1EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996 151

Multiple Constant Multiplications: Efficient
and Versatile Framework and Algorithms for
Exploring Common Subexpression Elimination

Miodrag Potkonjak, Mani B. Srivastava, and Anantha P. Chandrakasan

Abstract— Many applications in DSP, telecommunications,
graphics, and control have computations that either involve a
large number of multiplications of one variable with several
constants, or can easily be transformed to that form. A proper
optimization of this part of the computation, which we call the
multiple constant multiplication (MCM) problem, often results
in a significant improvement in several key design metrics,
such as throughput, area, and power. However, until now little
attention has been paid to the MCM problem. After defining the
MCM problem, we introduce an effective problem formulation
for solving it where first the minimum number of shifts that
are needed is computed, and then the number of additions
is minimized using common subexpression elimination. The
algorithm for common subexpression elimination is based on
an iterative pairwise matching heuristic. The power of the
MCM approach is augmented by preprocessing the computation
structure with a new scaling transformation that reduces the
number of shifts and additions. An efficient branch and bound
algorithm for applying the scaling transformation has also been
developed. The flexibility of the MCM problem formulation
enables the application of the iterative pairwise matching
algorithm to several other important and common high level
synthesis tasks, such as the minimization of the number of
operations in constant matrix-vector multiplications, linear
transforms, and single and multiple polynomial evaluations. All
applications are illustrated by a number of benchmarks.

I. MOTIVATION AND PROBLEM RELEVANCE

RANSFORMATIONS are alternations of a computa-

tion algorithm such that its functionality is maintained.
Computational transformations have recently attracted much
attention in the high level synthesis community [35], [49],
[63], [64] for their ability to dramatically improve area [47],
throughput [45], latency [60], power [17], transient [33], and
permanent [29] fault tolerance, and other design metrics.
Transformations have also been studied in areas such as
algorithm design for numerical and DSP applications [6] and
compilers [24]. In high level synthesis, the primary goal
of transformations has been to optimize an ASIC design to
reduce cost metrics (area, power) while meeting throughput

Manuscript received March 11, 1994; revised January 11, 1995 and July

21, 1995. This paper was recommended by Associate Editor R. Camposano.
M. Potkonjak was with C&C Research Laboratories, NEC USA, Inc.,

Princeton, NJ 08540 USA. He is now with the Computer Science Department,
University of California, Los Angeles, CA 90095 USA.

M. B. Srivastava is with AT&T Bell Laboratories, Murray Hill, NJ 07974
USA.)

A. P. Chandrakasan is with the Department of Electrical Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

Publisher Item Identifier S 0278-0070(96)00698-7.

constraints [64]. The main technical novelty of this use of
transformations in high level synthesis has been the devel-
opment of powerful optimization algorithms to apply these
transformations.

The exceptional ability of the human brain to recognize
and manipulate regularity, symmetry, and other structural
properties of computation has been used to great advantage
in the design of algorithms such as FFT and DCT [6], [50].
Often, sophisticated mathematical knowledge is applied [6],
[23]. Software compilers, on the other hand, employ fast
and relatively simple automatic techniques to apply algorithm
transformations on very large programs [24]. Compared to the
approaches used in algorithm design and software compilers,
the high level synthesis approach to transformations is better
suited to transformations that require handling of numerous
details, involve complex combinatorial optimization, do not
require a large and sophisticated mathematical knowledge
base, and place relatively low importance to the regularity
of the resulting computation structure. This paper addresses
multiple constant multiplication, which is exactly such a
transformation.

Multiple constant multiplication is a new transformation
closely related to the widely used substitution of multiplica-
tions with constants by shifts and additions. While the latter
considers multiplication with only one constant at a time,
the new transformation considers several different constant
multiplication with the same variable. This change in the scope
of the transformation significantly enhances its power and
domain of application.

Optimization of multiplication with a single constant has
for a long time been recognized as being important for
compilers and high level synthesis systems. It has been used
for improving throughput [39], area [18], [19] and power [17].
In ASIC’s as well as many microprocessors, it is significantly
less expensive to do additions, subtractions and shifts, than it
is to do a multiplication. While the frequency of multiplication
and division by a constant is quite small in general-purpose
computation benchmarks (for example, it is often quoted at
the level of 3% as indicated by the Gibson Mix [25]), it is not
the case for application-specific computation.

In ASIC’s the substitution of multiplications with constants

\by shifts and additions influences not just the speed, but also

the area. The effect on ASIC area is much more pronounced
because the area of a shifter is many times smaller than the
area of a multiplier. We analyzed more than two hundred

0278-0070/96$05.00 © 1996 IEEE

152 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

industrial examples, mainly from DSP, communication, graph-
ics, and control applications. More than 60% of the examples
have more than 20% operations that are multiplications with
constants. Similar results about the frequency of constant
multiplication in DSP applications were also presented in
[30]. The importance of multiplication with constants is also
indicated by recent results [17] showing an order of magnitude
reduction in power achieved by this transformation alone.

A close look at currently used optimization techniques for
substitution by shifts and additions show that the full potential
of this transformation has not been explored. Until now the
attention has exclusively been paid to 1) optimization of
isolated multiplication with constants and 2) minimization of
the number of shifts, with little attention paid to the number

. of additions.

We formulate the multiple constant multiplication problem
in such a way that the number of shifts is minimized. Our
formulation has several distinctive advantages. First, it enables
one to treat the problem of minimizing the number of addition
as one of common subexpression elimination in a restricted
domain. This allows efficient and low complexity algorithms
to be used. Second, our formulation enables an interesting
theoretical analysis of the effectiveness of the multiple constant
multiplication transformation, which leads to the asymptotic
result that both the number of shifts and additions stay bounded
and finite regardless of the size of the instance of the problem
(see Section IV). Also, the formulation allows one to establish
an interesting relationship between the MCM problem and
combinational logic synthesis (see Section VI). Finally, our
restricted formulation also allows the MCM approach and
associated software to be applied with minimal modification
to a number of high level synthesis tasks that are based
on common subexpression elimination. For example, there
is a close parallel between the single constant multiplication
problem, and the constant power evaluation problem [34] of
efficiently computing X™, where n is a constant. We generalize

 this relationship to exploit the new optimization algorithms not
just for the. MCM problem, but also to the parallel problems of
single or multiple polynomial evaluations. The new technique
is also applied to optimizing the implementation of error
correcting codes—an application area not previously targeted
by high level synthesis tools (see Section IX).

II. RELATED WORK

Optimization of multiplications with a constant has been
studied for a long time, including pioneering work by von
Neumann and his co-workers [14]. Later several schemes
for minimizing the number of operations after substitution
“of multiplication with constants by shifts and additions were
proposed [46], [55]. This work led to novel number repre-
sentation schemes, such as the canonical signed digit (CSD)
representation [31], [38], [54] that is often used in DSP to
reduce the number of shifts and additions after a multiplication
with a constant is replaced by shifts and additions. The CSD
Tepresentation is also sometimes used in high level synthesis
[49]. Booth [7] used similar ideas for binary number encod-
ing to design his famous and widely used variable—variable
multiplier.

\
TABLE I
COMPARISON OF THE MCM TRANSFORMATION
WITH PREVIOUSLY PUBLISHED RESULTS [18], [19]

Mul 8 bit 16 bit 32 bit
I N 1 SA N 1 SA N I SA N
‘mat 1z [] 3 |38 [83 K 13 152 | 130 5
eilip 20 |8 77 6 |8 136 | 87 16 740 {198 |32
Tnd 30 10 |92 |37 3 212 | 128 |16 383 | 219 |26
s 28 0 |81 % |2 191 [117 |16 348|313 |26

I: initial design; SA : design optimized using simulated annealing; N : new
design. The second and third columns show the number of multiplication. The
next 9 columns show the number of shifts. '

Algorithms for optimizing the number of shifts and ad-
ditions have also been described in the software compiler
and computer architecture research. For example, Bernstein
presented several heuristics approaches to this problem [4].
Magenheimer et al. presented an in-depth study on frequency,
optimization, and importance of constant multiplication sub-
stitution with shifts and addition, and used their finding
to influence the Hewlett-Packard line of high performance
workstations [40]. .

The minimization of number of shifts is also a well stud-
ied topic in DSP, in particular in the digital filter design
community. The emphasis is on achieving structures with
minimal number of shifts (usually two or three) per constant
multiplication. It is interesting to note that even on these
already. optimized computational structures [16], [57] our new
techniques yields significantly better results.

While minimizing the number of shifts required for multi-
plication with a constant is a thoroughly studied problem, not
much attention has been paid to the simultaneous optimization
of the multiplication of a variable by multiple constants. Only
recently Chatterjee et al. [18], [19] addressed this problem
by presenting two optimization approaches—greedy and sim-
ulated annealing-based—for the minimization of the number of
operations in constant multiplications in vector—matrix product
representation of linear systems. Although these two algo- |
rithms, based on a number spliting technique, are theoretically
interesting and use sophisticated state-of-the-art optimization
algorithm, the algorithm proposed in this ‘paper is superior
in its simplicity, effectiveness, and range of applications.
The application range of the number splitting approach is
restricted to linear systems, while the MCM transformation
can be applied to an arbitrary computation. Table 1 shows
the improvement over the initial and the best. previously
published results [18] on four examples (matl—1 input 3-state
controller; ellip—4-state 1-input elliptical wave filter; and lin4
and lin5 two S-state 1-input controllers) for 8-, 16-, and 32-b
designs obtained using the MCM transformation. The average
improvement compared to the initial design is 9.92 times, and
compared to designs optimized using simulated annealing is
7.41 times.

A problem closely related to constant multiplication is
that of computing a constant power of a variable by using
only. multiplications. A lucid treatment of techniques for this
problem, covering work dating as far back as two millennia,
was done by Knuth [34]. Note that while the right:shift
operation has the same complexity as the left-shift, division is
usually significantly more expensive than multiplication. The -

POTKONIJAK et al.: MULTIPLE CONSTANT MULTIPLICATIONS

similarity between the two problems of constant power evalua-
tion, and constant multiplication, are exploited in Section IX to
reduce the number of operations in polynomial computations.

An alternate way of looking at the algorithms presented
in this paper is as techniques for minimizing the number
of operations using common. subexpression elimination. A
number of excellent summaries of efficient algorithms for
common subexpression elimination, both within a basic block
or using global flow analysis, are available in the literature
[2], [62], [66]. The treatment of common subexpression in
compiler literature and practice is usually based on value
numbering [20] and Sethi—Ullman numbering [59] techniques
in a local peephole optimization framework [42], [61]. Nakata
[44] and Redziejowski [51] proposed earlier versions of the
Sethi—Ullman common subexpression elimination labeling al-
gorithm. Other approaches include [15], [22]. Fisher and Le
Blank showed a simple and effective way to significantly en-
hance the effectiveness of common subexpression elimination
by using commutativity and associativity [24].

Common subexpression elimination is widely used manu-
ally as a tool for reducing the number of operations in many
algorithms in applied numerical analysis [26], and in DSP,
video and image applications [6], [50].

It is interesting to note that while high level synthesis
literature has an extensive coverage of common subexpression
replication [37], [48], [60], there have been few efforts [32]
dedicated to common subexpression elimination. Also, sur-
prisingly, those efforts were mainly concentrated on the use
of common subexpression elimination to reduce critical paths,
instead of the more apparent goal of reducing the number of
operations, and, therefore, area and power of designs. Iqbal er
al. [32] used common subexpression elimination within. their
algebraic speed-up procedure for throughput improvement.

There is another very interesting use of common subex-
pressions. Although the symbolic algebra manipulation system
Mathematica provides only a limited mechanism for explo-
ration of common subexpression during expression manipu-
lation, it extensively uses common subexpression recognition
for the reduction of storage requirements [65].

Exploration of common subexpression was also addressed
in theoretical computer science literature. Research done at
AT&T Bell Laboratories in the mid seventies indicates that
common subexpression exploration makes scheduling prob-
lem computationally intractable for both machines with only
one register [13] and machines with an arbitrary number of
registers [2].

Common subexpression elimination is also often used in
logic synthesis, most often in kernel based factoring frame-
work [10]. While the initial application of factoring in logic
synthesis was mainly directed toward area minimization [9],
more recently it is also applied for power minimization [56].

III. PROBLEM FORMULATION AND EXAMPLES

For simplicity and clarity in the next two sections we will
use examples with constants that are integers. Obviously,
there is no change in either the problem formulation or the
algorithms when arbitrary fixed point numbers are used.

153

TABLE 1I
BINARY REPRESENTATION OF CONSTANTS FOR EXaMPLE FroM FiG. 1(c)
a 815 1100101111
b 621 1001101101
c 831 1100111111
d 105 0001101001
TABLE III

NUMBER OF THE SAME SHIFTS BETWEEN ALL PAIRS OF
MULTIPLICATIONS BY CONSTANT FOR EXAMPLE FrROM FIG. 1(c)

a b C d
- 5 7 -3
- 5 4

3

alnl|lo|

The examples shown in Fig. 1(a)~(c) introduce the multi-
ple constant multiplication problem (MCM). Consider first a
computation which has only one multiplication with constant
a = 815, as shown in Fig. 1(a). This multiplication can
be done using a series of shifts and additions as shown in
Fig. 1(d). During substitution of the constant multiplication
by shifts and additions, a binary representation of the constant
a in the form 1100101111, is used.

Suppose now the goal is to implement the computation
in Fig. 1(b), using only shifts and additions. Once again the
constants, @ = 815 and b = 621 can be represented in the
binary form as 1100101111, and 1001101101,, respectively.
Note that several of the shifts (first, third, fourth, sixth, and
tenth from the right) can be shared during the computation of
the two different products as shown in Fig. 1(e). One needs a
total of only seven shifts (no shift is needed for the rightmost
digit) due to fact that both the constants are being multiplied
with the same variable. The second important point is that
many of intermediate results of additions can also be shared.
For example, ¢ * X = 1000101101 * X + 0100000010 * X,
and b * X = 1000101101 * X + 0001000000 x X share the
common term 1000101101 = X.

Finally, consider the example in Fig. 1(c). The binary
representation of all the constants is shown in Table IL
Obviously, now there exist even higher number of possibilities
to share shifts and additions while multiplying the variable X
with the multiple constants. Table III shows the number of
the identical shifts for all pairs of constant multiplications. If
additions are shared between a and ¢, and between b and d, it
is easy to see that one will save 9 additions. While initially 21
additions were needed, now only 12 additions are sufficient.

However, note that the optimization process can be con-
tinued further, and that two shifts (first and sixth from the
right) are present in all multiplications. So if their sum is
computed first, this intermediate result can be shared among
all the constant multiplications, thus saving one more addition.

If the sharing of shifts and additions is not used, the example
from Fig. 1(c) requires 21 shifts (excluding shifts by 0) and

154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN

OF INTEGRATED CIjKCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

X X X
a a b
O O
Y Y | D} | Dj (D]
Y =aX Y =aX@1 + bX Y = aX@3 + bX@2 + cx@1 + dx
(@) () ©)
X

(e) ®
a 815 1100101111
b 621 1001101101
c 831 1100111111
d 105 0001101001
®

Fig. 1. Motivational examples. (a) Single constant multiplication. (b) Multiplication with two different constants. (c) Multiplication with four constants. (d)
The example from (a) after substitutions of multiplication with shifts and additions. (¢) Common subexpression exploration applied on the example shown in
(b). (f) Cut selection for the application of scaling on example from (c). (g) Decimal and binary representation of the values used in the examples.

TABLE IV
ALTERNATIVE REPRESENTATION OF CONSTANTS FOR
ExaMpLE FrRoM FiG. 1(c). N REPRESENTS —1

a 815 110011000N
b 621 1001101101
c 831 110100000N
d 105 0001101001

21 additions. However, when intermediate results in forming
products are exploited, only 8 shifts and 11 additions are
needed.

An interesting and intuitively appealing idea is to employ
signed digit (SD) encoding, or some other encoding that
reduces the number of ones in the binary representation of
the constants, and then attempt sharing of additions and
subtractions. Table TV shows the constants for Fig. 1(c) after
one such encoding. Note that now only seven shifts are needed. .
Table V shows the number of intermediate results that can
be shared during multiplications by constants. Again, it is
advantageous to combine some of intermediate results. As is
suggested by Table V, one will profit most if ¢ and ¢ are
combined first, followed by combining b and d. This reduces
the number of additions and subtractions to only 10.

We conclude this section by stating the multiple con-
stant multiplication problem. Substitate all multiplications
with constants by shifts and additions (and subtractions). So
that the number of shifts and additions (and subtractions) is
minimized.The next section describes a systematic approach

TABLE V
NAME SHIFTS BETWEEN ALL PAIRS OF MULTIPLICATIONS BY
CONSTANT WHEN BOTH ADDITIONS AND SUBTRACTIONS ARE USED

a b c d
a - 2 3 1
b - 2 4
C - 1
d _

for accomplishing this. In the rest of the paper, we assume
that barrel shifters are used, and therefore cost of all shifts
is identical. However, even when this is not the case, our
approach will minimize the number of shifts to such an extent
that at most one shift operation of any given size is used.
Therefore, the algorithm yields a high quality solution with
respect to cost of shifts, regardless of the properties of the
used implementation style and libraries.

IV. ITERATIVE MATCHING ALGORITHM

The analysis of the MCM problem in the previous section
indicates that a natural way to solve the MCM problem is
to execute recursive bipartite matching. Recursive bipartite
matching will match at each level all constants in pairs, so
that the payoff is maximized for each single level. There are
a number of very efficient algorithms for bipartite matching
[21]. However, this approach has several serious drawbacks,
the most important of which is illustrated by the following

POTKONJAK et al.: MULTIPLE CONSTANT MULTIPLICATIONS

example. Suppose that one needs to multiply a variable X with
constants a,b and ¢, such that ¢ = 1111111111000002, b =
1111100000111115, and ¢ = 0000011111111115. Obviously,
bipartite matching will combine only two of these constants,
and result in a saving of 4 additions so that 23 additions
are needed after the application of the MCM transformation.
However, if one first forms numbers d = 11111000000000,
e = 0000011111000005, and f = 0000000000111115, then
by noting that a*x X = d* X +ex X, bx X =d+x X + fx X,
and ¢x X = exX + f* X one needs only four addition each for
computing d* X, e X, and f* X, and 3 more for computing
ax X,bx X, and ¢ x X, for a total of only 15 additions.

We can summarize the drawbacks of the bipartite matching
approach by pointing out that it is often advantageous to
form intermediate constants by combining parts of more than
two constants. Another important bottleneck is that bipartite
matching at one level does not take into account how a
particular match influences matching at the next level.

In order to preserve the advantages of using matching
algorithms to solve the MCM problem while addressing the
drawbacks of bipartite matching, we developed the algorithm
described by the following pseudocode.

Iterative Matching for the MCM Problem:

Express all constants using binary (or SD) representation;
Eliminate all duplicates of the same constants;
Eliminate all constants which have at most one nonzero
digit in their binary (SD) representation;
Let CANDIDATES = Set of all constants in binary
representation;
Calculate Matches Between all elements of
the set CANDIDATES;
while there exist a match between two entries in at least
2 binary digits {
Select Best Match;
Update the set CANDIDATES;
Update Matches by adding matches between
new entries and those already existing
in the set CANDIDATES;

}

The first step is a simple conversion. SD representations
refers to use of digits 1, 0, and —1 in the representation
of constants [31]. There are numerous signed digit (SD)
representations that may be suitable to different extents for
the subsequent optimization using the iterative matching al-
gorithm. We use a greedy heuristic for selection of SD
representation that minimizes the number of shifters required.
The next two steps are simple preprocessing steps which
in practice often significantly reduce the run time of the
algorithm. It is interesting to note that identical constants are
quite common is certain type of benchmarks (e.g., digital filters
and linear transform) and quite rare in other types (error-
controlling codes and elementary function evaluation). Of all
identical constants only one instance is included in the set of
candidates. At the end of the program, all constants which
had, initially the same value as the some included constants,
are calculated using the same set of common subexpressions.
The third step is based on a simple and obvious observation

155

that only constants which have at least two nonzero digits are
suitable for common subexpression elimination.

A match between two constants is equal to the number of
identical nonzero digits at the same position in their binary
representations, reduced by one (because n — 1 additions are
needed to add n numbers). This is equal to the number of
operations saved if these two candidates are sharing addi-
tion/subtraction operations for forming common intermediate
results.

The best match is sélected according to an additive objective
function which combines immediate saving and the change
in likelihood for later savings. The immediate payoff is,
obviously, equal to the reduction in the number of operations
when a particular pair of constants is chosen. To estimate the
potential future savings after a particular match is selected, we
estimate the influence of selecting this match on our future
ability to reduce the number of additions using matching
between the remaining constants. We do this by evaluating
the difference in the average of the top £ (where we use
k = 3 based on empirical observations) best bitwise matches
in the set CANDIDATES, and the average of the top k& best
bitwise matches in the set CANDIDATES excluding the two
constants being considered for the current match. The intuition
behind this measure is that this average is a good indicator
of potential for matching the remaining candidates among
themselves. While it is unrealistic to expect that we will be
able to select best matches for all remaining constants, in many
instances for majority of them we were able to select some of
those high ranked matches.

The set CANDIDATES is updated by first removing the two
constants which constituted the best match, and then adding
the constant corresponding to the matched digits, as well as the
differences between the two matched constants and this newly
formed constant. If any of those new constants is already in the
set of candidates, only one, original instance of that constant,
is kept in the set of candidates. For example, after constants
111100, and 110011, are matched, they are replaced by new
elements 110000,, 001100,, and 000011,.

The algorithm works the same way whether only additions
are used, or both additions and subtractions The only differ-
ence is how matches are computed. Suppose that we have two
numbers A and B such that both have digit 1 on an identical
binary positions, both have digit —1 on b binary positions, A
has digit 1 and B has digit —1 on ¢ binary positions, and A has
digit —1 and B has digit 1 on d positions number. The number
of matches is computed as sum a + b+ max (0,c¢+d—1). For
example if A =815 and B =831,thena =2,b=3,c=0,
and d = 0; and the sum of matches is 5. The motivations
for this matching function is based on the observation that we
can always match all identical digits, and that nonzero digits
can be also matched, but this type of matching will result in
one less saved operation. This is so because the intermediate
result for positions where A and B have complementary values
has to be computed only once and that either add (for one of
the numbers) or subtract (for the another number) from the
intermediate result where A and B have the same values.

The worst-case runtime analysis of the iterative pairwise
matching algorithm for the MCM transformations can be

156 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

conducted as follows. Suppose that we have N numbers and
that each number has at most B bits. At each step of the
algorithm the resulting set of constants will have at least
two nonzero bits less than the number of nonzero bits in the
previous set of constants. The total number of bits initially is
equal at most NV x B. The largest number of constants during
the constant decomposition is bounded by N x B, because each
constant can be decomposed in at most (B — 1) constituents.
Each step of the iterative pairwise matching algorithm takes
at most time O(B? x N?). This is so because there can be at
most N B constants during the numbers decompositions, and
at each step it takes at most quadratic time to select the best
match. Therefore, we can conclude that the worst-case runtime
is at most cubic function of the number of initially different
constant and quadratic function of the number of bits. The
number of bits is almost always very small, so the second
part of the run time can be considered constant, resulting in
overall O(N?3) worst-case runtime.

It is interesting to note that for a given size the runtime
is positively correlated with the reduction of the number of
additions. It is so because the algorithm continues to run only
if it is able to find new matches, i.e., reduce the number of
required operations.

The experimental validation of the effectiveness of the
MCM transformation, and the iterative matching algorithm
is presented in Section VIII. We will finish this section
by a theoretical analysis of the asymptotic effectiveness of
the MCM transformation with increasing problem size. The
following theorem clearly indicates the effectiveness of the
MCM approach on large instances of the problem.

Asymptotic Effectiveness Theorem: An arbitrarily large in-
stance of the multiple constant multiplication problem can
always be implemented with a bounded finite constant num-
ber of shifts and additions irrespective of the problem size.
Furthermore, if the iterative matching algorithm is used, at
most (B — 1) shift is required regardless of the number of
constant multiplications. (B is the number of bits used for
binary representation of the constants.

Proof: Consider that we have a very large number of
constants, of at most B bits, being multiplied to a variable.
Then it is clear that there are at most (B — 1) distinct
shifted versions of the variable. Further, the number of distinct
constants is also bounded by 28, and due to the pigeonhole
principle! [28] the constants will start to repeat when their
number becomes large. Each constant-variable multiplication
needs at most (B — 1) additions. Thus the total number of
operations needed is bounded by (B — 1)(1 + 25).

Observation: The bound for the number of additions in the
above proof is very pessimistic for most cases. Suppose that
we have a very large number of constant multiplications, say
M, with the same variable, and that for these M constant-
variable multiplications we need /N shifts and additions. When

!This principle states that if there are N holes and N + 1 pigeons, then
at least one hole will have at least two pigeons. Sometimes the pigeonhole
principle is quoted as a special case of Dirichllet box principle— if n objects
are put into m boxes, at least one box must contain >[-7 objects, and at
least one must contain <[-2] objects. The pigeonhole principle has a number
of application in combinatorics and theoretical computer science [3].

multiplication with a new constant is considered, this constant
will quite likely share one or more common subexpressions
with one or more of the previously considered constants.
This is a consequence of the fact that there are only finitely
many different constants that can be represented using a given
number of bits. As the number of constants increases, the
number of intermediate results and constants will start to
repeat due to the probabilistic version of the pigeon hole
principle. Eventually, as the size of the problem becomes
very large, the probability that all intermediate results for
forming new constants are already available will become very
high. Therefore, note that significantly sharper bounds can be
derived by considering particular algorithms (e.g., iterative
pairwise matching) for the minimization of the number of
addition. .

An important consequence of the asymptotic effectiveness
theorem is that as the size of the MCM problem increases,
the MCM transformation is increasingly more effective. In-
terestingly, a limited experimentation with real-life examples
indicates that in most cases the probabilistic pigeonhole prin-
ciple starts showing its effects for relatively small instances
of the MCM problem.

V. USING SCALING AS A PREPROCESSING OPTIMIZATION STEP
FOR THE MCM TRANSFORMATION IN LINEAR COMPUTATION

The effectiveness of the iterative matching algorithm is often
very high. For example in the number of filters and controllers
the number of shifts is reduced by an order of magnitude, and
the number of additions by more than 50%. Nevertheless, in
the special but widely used case of linear computation struc-
tures’, the effectiveness of the MCM transformation can be
significantly improved by preprocessing the linear computation
structure with the scaling transformation introduced in this
section. A branch and bound algorithm has been developed
for scaling-based optimization of the MCM problem.

For the sake of simplicity we will assume that the initial
linear computational structure has only one strongly connected
undirected component. Most real-life examples, as well as
examples presented in the literature, have only one strongly
connected undirected component. Generalization to compu-
tational structures with more than one isolated components
is straightforward because each component can be treated
separately.

Let us define a cut as a set of variables which divides the
computational structure into two components such that all the
inputs are on one side of the cut, and all the outputs are
on the other side of the cut.” A feedforward cut is one that
consists only of feedforward edges. Feedforward edges can
be easily detected using an algorithms for strongly connected
components [21]—they are the edges that go from one strongly
connected component to another (different) strongly connected
component. Figs. 1(f), 2(c), and 3(c) show examples of two
such cuts, denoted by C4 and Cp. The following theorem,
which is easy to prove, forms the basis for the scaling.

2A Linear Computation Structure is composed of variable-variable i?ddﬁ—
tions and constant-variable multiplications. Such computation structures are
quite common in control and signal processing systems.

POTKONIJAK et al.: MULTIPLE CONSTANT MULTIPLICATIONS

Ca

©

Fig. 2. FIR filter—Direct form: applying retiming to enable the MCM
transformation. (a) Before retiming. (b) After retiming. (c) Cut selection for
scaling transformation.

Scaling Theorem: Suppose that two feedforward cuts are
identified in a linear computational structure. If all variables
on one of the feedforward cuts are multiplied by a constant
3, and all variable on the other feedforward cut are multiplied
by a constant 1/(3, the overall input—output relationship of the
linear computation is not altered.

The theorem can be applied to a computation structure
an arbitrary number of times. Figs. 2(c) ‘and 3(c) show its
application to FIR and IIR filters. The idea behind the scaling
transformation is to select the cuts and the constant 1/3
required by the scaling theorem in such a way that the
number of shifts and additions in the MCM transformation is
minimized. Therefore, at least one cut is always placed such
that the maximum number of constant—variable multiplications
are affected by that cut. Note that no new multiplications are
introduced when the cut is made only along constant—variable
multiplications. Otherwise, additional multiplications are intro-
duced, but the overall number of operations after substitution
of constant multiplications by shifts and additions is reduced
by a proper selection of the constant 3. For instance, if two
cuts are introduced in the example from Fig. 1(c), as shown in
Fig. 1(f), and 8 = 1.03125 is chosen, then a simple calculation
indicates that only eight additions are now sufficient, even
~ though one of the additions is used to form the constant
B = 1+ 0.5 > 4. The new coefficients for the MCM
transformation after scaling are shown in Table VI.

To effectively apply the scaling transformation, one has
to address the following two problems: selecting the cuts,

157

N > OUT
(D] D]
Ca >
[D] [}
&< >

[5]
>

Fig. 3. IIR Filter—Direct form: Applying retiming to enable the MCM
transformation: (a) before retiming; (b) after retiming; (c) cut selection for
scaling.

TABLE VI
THE COEFFICIENTS a, b, ¢, AND d AFTER SCALING BY 3 = 1.03125
a - 815*PB 1101001000
b 621° P 1010000000
c 831 P 1101011000
d 105*B 0001101100

and selecting the constants 5. As already indicated, one cut
is always placed to affect the maximum possible number
of multiplications by constants. If there is no possibility to
place another cut that is only across other multiplications
with constants, then the cut which needs the smallest number
of additional multiplication is selected. The smallest cut can
be efficiently found using the min-cut algorithm. For all
computations with only one input, or only one output, putting
the cut just after the input, or just before the output, results in
only one new multiplication. In general, it is advantageous to
apply scaling theorem repeatedly. For this task we use a greedy
algorithm, that successively applies the cut selection and mul-
tiplication constant procedures. The algorithm is terminated
when no new cuts with improvements are observed.

The constant 3 is selected using a branch and bound
algorithm. All constants are multiplied iteratively by 3 in range
1 to 2, with the step equal to the user specified 27" value.
The best current solution is maintained, and a new constant
3 is attempted only if the number of nonzero elements in
the binary representation of the resulting constants (obtained
after multiplying by 8 or 1/3) is within k% of the number of
nonzero elements in binary representation of the best solution,
and the sum of positions where any two pairs of constants
match is within m% from the corresponding number in the best
current solution. In our experiments we used an empirically
derived value of 5% for both k£ and m.

It is interesting to note that in a number of applications
it is advantageous to select one of the cuts required by the

158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

scaling theorem on the primary output or on all primary
outputs. It is so because those outputs are anyhow additionally
scaled by transmission parts of the overall system, and all the
information required for the receiving part is contained only in
the relative ratios of data values of the received signal. Note,
that in this case the semantic of the targeted applications allows
that essentially only one cut is applied. For more detailed
treatment of the design strategy, see [50].

Also note that even when the computation is overall nonlin-
ear, the scaling theorem can be applied on linear subparts. In
that case, a useful approach is to first identify all maximally
large linear computations [48].

VI. RELATIONSHIP BETWEEN THE MCM
PROBLEM AND LOGIC SYNTHESIS

Our formulation of the MCM problem as one of minimizing
the number of additions by using recursive application of
common subexpression elimination is equivalent to a restricted
case of multilevel combinational logic synthesis. This equiva-
lence is interesting because it potentially allows one to develop
alternate algorithms using multilevel logic synthesis systems
such as MISII from University of California, Berkeley [11].

The equivalence between MCM and logic synthesis is
based on the observation that the common subexpression
elimination to minimize additions in MCM is equivalent to a
multilevel factorization on a set of Boolean functions obtained
by encoding the coefficients in the MCM problem.

For example, if one has the following three coefficients in
the MCM problem

Cy = 111110
Cy = 111101
Cs = 011111

then he can encode these coefficients as the following purely
disjunctive Boolean functions

Ci=21+ 22+ 23+ 24 + 25
Co=214+ 22+ 23+ 24 + 6
Cs =2+ 23+ 24+ x5 + T

where z1, Zo, . . . correspond to bits at positions (from the left)
1,2,... in the coefficients.

Now, it is easy to see that doing common subexpression
elimination on the coefficients for the MCM problem of
minimizing additions is equivalent to finding a multilevel im-
plementation of the corresponding Boolean functions that are
. pure disjunctions with each input variable appearing at most
once in the disjunction. The resulting multilevel decomposition
should use only 2-input OR gates, must have no reconvergent
paths (as is obviously true for the input functions), and should
use a minimum number of the OR gates. The restriction of
no reconvergent paths is needed because while z + x = z is
true in boolean domain, it is not in the algebraic domain of
MCM—the restriction ensures that the property z + z = x is
not exploited during logic synthesis.

Making use of this equivalence we developed a script
to do the above multilevel decomposition in MISII [10],

[11]—this script is basically an alternative to the iterative
pairwise matching algorithm. However, we found that on all
examples our iterative matching algorithm performs as good
as, and often better, than the corresponding MISII script. The
reason for this is that MISII is a general case multilevel logic
synthesis tool—it fails to exploit the fact that the input and
output Boolean networks have the special forms that use only
OR gates and are free of reconvergent paths.

Finally, it must be mentioned that another advantage of
this equivalence between MCM and the special case of mul-
tilevel logic synthesis is that techniques from logic synthesis
also allow the more convenient way to the development of
optimization algorithms that do an area-time trade-off (i.e.,
small/slow versus large/fast solutions) when the common
subexpression elimination is explored in the MCM- prob-
lem—the iterated pairwise matching algorithm is targeting
only the minimization of the number of operations, and
therefore area.

VII. NUMERICAL STABILITY AND
RELATIONSHIP WITH OTHER TRANSFORMATIONS

While the effectiveness of transformations in improving
key implementation parameters such as critical path, available
parallelism and iteration bounds is well documented, the effect
of transformations on word-length requirements during fixed
point computation is a rarely addressed topic in high level
synthesis and compiler literature. However, it is well-known
that transformations sometimes have very strong impact on
numerical properties of computations and required wordlength
[27], [36]. The attitude toward this numerical stability prob-
lems varies significantly, ranging from total denial of the
problem to avoidance of applying transformations.

One of the few transformations which is well suited for
a theoretical analysis of numerical stability is the MCM
transformation. The analysis by Golub and van Loan [26}]
indicates that if one additional binary digit is used, one can
apply an arbitrary combination of common subexpressions
without disturbing the correctness of the answer. This analysis
also indicates that even this additional digit is statistically very
unlikely to be needed. We experimentally verified this claim
on several examples, including a 126 tap FIR filter which
is part of a PCM system developed by NEC Japan, and the
results of our investigation are shown in Fig. 4. Fig. 4(a)-(c)
shows the transfer function of the filter corresponding to
double precision floating-point arithmetic (essentially infinite
precision arithmetic), finite precision fixed-point arithmetic
before applying the MCM transformation, and finite preci-
sion fixed-point arithmetic with the same word-length after
applying the MCM transformation, respectively. Fig. 4(d)—(f)
shows the same three transfer functions such that 3 db range
is well exposed, and Fig. 4(g)—(i) shows the same transfer
function at a much finer scale for the low-pass part of the
frequency spectrum. As the three comparison presented on
the transfer function plots clearly demonstrate, the effect of
the MCM transformation on numerical accuracy is negligible.
All other considered examples showed very similar numerical
properties.

POTKONJAK et al.: MULTIPLE CONSTANT MULTIPLICATIONS

159

50.0 50.0 50.0
30.0 30.0 30.0
100 10.0 10.0
-10.0 -10.0 -10.0
-30.0 -30.0 300 |
50.0 [50.0 -50.0
-70.0 -70.0 70.0
-90.0 90.0 900 |
-110.0 -110.0 1100
-130.0 | -130.0 -130.0
150006 2E60 5120 7680 10240 %005 25go 5120 7680 10240 129005 meo 5120 7680 1024.0
(@) (b) ©
1.0 1.0 — 1.0
0.0 0.0 0.0
1.0 -1.0 10t
2.0 2.0 2.0
3.0 3.0 -3.0
-4.0 A -4.0 — -4.
0.0 200.0 400.0 0.0 200.0 400.0 4% 200.0 400.0
@ (&) (69)
0.0020 0.0020 0.0020
0.0010 | 0.0010 0.0010
0.0000 [0.0000 [0.0000 |
0.0010] -0.0010 -0.0010
-0.0020 -0.0020 o vy E
0.0 100.0 2000 300.0 400.0 0.0 1000 2000 3000 400.0 0'00200.0 1000 2000 300.0 400.0
@ (h) @)

Fig. 4. Simulation results for the NEC FIR filter before the MCM transformations; (a), (d), and (g) double floating precision; (b), (e), and (h) bit true
simulation; (c), (f), and (i) bit true simulation after the application of the MCM transformation.

It is well known that the application of isolated trans-
formations is often not sufficient to achieve desired results,
and that the successive or simultaneous application of several
transformations is often much more effective due to the ability
of some transformations to increase the effectiveness of others
[47], [48]. 1t is easy to see that majority of transformations
has either direct on indirect impact on the effusiveness of the
MCM transformation. For example, using associativity one can
transform expressions V = a % (z * y); and W = (b* z) x y;
toV = (axz)xy;, and W = (b *z) * y. While initially
it was impossible to apply the MCM transformation, after
the application of associativity, the MCM can be used for
optimization.

On the majority of the several hundred designs which we
examined, retiming was by far most often needed to effec-
tively enable the MCM transformation. Figs. 2 and 3 show
typical examples where first retiming the computation makes
the MCM transformation much more effective. Performing
retiming such that the payoff from applying the MCM trans-
formation is maximized is an involved combinatorial problem.
However, on all examples that we considered, it was sufficient
to adopt a simple retiming approach where the delays were just

moved from edges where they were preventing the application
of MCM transformations. Furthermore, note that even this
retiming is actually not necessary—the shifts and additions
in the MCM transformations can be shared across delays
by taking into account that some of the intermediate results
will be utilized in future iterations of the ASIC computation
which is always done on semi-infinite streams of data. This
approach eliminates the disabling effect of delays (states) on
the application range of the MCM transformation.

" VIII. EXPERIMENTAL RESULTS

The iterative matching algorithm is very efficient and com-
pact—it required slightly more than 1000 lines of C code.
Table VII shows the set of benchmarks examples on which it
was applied The benchmark examples are: 126 tap NEC FIR
filter NEC FIR), NEC digital to analog converter (DAC), 100
and 123 FIR Motorola filters (Mot FIR1 and Mot FIR2), 64
tap FIR filter, 3 GE linear controllers (Lin Con4, Lin Con5
and Mat) [19], linear controller for Power control [Power],
linear controller for steam machine [steam], eighth-order direct
form IIR [8IIR], tenth-order paraliel form IIR filter [10IIR],
eleventh-order direct form IIR filter [11IIR], twelfth-order

160 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

TABLE VII
THE 'APPLICATION OF THE MCM ITERATIVE
MATCHING ALGORITHM ON 11 EXAMPLES

DESIGN INITTAC MCM IMPROVEMENTS
#oi>> | #0f+/- | Total | #of>> | #ol4/- [Total | #of>> | #oi o~ | Total
[NECFIR | 160 | [a62 17 T38| 155 | 941 TG | 204 |
NEC DAC | 349 416 765 | 98 277 | 375 | 356 | 150 | 2.04
Mot FIRT | 177 231 408 15 158 | 177 | 932 | 146 | 241
MotFIR2 | 138 770 308 15 125 140 | 925 136 | 2.20 |
S4FIR 123 144 267 3 107 114 | 646 | 143 | 234
LinCond | 212 183 395 16 86 | 100 | 1325 | 459 | 395 |
TinCon5 | 283 | 358 747 25 137 | 162 | 1542 | 261 | 457
MAT Com | 83 78 157 14 £ 63 | 583 | 161 | 249
Power 136 120 | 256 | 58 | 99 757 | 2.34 121 163
[Steam | 260 | 255 515 101 78 275 | 257 143 [1385 |
BIR 184 200 384 15 102 7 | 1227 | 196 | 3.28 |
TONR 177 162 339 54 96 140 7328 | 169 | 242
TR 594 554 1148 30 266 | 296 | 1547 | 2.08 | 3.88
[TonR | 358 | 398 | %6 61 193 | 354 | 222 775 | 197
2D FIR 804 807 7617 T4 377 | 518 | 570 | 156 | 341

cascade form IIR filter [12IIR], and 2-D 10 x 10 FIR video
filter [2-D FIR].

The performance of the iterative matching algorithm on
these examples is detailed in Table VII. The following sum-
marize the overall performance of the algorithm

Average (Median) Reduction in number of Shifts
by factor of 8.22 (9.25);

Average (Median) Reduction in number of Additions
by factor of 1.84 (1.51);

Average (Median) Reduction in Total number of
Operations by factor of 2.69 (2.34).

Using the iterative pairwise matching MCM algorithm to re-
duce the number of shift and addition operations and therefore
in many situations also helps in reducing the implementation
area and power consumption. Note, that although in general
there is no direct relationship between the number of opera-
tions in the design specification and the area and power of the
final implementation, in many cases there is a strong positive
correlation. For example, in the case of NEC’s 126-tap low-
pass FIR filter, the estimates obtained by using the HYPER
high-level synthesis system [49] show factors of 2.76 and 2.55
reductions in area and power respectively. The corresponding
area and power reductions for the 44.1 kHz oversampling
DAC example were by factors of 2.50 and 2.48 and for
steam controller were by factors 1.71 and 2.09. The iterative
matching algorithm and scaling preprocessing step took less
than 2 seconds for even the largest example (2D FIR filter).

IX. EXTENSIONS TO OTHER HIGH LEVEL
SYNTHESIS AND COMPILER OPTIMIZATION TASKS

At the heart of the MCM approach is the recursive ap-
plication of common subexpression elimination to reduce the
number of operations needed for a given computation. This re-
lationship with common subexpression elimination allows the
MCM approach, and the iterative pairwise matching algorithm,
to be easily generalized and modified for a large number of
important high level synthesis optimizing transformation tasks.
In this section several such applications are described.

A. Multiplication-Free Linear Transforms

A direct application of the MCM methodology and software
to a new high level synthesis task is to multiplication-free lin-

11111111
1-11-11-11-1
11-1-111-1-1
1-1-111-1-11
11 -1-1-1-1-1-1
1-1-11-11-11
111 1-1-111
1-11-1-11 1 -1

Fig. 5. Hadamard matrix of size 8 x 8.

ear transforms. Multiplication is often considered an expensive
operation, and developers in many cost sensitive applications
have been designing algorithms that do not use multiplica-
tions. Multiplication-free linear transform are extensively used
in several engineering areas: DSP and in particular image
compression and analysis [1], error correcting codes [5], [53]
and neural networks [41]. The general form of multiplication
free linear transform is'Y = A % X, where Y and X are
n-dimensional vectors and A is n x n quadratic matrix. The
matrix A has as entries only values 1, —1, and 0.

We will introduce the application of the MCM transform
for the optimization of multiplication free computations using
Hadamard matrix transform [1]. Hadamard matrix transform
decompose an arbitrary function on the set of Walsh or-
thonormal functions [1]. They are used for image and video
compression, in signal processing of bioelectric signals, and in
a number of other applications [1]. Hadamard matrix can be
defined in several ways, but most often it is introduced using
the following recursive definition

wo-]]
H(m+1)=H(m)® H(m)

® denotes the direct (Kronecker) product between two matri-
ces, ie.,

H(m) —H(m)

H(1)® H(m) = [" (m)}
Fig. 5 shows the Hadamard matrix of size 8 x 8.

The 8 x 8 Hadamard transform is computed by evaluating
Y = Ax X, where X and Y are vectors of input and output.
samples, respectively. The analogy with the MCM problem
is apparent. We can use the following parallel to derive an
efficient algorithm for computing the Hadamard transform.
Matrix A corresponds to the binary representation of the
constants in the MCM problem, and elements of vector X
corresponds to the variable shifted by various amounts in the
MCM problem. While the direct computation of the Hadamard

‘transform requires 56 additions, the MCM approach reduces

this number to 24.

The encoding and decoding algorithms of many error cor-
recting codes can be represented as vector-matrix product in
the form ¢ = d * G. ¢ is vector of k encoded bits, d is vector
of m information bits, and G is m x k matrix, which describes

POTKONJAK et al.: MULTIPLE CONSTANT MULTIPLICATIONS

f111111111111111
0101010101010101
0011001100110011
0000111100001111
0000000011111111
000100010001000.1
0000010100000101
0000000001010101
0000001100000011
0000000000110011
0000000000001 11 1

Fig. 6. Encoding matrix for (16, 11) second-order Reed-Muller code.

the used encoding algorithm. Fig. 6 shows the matrix G for
the second-order (16, 11) Reed-Muller code {52], [43].

Once again, the analogy with the MCM transform is appar-
ent. If the columns of matrix G are interpreted as the elements
of the set of constants, the minimization of addition to produce
the set of constants (65535, 21845, 13107, 3855, 255, 4369,
1285, 85, 771, 51,.15) is equivalent to minimizing the num-
ber of additions needed for encoding using the Reed-Muller
code. Note that although all additions in error-correction
computations are done using addition modulo-2, there is no
any difference in the application of common subexpression
elimination. It is so because on both types of additions (stan-
dard and modulo-2) the same set of algebraic transformations
(associativity and commutativity) and redundancy elimination
techniques are equally applicable.

The MCM approach can be also used in many error cor-
recting codes to minimize the required number of operation
not-just in encoders and decoders, but also in error-correction
logic. Fig. 7 shows the computations required to compute
error-correcting values for the (15, 7) BCH code [8]. Again it is
easy to see that it is possible to explore common subexpression
eliminations by considering the MCM instance on the set
of constants (22536, 23076, 23632, 22659, 26432, 17792,
19760, 17675, 25368, 19026, 17969, 21140, 24610, 28994,
25102, and 26770). This analogy is established by translations
e; = 2%, for i = 0,...,14. After the application of the MCM
transformation one third less additions are needed (only 48
additions are sufficient compared to initially required 72).

Table VIII shows the set of error-correction benchmarks
[51, [53] on which we applied the MCM approach. Only the
addition operation makes sense in this case because no shifting
is needed. The average reduction in the number of additions is
by factors of 1.55; the median reduction is by factors of 1.56.

A similar analogy can be used to derive efficient algorithms
for other multiplication free linear transforms. Moreover, the
same type of computation is often used in neural network
research. For example, if we apply the MCM approach the
number of additions needed to calculate the states and the out-
put of a gradient descent neural network used for repairability
of memory elements ([41], p. 483), the number of additions
is reduced from 192 to 93 (reduction by 52%) by using the

161

ELi=esteteptey, o1 = estegtegte testey,

Sla=etestegte tetey, a2 =ertegtegtey
El3=egtegre e, +epte, Eaa = eqtestegte e, tey,
La = Egte tete te,tey, Era=epte ey tegtegtey,
Es1 = eateqtegtegte ey, Eui=e +estetey,
Eso= e te tegtegte +ey, o= vegtegte,tetey,
Es3=eutetestegte e, Ea=etevetegtetey,

Era=eyte st tegtetey, Era=erte,tete +eqtey,

Fig. 7. Error checking sums for the (15, 7) BCH code.

TABLE VIII
BENCHMARK EXAMPLES FOR LINEAR CODES
Examples Additions

-] MCM /MCM
[(8,2,5) Goppa 18 T T64
(7,4) Hadamard 21 16 1.31
(16,11) Reed-Muller 61 43 1.41
(15,4) Hamming 105 66 1.59
(1651,1631) Fire 44 29 152
(31,15) BCH 183 99 1.85

iterative matching algorithm for the MCM problem. Note that,
although in this example all entries of matrix are actually
values 2, and -2, it is easy to apply the MCM approach by
noting that most efficient way to treat multiplications (or, even
better, corresponding shifts) is that all of them are applied as
the last step when the final result is formed.

B. Linear Transforms

Of course, not all linear transforms have as entries only
1, 0, and —1, or can be as easily reduced to this form, as
was the case with the neural network example in the previous
subsection. In fact, many of the most widely used transforms,
such as FFT and DCT, do not belong to this group. In this
subsection we will present an approach which is based on
multiple use of the basic MCM approach so that the number
of operations (shifts and additions) is minimized when an
arbitrary linear transform is targeted.

The general linear transform have the form

k(3
Yy = Zcijmj, (t=1,...n).
—

Note that in many of the most popular transformations there
is a significant number of coefficients c;; which have identical
values.
The algorithm for this task can be introduced using the
following pseudocode:
Minimization of the Number of Operations in Linear Trans-
formations: ‘
1) Minimize, using the MCM approach, the number of
shifts and additions needed to compute all products of
type cij * Zj;

162 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

TABLE IX g

X Xz X3 7} %5 X5 X %g
v G354 | 0. 0462 | 0416 0.354 02/8 | 0491 | 0098 | BENCHMARK EXAMPLE FOR LINEAR TRANSFORMS: DCT - DISCRETE COSINE
V2 ﬁg g-;: ALIN M '8-222 L e TRANSFORM; HVS - JEEE HUMAN VISION SENSITIVITY TRANSFORM;
Vs | 03 : . 0. 0 ; - X i) g
R T B I L B I B A CHYVS - IEEE CoMPOUND HUMAN VISION SENSITIVITY TRANSFORM;
Ys | 0354 | -0.098 | -0.462 6278 0.354 0416 | 0181 0.450 ALL EXAMPLES ARE ONE DIMENSIONAL, EIGHT POINT TRANSFORMS
Ve | 0354 | 0278 | 097 | 0490 | -0454 | -0.098 | 0462 | 0416]
y7 | 0.354 0416 0.191 0.058 <0354 0.450 -0.462 0.278 Example | #of bits #of>> #ol+ improvement Ratlos
Ve | 0354 | 0490 | 0462 | -0416 | 0354 | -02/8 [0.191 0.098 IN MCM IN MCM INMCM_ [IN'MCM
DCT B 308 72 30T g 427 319 |
) .) BT i2 376 73 368 60 508 368
Fig. 8. Coefficients for corresponding products in the 1-D 8 point DCT. BCT 6 529 07 521 29 LX) 404
DT P 757 790 789 272 3K 372
HVS 8 122 91 19 3 134 1.25
HVS 1 261 153 5 161 1.71 1.58
e = 0.354*x; e, = 0.354%x; HVS 16 367 27 361 226 174 1.60
- . VS 24 586 373 580 Bl 787 174
& = 0490%x;; ey = 0278%x; NTEArbreteategtetentey CAVS 5 738 0 37 57 386 554
5 = 0.416%x,; ey = 0.490%xg; Yy = e teste ey —ep—e, e ey THVS 72 358 740 351 148 284 2.68
e, = 0.278*x; e« = 0.098%x: CHVS 6 535 194 527 208 275 753
15 . Y3 = eteme—emep—estegtey; CHVS 24 308 308 800 328 262 545
es = 0.098*x,; e = 0.416%x;
Yo = ey tes—egtetepteg—ey—ey)
g = 0.462%x,; ey = 0.191%x;; Vo= et —en +
e, = 0.191%x,: _ xy s = € mes—eg—entep—eg— et ey
’ 0416* ’ = 04527 Yo = € —€4—Cq+€g~€, =€ 5+ €5~y TABLE X
= (. B = *y - 6 = €1 - ~€p- =€y)
e X4 ey = 0.008%x,; eTTeTTRTA T MAPPING MULTIPLE POWER EVALUATION PROBLEM TO
ey = 0.098%x,; ey = 0.278%xy; V1= Gt et e et =gty THE MCM PROBLEM: BINARY REPRESENTATION OF
)y = 0.278%x,; ey = 0.416%x,; Vg = e —eyteg-egte,—ete—e; EXPONENTS FOR THE EXAMPLE EXPLAINED IN SECTION IX-C
= 0.490%x,: = oy - . .
eu = 0490%,; en = 0490%xy; exponent binary representation
) . Lo 1 00001
Fig. 9. (left) The resulting products after the application of the first step 7 00111
of the algorithms for the minimization of the number of operations in linear 14 01110
transforms. The targeted example is 1-D 8 point DCT shown in Fig. 8; (right) 28 11100
The structure of the resulting MCM problem during the second step of the
algorithm.

2) Form a new instance of the MCM problem by consider-
ing how each y; is formed using unique products formed
in the first step;

3) Using the MCM approach minimize the number of
additions in the new instance of the MCM problem.

The first step is the direct application of the MCM transfor-
mation on n separate vector-scalar products. During this step
all coefficients are considered as positive by targeting only
their absolute values. In the second step we assign a unique
intermediate variable to each unique product. As a result we
have an instance of matrix-vector product problem similar to
one discussed in the previous subsection. The matrix has as
entries only values —1, 0, and 1. Again, the MCM iterative
pairwise matching algorithm is used for the minimization of
the number of operations. This step is best explained using
an example.

Fig. 8 shows the functional dependences between output and
input variables during the computation of a 8 point 1-D DCT
transform. Fig. 9 shows the resulting unique products and how
they are combined to form the final output values.

The third step is again the straightforward application of
the MCM transformation.

The algorithms for the minimization of the number of
shifts and additions were applied on several widely used
linear transforms shown in Table IX. Again, a very significant
reduction in the number of operations is achieved. The average
(median) reduction of the number of shifts and additions were
by factors of 3.10 (2.80) and 2.67 (2.60) respectively.

We implemented the DCT transform using 12-b coefficients
and 9-b data. For this task we used the Hyper high level
synthesis [49] and the Lager silicon compilation systems [12]
from Berkeley. The area of the implementation using a 0.8-
um library was initially 35.86 mm?. After the application

29 11101

of the MCM transformation the area was reduced to 8.78
mm?, corresponding to the reduction by 4.09 times. The power
consumption for reduced from 49.57 to 21.64 nJ per sample.

During the optimization of linear transforms and several
other domains of computations described in this Section, the
MCM transformation is subsequently applied twice. Although,
in general, multistep approaches are less effective than opti-
mizations that consider the entire solution space at once, the
improvements observed during experitentation indicate that
multistep approaches provide a good tradeoff between runtime
and quality of results for our target, MCM transformation
problems.

C. Single and Multiple Polynomial Evaluation

As mentioned earlier, there is also a close parallel between
the problems of constant power evaluation using multiplica-
tions, and constant multiplication using shifts and additions.
The power evaluation problem asks for computing 2™ using
only multiplications. For example, if we want to compute z'1,
one way is to use the binary representation of the exponent
1110 = 1011y, and first compute 22 and 2® and then multiply
2 % 22 * 28 as indicated by the binary representation. Several
researchers in compiler community [4], [39] have used the
results from the constant power evaluation problem to derive
efficient algorithms for the constant multiplication problem.
Note that the mapping between these two problems is such that
shifting and additions in the constant multiplication problem
are mapped to forming exponents of the type 2™ using squar-
ing, and multiplications of intermediate results, respectively,
in the constant power evaluation problem. Note that this
mapping between two problems is not complete—while the
cost of subtractions and additions is comparable, division is
significantly more expensive operation. Also, note that the

POTKONJAK et al.: MULTIPLE CONSTANT MULTIPLICATIONS

163

" TABLE XI
THE REDUCTION IN THE NUMBER OF SHIFTS, ADDITIONS AND MULTIPLICATIONS WHEN COMPUTATION OF THE SET OF POLYNOMIALS IS TARGETED. LAG -
LAGGUERRE POLYNOMIALS; HER - HERMITE POLYNOMIALS; LEG - LEGENDRE POLYNOMIALS; BER - BERNOULLI PoLyNoMiALS; EUL - EULER POLYNOMIALS

Example # of >> #of + #of*
] MCM | MCM/ | T MCM | MCM/ | T MCM | MCMN
[Lag &1 — 81 1.00 B85 33 062 n] 035 |
Her 33 30 0.91 4 24 0.38 11 5 | 045
Leg 58 55 | 095 04 49 052 11 5 045 |
Ber 79 20 0.51 102 39 0.38 i} 5 0.45
Eul 35 31 0.89 60 26 | 043 16 6 038 |

cost of shifting by k positions corresponds to £ multiplications
(squaring). Again, the fact that the iterative matching algorithm
very efficiently handies the minimization of the number of
shift operations used (see Asymptotic Effectiveness Theorem,
Section IV) makes it amenable for the new task.

The parallel between the constant multiplication problem
and the constant power evaluation problem can be used to
extend the application domain of the MCM transformation to
the interesting and important problem of calculating multiple
constant powers of a variable x. We now explore the inverse
of the problem studied by the compiler community, namely
applying the results for the constant multiplication problem to
the multiple constant power evaluation problem. Suppose that
it is required to calculate the polynomial = 4 27 4 x4 + 228
22°. As in the case of linear transformations, we will consider
first the case when all coefficients are from the set {—1,0,1},
and then incorporate the proposed solution in the algorithm
for solving more general problem. The binary representation of
exponents is given in Table X. It is easy to see that by using the
MCM methodology we can share intermediate results between
the second and third terms as well between the two last terms,
and thus reduce the required number of multiplications by 2
compared to the case when the intermediate results are not
shared. ’

Another application of the MCM transformation is to the
calculation of multiple polynomials over the same variable.
This application is illustrated by the example of G2 blend
surface calculation using quintic polynomials, which is an im-
portant and frequently used graphics task in mechanical CAD
applications [64]. The example requires repeated calculation
of the following six equations :

fo(t) = —6t° + 15t* — 10t + 1

fi(t) = 6t° — 15¢* + 1083

go(t) = —3t° + 8t* — 6> + ¢

g1(t) = =3t° 4+ 7t — 4¢3

ho(t) = —(1/2)t° + (3/2)t* — (3/2)8* + (1/2)¢2
ha(t) = (1/2)t° — t* 4 (1/2).

Interestingly, the iterative matching algorithm can be applied
twice. First in computing all the used powers of ¢, and then for
sharing intermediate results during the multiplication of those
power terms by the constant coefficients. For example, when
calculating 7t* and 15t the shifts of t* by 1, 2, and 3 can
be shared. A complete analysis of this example shows that by
using the MCM approach, only 4 multiplications, 25 additions,

and 11 shifts are needed, instead of 55 multiplications, 42
additions, and 28 shifts.

Calculation of polynomials dominates many widely used
application domains. Table XI shows reduction in the required
number of operations for five different sets of polynomials The
average reduction for the number of multiplications, additions
and shifts were by 56.5%, 53.3%, and 15%. The corresponding
median reductions were by 54.5%, 56.7%, and 9.1%.

X. CONCLUSION

We formulated the multiple constant multiplication (MCM)
problem, and proposed an iterative pairwise matching algo-
rithm for solving it. The relationship of the MCM transforma-
tion to other transformations is also studied We used a newly
established scaling theorem to enhance the effectiveness of
the MCM approach. A simple generalization of the problem
and augmentation of the algorithm were used to significantly
enlarge the application range of the proposed approach. The
new applications include the minimization of the number of
operations in calculation linear transforms and polynomials.
On a large set of industrial examples the MCM approach
yielded large average and median improvements in the number
of operations. The algorithm was very effective in reducing
area and power requirements. We also studied the numerical
stability of the MCM transformation and showed that the
numerical stability is negligibly affected by the transformation,
and our experiment results validated this conclusion.

ACKNOWLEDGMENT

The authors would like to thank K. J. Singh for his help in
developing the MISII script. The authors would also like to
thank M. Cheong for help in developing the final version of
the MCM iterative pairwise matching program.

REFERENCES

[1] N. Ahmed and K. R. Rao, Orthogonal Transform for Digital Signal
Processing. New York: Springer-Verlag, 1975.

[2] A. V. Aho, S. C. Johnson, and J. D. Ullman, “Code generation for
expressions with common subexpressions,” J. ACM, vol. 24, no. 1, pp.
146-160, 1977.

[3] P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, P. Pudlak, and A.
Woods, “Exponential lower bounds for the pigeonhole principle,” in
24th Ann. ACM Symp. Theory of Computing, 1992, pp. 200-221.

[4] R. Bernstein, “Multiplication by integer constants,” Software—Practice
and Experience, vol. 16, no. 7, pp. 641-652, 1986.

[5]1 R. E. Blahut, Theory and Practice of Error Control Codes.
MA: Addison-Wesley, 1983.

Reading,

164

[6]
7
(8]
(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]
[17]
18]

[191

[20]

[211
[22]

[23}

[24]
[25]
[26]

[27}
[28]
[29]

(30]
£31]

[32]

[33]
[34]

[35]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

, Fast Algorithms for Digital Signal Processing. Reading, MA:
Addison-Wesley, 1985.

A. D. Booth, “A signed binary multiplication technique,” Quat. J. Mach.
App. Math., vol. IV, no. 2, pp. 236-240, 1951.

R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error-correcting
binary group codes,” Inform. Contr., vol. 3, no. 1, pp. 68-79, 1960.

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. Boston,
MA: Kluwer Academic, 1984.

R. K. Brayton, “Algorithms for multi-level logic synthesis and opti-
mization,” in Design Systems for VLSI Circuits: Logic Synthesis and
Silicon Compilation, G. De Micheli, A. Sangiovanni-Vincentelli, and P.
Antogneti, Eds. Dordrecht, The Netherlands: Martinus Nijhoff, 1987,
pp. 197-248.

R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS: A multiple-level logic optimization system,” IEEE Trans.
Computer-Aided Design, vol. CAD-6, pp. 1062-1081, 1987.

R. W. Brodersen, Ed., Anatomy of a Silicon Compiler. Boston, MA:
Kluwer Academic, 1992.

J. Bruno and R. Sethi, “Code generation for a one-register machine,”
ACM, vol. 23, no. 4, pp. 502-510, 1976.

A. W. Burks, H. Goldstine, and J. von Neumann, "Preliminary dis-
cussion of the logical design of an electronic computing instrument,”
Institute for Advanced Studies, Princeton, NJ, Tech. Rep., June 1947.
V. A. Busam and D. E. Englund, “Optimization of expressions in
FORTRAN,” Commun. ACM, vol. 12, no. 2, pp. 666-674, 1969.

F. Catthoor er al., “SAMURAIL: A general and efficient simulated an-
nealing schedule with fully adaptive annealing parameters,” Integration,
vol. 6, pp. 147-178, 1988.

A. Chandrakasan, M. Potkonjak, J. Rabaey, and R. W. Brodersen,
“HYPER-LP: A system for power minimization using architectural
transformations,” in Proc. IEEE ICCAD-92, 1992, pp. 300-303.

A. Chatterjee and R. K. Roy, “An architectural transformation program
for optimization of digital systems by multi-level decomposition,” in
30th ACM/IEEE Design Automation Conf., 1993, pp. 343-348.

A. Chatterjee, R. K. Roy and M. A. d’Abreu, “Greedy hardware
optimization for linear digital systems using number splitting and
repeated factorization,” IEEE Trans. VLSI Syst., vol. 1, pp. 423-431,
1993.

J. Cocke and J. T. Schwartz, Programming Languages and Their
Compilers: Preliminary Notes. New York: Courant Inst. Math. Sci.,
1970, second revised version,

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA: MIT Press, 1990.

A. P. Ershov, “On programing of arithmetic operations,” Commun.
ACM, vol. 1, no. 8, pp. 3-6, 1958.

E. Feig and S. Winograd, “Fast algorithms for the discrete cosine
transform,” IEEE Trans. Signal Processing, vol. 40, pp. 2174-2193,
1992.

C. N. Fischer and R. J. LeBlanc Jr., Crafting a Compiler.
CA: Benjamin/Cummings, 1991.

J. C. Gibson, “The Gibson mix,” IBM Systems Develop. Div., Pough-
keepsie, NY, 1970, Rep. TR 00.2043,

G. H. Golub and C. van Loan, Matrix Computation.
The Johns Hopkins Univ. Press, 1989.

D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Comput. Surveys, vol. 23, no. 1, pp.
548, 1991.

Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A
Foundation for Computer Science. Reading, MA: Addison-Wesley,
1989.

L. Guerra, M. Potkonjak, and J. Rabaey, “High level synthesis for
reconfigurable datapath structures,” in IEEE Proc. ICCAD, 1993, pp.
26-29.

Menlo Park,

Baltimore, MD:

, “Concurrency characteristics in DSP programs,” in 1994 Int.
Conf. Acoustic, Speech, Signal Processing, vol. 2, 1994, pp. 433-436.
K. Hwang, Computer Arithmetic: Principle, Architecture, and Design.
New York: Wiley, 1979.

Z. Igbal, M. Potkonjak, S. Dey, and A. Parker, “Critical path mini-
mization using retiming and algebraic speed-up,” in ACM/IEEE Design
Automation Conf., 1993, pp. 573-577.

R. Karri and A. Orailoglu, “Transformation-based high-level synthesis of
fault-tolerant ASIC’s,” in Design Automation Conf., 1992, pp. 662-665.
D. E. Knuth, The Art of Computer Programming: Volume 2: Seminumer-
ical Algorithms Reading, MA: Addison-Wesley, 1981, 2nd edition.
D. Ku and G. De Micheli, Constrained Synthesis and Optimization of
Digital Circuits from Behavioral Specifications. Boston, MA: Kluwer
Academic, 1992.

[36]

[37]

[38]
[39]

[40]

[41]

[42]
[43]

[44]
[45]
[46]

47
(48]
[49]

[50]
[51]
[52]
[53]
[54]
[55]

{561

{571

[58]
[591
[60]

[61]

[62]
[63]

[64]
[65]
[66]

U. W. Kulish and W. L. Miranker, “The arithmetic of the digital
computer: A new approach,” SIAM Rev., vol. 28, no. 1, pp. 1-36,
986.

D. A. Lobo and B. M. Pangrle, “Redundant operator creation: A
scheduling optimization technique,” in 28th Design Automation Conf.,
pp. 775-778, 1991.

0. L. MacSorley, “High-speed arithmetic in binary computers,” Proc.
IRE, vol. 49, no. 1, pp. 67-91, 1961.

D. J. Magenheimer, L. Peters, XK. Pettis, and D. Zuras, “Integer mul-
tiplication and division on the HP precision architecture,” in 2nd Int. -
Conf. Architectural Support Programming Languages Operating Systems
(ASPLOS 1), Washington, DC: IEEE Computer Soc. Press, 1987, pp.
90-99.

D. J. Magenheimer, L. Peters, K. Pettis, and D. Zuras, “Integer multi-
plication and division on the HP precision architecture,” IEEE Trans.
Comput., vol. 37, pp. 980-990, 1988.

P. Mazumder and J.-S. Yih, “Neural computing for build-in-self-repair
of embedded memory arrays,” in Int. Symp. Fault-Tolerant Computing,
Chicago, IL, 1989, pp. 480-487. '

W. M. McKeeman, “Peephole optimization,” Commun. ACM, vol. 8,
no. 7, pp. 443-444, 1965.

D. E. Muller, “Application of Boolean algebra to'switching circuits
design and error detection,” IRE Trans. Electron. Comput., vol. 3, no.
6, pp. 6-12, 1954.

1. Nakata, “On compiling algorithms for arithmetic expressions,” Com-
mun. ACM, vol. 10, pp. 492-494, 1967. '

K. K. Parhi, “Algorithm transformation technique. for concurrent pro-
cessors,” Proc. IEEE, vol. 77, pp. 1879-1895, 1989.

J. O. Penhollow, “Study of arithmetic recording with applications in
multiplication and division,” Ph.D. dissertation, Univ. Illinois, Urbana,
Sept. 1962.

M. Potkonjak and J. Rabaey, “Optimizing resource utilization using
transformations,” in IEEE ICCAD9], Santa Clara, CA, 1991, pp. 88-91. .
, “Maximally fast and arbitrarily fast implementation of linear
computations,” in JCCAD-92, 1992, pp. 304--308.

J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast prototyping of
data path intensive architecture,” IEEE Design Test, vol. 8, pp. 40-51,
1991.

K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advan-
tages, Applications. Boston, MA: Academic, 1990.

R. R. Redziejowski, “On arithmetic expressions and tress,” Commun.
ACM, vol. 12, no. 2, pp. 81-84, 1969.

L S. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” IRE Trans. Electron. Comput., vol. 4, no. 1, pp. 38-49, 1954.
M. Y. Rhee, Error-Correcting Coding Theory. New York: McGraw-
Hill, 1989.

G. W. Reitwiesner, “Binary arithmetic,” in Advances in Computers.
New York: Academic, 1960, vol. 1, pp. 261-265. .
J. E. Robertson, “Theory of computer arithmetic employed in the design
of the computer at the University of Illinois,” Digital Computer Lab.,
Univ. Illinois, Urbana, June 1960, File no. 319,

K. Roy and S. C. Prasad, “Circuits activity based logic synthesis for low
power reliable operations,” IEEE Trans. VLSI Syst., vol. 1, pp. 503-513,
1993.

H. Samueli, “An improved search algorithm for optimization of the FIR
coefficients represented by a canonic signed-digit code,” IEEE Trans.
Circuits Syst., vol. 34, pp. 1192-1202, 1987.

M. Schictel, “G2 blend surfaces and filling of N-sided holes,” IEEE
Comp. Graphics Appl., vol. 13, pp. 68-73, 1993.

R. Sethi and J. D. Ullman, “The generation of optimal code for
arithmetic expressions,” ACM, vol. 17, no. 4, pp. 715-728, 1970.

M. B. Srivastava and M. Potkonjak, “Transforming linear systems for
joint latency and throughput optimization,” in EDAC-94, 1994, paper
5B-2, pp. 267-271. ’

A. S. Tanenbaum, H. van Straven, and J. W. Stevenson, “Using peephole
optimization on intermediate code,” ACM Trans. Programm. Languages
Syst., vol. 4, no. 1, pp. 21-36, 1982.

W. M. Waite and G. Goos, Compiler Construction.
Springer-Verlag, 1984.

R. A. Walker and D. E. Thomas, “Behavioral transformation for algo-
rithmic level IC design,” JEEE Trans. Computer-Aided Design, vol. 8.
pp. 1115-1127, Oct. 1989. :

R. A. Walker ‘and R. Camposano, A Survey of High-Level Synthesis
Systems. Boston, MA: Kluwer Academic, 1991.

S. Wolfram, Mathematica: A System for Doing Mathematics by Com-
puter. Redwood City, CA: Addison-Wesley, 1991.)

W. Wulf, R. K. Johnson, C. B. Weinstock, S. O. Hobbs, and C.
M. Geschke, The Design of Optimizing Compiler. New York: North
Holland, 1975.

New York:

POTKONJAK et al.: MULTIPLE CONSTANT MULTIPLICATIONS

Miodrag Potkonjak received the Ph.D. degree in electical engineering and
computer science from the University of California, Berkeley, in 1991.

He joined the VLSI CAD Department in Computer and Communication
Rescarch Laboratories, NEC USA, Princeton, NJ in October 1991. Since
September 1995, he has been an Assistant Professor with the Computer
Science Department at the University of California, Los Angeles. His research
interests include computer aided systems and IC synthesis and analysis,
integration of computations and communications, experimental applied al-
gorithmics, and DSP and communications VLSI design.

Mani B. Srivastava received the B. Tech. from LLT. Kanpur. He received
the M.S. and Ph.D. degrees from the University of California, Berkley.

He is a member of the Technical Staff in the Networked Computing Re-
search Department of Bell Laboratories (research arm of Lucent Technologies,
formerly part of AT&T) Murray Hill, NJ, where his primary research is in the
area of mobile and multimedia networked computing systems. His research
interests include DSP and low power systems.

165

Anantha P. Chandrakasan received the B.S., M.S., and Ph.D. degrees in
electrical engineering and computer science from the University of California,
Berkeley, in 1989, 1990, and 1994, respectively.

Since September 1994, he has been the Assistant Professor of Analog
Devices Career Development with Electrical Engineering at the Massachusetts
Institute of Technology, Cambridge. His research interests include the ultralow
power implementation of custom and programmable digital signal processors,
wireless sensors and multimedia devices, emerging technologies, and CAD
tools for VLSI. He is a coauthor of Low Power Digital CMOS Design (Kluwer
Academic).

Dr. Chandrakasan has received the NSF Career Development Award, the
IBM Faculty Development Award, and the JEEE Communications Society
1993 Best Tutorial Paper Award for the JEEE Communications Magazine
paper entitled, "A Portable Multimedia Terminal."

