D. Thompson: “Area-time complexity for VLSI”, Symposium on the Theory of Com-
puting”, pp. 81-88, 1979.

[15] 1.D. Ullman: “Computational Aspects of VLSI”, Computer Science Press, Rockville,
MD, 1984.

62

