Optimizing Resource Utilization using Transformations

Miodrag Potkonjak

Jan Rabaey

Department of EECS
University of California, Berkeley

ABSTRACT

The goal of the high level synthesis for real time applications is to
minimize the implementation cost, while still satisfying all timing
constraints. We present how a combination of two transforma-
tions, being retiming and associativity, can help to further this
goal. Since the minimization problem, associated with those
transformations, is NP complete, a new fast, globally optimal iter-
ative improvement probabilistic algorithm has been developed.
The effectiveness of the proposed algorithms and the transforma-
tions will be demonstrated using standard benchmark examples,
with the aid of statistical analysis and through a comparison with
estimated minimal bounds.

1 INTRODUCTION

The goal of the high level synthesis for application specific inte-
grated circuits is to translate the specification of the algorithm
(defined in terms of its behavioral semantics as well as its perfor-
mance requirements) into architectural primitives (being an inter-
connection of execution units, memory and control units) in such
a way that the resulting silicon implementation minimizes a cer-
tain function. Most often this function is either the area and/or the
power consumption.

Unavoidable high level synthesis tasks comprise module and
clock selection, scheduling, assignment and allocation. However,
even when the highest quality algorithms are used for those tasks,
the quality of a final result is often constrained by the computa-
tional structure of the specified algorithm.

Figure 1: Biquadratic filter (a) before and (b) after retiming for
resource utilization

This is illustrated using the example of Figure 1a.This Figure
shows a direct form II biquadratic section often used in the real-
ization of IIR filters. Assume that at most 4 clock cycles are avail-
able for the execution of this flow graph and that both
multiplication and addition take a single clock cycle. The critical
path of this computational graph equals four clock cycles as well.
A potential schedule for this filter, requiring a minimal amount of
hardware (for the sake of simplicity we will address only execu-
tion units here), is shown in Table 1. Regardless of the scheduling
technique used, we need at least 2 multipliers, since the graph
contains 4 multiplications and no multiplications can be sched-
uled in the last control cycle.

Also, since no addition can be executed in the first control cycle,
2 adders are needed. If we define the resource utilization as the
ratio of the number of cycles a resource is exploited over the total
number of available cycles, then the resource utilization for
adders and multipliers in this example is 50%. This is an indica-
tion of a relatively low quality solution, in this case caused by the
inherent structure of the computational graph.

Transformations are the convenient way to defeat these resource
utilization bounds. Two particularly effective transformations to
achieve this goal are retiming and associativity. Retiming uses

88

CH3026-2/91/0000/0088/$01.00 © 1991 IEEE

the distributivity property of the delay operator over most other
operators. In other words, when D is defined as the delay opera-
tor, the statement D(a) * D(b) is equivalent to D(a * b) and vice
versa (with * an arbitrary operator).

BEFORE AFTER
CYCLES | Multipliers [ Adders | Multipliers | Adders
1 34 - 1 8
2 12 3 6
3 - 6 4 7
4 - 7.8 2 5

Table 1: Possible biquadratic filter schedule before (a) and after
(b) retiming

Consider now the flow graph, shown in Figure 1b, obtained by
moving the delays (retiming) in the original flow graph of Figure
la. It is to check that the resulting graph has the same input/output
relationship as the graph of Figure 1a.The resource utilization is
far more balanced and a solution with one multiplier and one
adder can now be achieved as shown in Table 1. The resource uti-
lization for the execution units now equals 100%.

The above example illustrate that while transformations are not
necessary for a bare minimum high level synthesis system, they
are essential when trying to achieve a high quality solution (or
even just a feasible solution).

While the basic synthesis operations, especially scheduling [11],
have been the subject of extensive research efforts, transforma-
tions have received significantly less attention. Most synthesis
systems apply only the basic software transformations, such as
dead code elimination, manifest expression removal and common
sub-expression elimination [18, 20]. Also pipelining is very often
applied [14). Although pipelining is very powerful, it is not a
transformation in the strong senses, since it increases algorithm
latency. It application domain is also limited to non-recursive
algorithms [12].

Retiming has been successfully applied in several areas of
Design Synthesis. Until recently, it has been exclusively used
either to reduce the critical path in a circuit or graph [9], to mini-
mize the number of delays in the graph {9, 3] or to optimize
sequential networks using combinational logic tools by te;

moving delays to a periphery of a network [10]. The retiming for
resource utilization transformation was introduced by the authors
[15].

Associativity is most often used in conjunction with distributivity
for a reduction of the critical path. Valiant [19] and Miller [13]
presented optimal polynomial time complexity algorithms for
critical path minimization. In high level synthesis, it has been
used for the optimization during pipelining [e.g. 5.

2 PROBLEM FORUMLATION

The resource utilization U, for a resource r can be defined as the
ratio of the number of control steps in which the resource is used
over the total number of control steps available. The total
resource utilization U, of a design can then be defined using the
formula:

Uior = ’EZRerr



R is the set of hardware resources used. The weights w, are pro-
portional to the hardware cost of the resource. The cost of a
design is inversely proportional to the resource utilization.
Achieving a high resource utilization is in general equivalent to
achieving a small design cost. During the design optimization
process however, it is easier to measure (or estimate) the resource
utilization than the actual hardware cost.

The problem discussed in this paper can now be defined as a con-
straint satisfaction problem

Given: A data control flow graph (DCFG) and a proposed hard-
ware architecture.

Goal: Apply retiming and associativity in a such a way that the
resource utilization of the resulting data control flow graph is
maximized.

The solution to the above problem can be used as a subroutine to
address both the hardware minimization problem formulation
(given the time constraints) as well as the time minimization for-
mulation (given the available hardware).

3 OBJECTIVE FUNCTION

Our goal is to apply retiming and associativity to achieve a high
resource utilization (measured over all resources, being execution
units, memory and interconnect). A good objective function
should therefore be highly correlated to the final (unknown) hard-
ware utilization. The objective function also should be easy to
compute, since, as shown in [15], it is used in the optimization of
an NP-complete problem, and it has to be evaluated many times.
A simple yet effective objective function can be constructed,
based on the following observations:

(1) It is easier to achieve a high resource utilization when the
timing constraints on DCFG nodes are not strict;

(2) It is advantageous to distribute DCFG nodes vying for the
same resource (which might be, for example, adder or a par-
ticular register file) over the time span;

(3) The critical path should be shorter than the available time;

(4) The number of variables which are alive at the same time,
should be smaller than the number of available registers.

Those observations can be quantized in the following way: Any
operation A has to be scheduled in the interval between its As
Soon As Possible (ASAP,) and its As Late As Possible (ALAP,)
times. Those times can be easily computed, using leveling
according to the input and to the output. The slack of a node is
defined as the difference between the ALAP and ASAP times,
incremented by 1. A DCFG with a lot of operations with a small
slack represents a highly constrained scheduling problem, which
often results in a poor resource utilization. However, even when
the average slack is high, scheduling can still be difficult to
achieve if a number of DCFG nodes with a very small slack are
present. Therefore, in order to properly determine the expected
difficulty and the number of constraints during scheduling we
define for each DCFG node property a measure, called the
expected scheduling difficulty (SD). SD is defined as the inverse
of the slack. The total scheduling difficulty of a DCFG, composed
of the node-set 3, is defined as the sum of the scheduling difficul-
ties over all DCFG nodes:

1
5D AE’SALAPA - (ASAP,-1)
At the same time, it is important, that operations which can com-
pete for the same resource (same type of execution unit, same
interconnect, or registers in the same register files) are not hap-
pening simultaneously. The probability, that two operations A and
B which require the same type of resource will happen simulta-
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neously and therefore during assignment will require another
instance of this type of resource, is proportional to the overlap of
their ASAP-AL AP intervals (OAg). This probability can therefore
be approximated using the following for-
mula:OL,p = O,p/ (SL,xSLgxXIR,p) where SL, is the
slack of operation A, SL; is the slack of operation B, and IR, is
number of resources of this class. A total overlap measure, called
TOL, is defined over the set S of all nodes of the graph:

TOL = oL
AeS,BeS,A»B AB

The retiming and associativity transformations may also change
the critical path of the graph. Obviously, no feasible schedule
exists if the critical path is longer than the available time. Further-
more, retiming changes the number of delays in the graph. All
variables which are associated with delays must be stored simul-
taneously (during the first cycle) in registers. No feasible schedule
is available if the number of delays exceeds the max bound on the
number of registers. Both the critical path and the number of
delays, are incorporated in the objective function, such that it
becomes infinity when one of those constraints is violated. Our
experience furthermore indicates that a correlation exists between
the number of delays and the number of registers required. There-
fore, it is useful to add the number of delays (ND) to the objective
function as a measure of the total register cost. All those factors
can now be combined into the global objective function (OF):

0F={

Weight factors can be explicitly set by the user. For example, a
relatively large o, often results in fewer registers, but more inter-
connect and execution units. For all examples discussed in the
experimental section, we used the following default set-
tings:ct1 = 0.8, a, = 0.1, o, = 0.1

i, >available time

oo, if 4,
or ND>number of registers

o, XTSD +a,xTOL+0a,;xND, otherwise

The close correlation between our objective function and the
quality of the obtained solution is depicted in Figure 2 for the
example of an 11th order FIR filter. The x-axis shows the value of
the objective function, while the y-axis respectively contains the
corresponding number of control steps, necessary to execute the
graph on a fixed amount of hardware (as determined by the sched-
uling process) (Fig. 2a) or the amount of hardware needed to exe-
cute the graph in a fixed amount of time (here 13 cycles) (Fig.
2b). It is easy to observe that a small value of the objective func-
tion invariantly predicts a high quality solution.
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Figure 2: Correlation between Objective Function and Solution
Quality

4 LEARNING WHILE SEARCHING ALGORITHM
While the traditional retiming problems (for critical path and min-

imum number of delays) have a polynomial complexity, we have
proven that the retiming for resource utilization algorithm is an



NP-complete problem [15]. It is therefore very unlikely that a
worst case polynomial complexity algorithm exists.

In order to efficiently solve the problem, a new probabilistic itera-
tive improvement algorithm, learning while searching, has been
developed.

Two classes of basic moves can be defined, being retiming and
associativity moves. The retiming move was discussed in the first
section.

In order to enhance the power and the application range of asso-
ciativity, we have expanded its definition, such that it addresses
several additional cases, not covered by the standard definition.
The generic associativity move corresponds to entry 1 in Table 2.
The basic moves have been extended with 6 additional transfor-
mations, as shown in Table 2. Cases 3 and 4 are especially inter-
esting, since they allow to trade off between respectively the
number of additions and subtractions and the number of multipli-
cations and divisions in the DCFG.

entry || initial |twansformed}l initial |transformed
1 ar(b+c) | (a+byc || a*(b*c) | (a*b)*c
2 atbc) | (atb)c || a*(blc) (a*b)/c
3 a{b+c) | (ab)}c [ alb*c) | (ab)c
4 abc) | (a-b)+c { allbic) | (ab)*c

Table 2: Basic Associativity Moves

When applying the above transformations on a typical example, a
large number of moves are possible at every point in time. As
even more basic moves might be introduced in the future, time-
efficient algorithms are definitely necessary. We first tried the
popular Simulated Annealing [7] technique. Although the results
were satisfactory, the run times were excessive for large exam-
ples, even when adaptive cooling [1] and a rejectionless approach
[15] were applied. Therefore, we decided to use a new and faster
probabilistic approach.

The new technique is organized as a two phase process. In the
first phase, the solution space is scanned in an organized fashion
to detect areas where the objective function has a small value.
Those areas are used in the second phase as the starting points for
a more elaborate search towards a final solution.

The goal of the first phase is thus to discover (learn) k solutions
where the objective function has a small value. In order to achieve
this goal, we will traverse the search space a number of times,
each time favoring one particular direction of traversal. For
instance, we will first (probabilistically) favor moves in the for-
ward direction (moving the delays from the inputs to the outputs
for the retiming and favoring the forward associativity moves).
After 1/4 of the optimization process, the preferred direction is
reversed: moving the delays from output to input as well as the
reverse associativity moves are now probabilistically favored.
Finally, for the last 1/4 of the time, the forward moves are favored
anew.

At every point in the optimization process, we select a move in a
probabilistic fashion, proportional to the improvement in the
objective function, while also accounting for the favored direction
at that time. No selected moves are ever rejected. Moves, which
increase the objective function, can be selected, but the changes
for this to happen are inversely proportional to that increase. To
increase the speed of the design space search, we decided to eval-
uate the objective function only every four steps, resulting in a
speed-up of approximately four times. This is acceptable, since
neighboring solutions in the design space (solutions which can be
reached in at most m moves) tend to display a strong correlation

in their objective function values. Since the exact location of a
local minimum is only determined in the second phase, no degra-
dation of the solution quality was observed as a result of this sim-
plification.

Table 3 shows the minimum, average, and maximum correlation
among neighboring solutions for several examples.

m 1 2 3 4 5 6
min | 0971 | 0932 | 0919 | 0.902 | 0.866 | 0.808
average| 0978 | 0952 | 0927 | 0.909 | 0.878 | 0.841
max | 0994 | 0978 | 0959 | 0.932 | 0.907 | 0.879

Table 3: Correlation among solutions on distance of m moves

The first phase results in k starting points for the second phase.
Those are used as the seeds for a greedy search towards the final
solution. The objective function is now observed at each step and
for all possible moves. The move offering the best decrease in the
objective function is automatically selected. For each starting
point, the search is concluded when a local minimum is reached.
The best of those minima is selected as the final solution. We have
set the number of starting points k to 10 for the examples, dis-
cussed in the next section. The length of the first phase was set
such that the number of moves during the first forward traversal
equaled 10 times the number of nodes in the graph. Moves in the
forward direction were preferred with a ratio 4:3. We have varied
these values of large ranges and did not notice any significant
changes in the quality of the solution, although the effects on the
run time were outspoken. The presented approach can easily be
augmented with a cooling mechanism (phase 1) or backtrack-
ing.Experiments have shown however that those extensions do
not produce any improvements and have a detrimental effect on
the run time.

Itis interesting to notice that the presented approach resembles, to
some extent, the simulated annealing approach [7] as well as the
Kemighan-Lin iterative improvement approach [6]. When only
the second phase is applied, the approach is equivalent to Ker-
nighan-Lin (which was almost uniquely used for partitioning
problems until now). While phase 1 uses an iterative, probabilis-
tic improvement technique, just as simulated annealing, some
major differences with the annealing approach can be observed:
First of all, the presented technique uses a directed search, while
annealing executes random moves. The major difference however
is the combination of probabilistic exploration and greedy solu-
tion generation.

S EXPERIMENTAL RESULTS

The ultimate proof of the usefulness and effectiveness of a pro-
posed transformation or optimization algorithm is to apply it on
real life examples. We have applied our technique on 40 DCFGs,
which include common DSP, communication and error-correcting
code examples (such as FIR, IR, adaptive and wave digital filters
and simultaneous polynomial division and multiplication). For
each of those examples, we varied the available time. We also
varied the relative execution lengths of the operators (such as
shifts, adds and multiplications).

The primary objective was to measure how much hardware can
be saved if the transformation is applied. A secondary task was to
evaluate the potential of the transformation to minimize the exe-
cution time of an algorithm without increasing the latency (in
contrast to pipelining). While improvements in execution units
and memory cost can be measured exactly, the cost of intercon-
nect could only be estimated, since precise numbers are only
available after time consuming tasks such as floorplanning and
routing. We have compared the interconnect cost based on the
number of busses and assuming that all busses have the same
cost.The ratio of the implementation cost after the application of



the transformation over the cost of the initial implementation for
benchmark examples are shown in Table 4.

Comparing the final solution with the initial DCFG, provided by
the designer, has only a limited significance, since this highly
depends on the amount of manual optimization, applied by the
designer. We therefore compared the cost of the generated solu-
tions against the cost of a 20 random solutions (generated by ran-
domly applying retiming and associativity moves) as well. The
average and median savings against the initial implementation
and the random implementation are tabulated in Table 4.

EXU MEMORY INTERCONNECT
Random | Initial |Random | Initial |Random | Initial
average | 40.1 325 254 23.6 338 29.7
median [ 28.5 333 26.6 2.2 36.6 30.0

Table 4: Savings against the Initial and Random Implementations
(in%)

The generation of the above results required the use of a particu-
lar set of scheduling, assignment and allocation tools. Since those
problems are NP-complete as well, it might be argued that the
obtained improvements were not the result of the transformation
on itself, but are due to the fact that the heuristic scheduler per-
formed better on the transformed graphs. This argument can be
discarded using the following simple procedure. For each
instance of a DCFG, it is possible to establish sharp minimum
bounds on the resources, by using the facts that during some con-
trol steps no candidates are available for scheduling [17]. These
bounds can not be outperformed, regardless of the used schedul-
ing, If the application of the transformations results in a decrease
of those bounds, then this improvement is a pure consequence of
the transformations. The values of the median, average, maxi-
mum improvement for execution units area respectively equal
21.6%, 21.7% and 47.1%. Only once was the min bound not
reached.

To evaluate the effects of the transformation on a well known
benchmark, we have applied the technique on the popular 5th
order elliptical wave digital filter example. The results are tabu-
lated in Table5 for the available times ranging from 15 to 19 clock
cycles (in correspondence with the standard benchmark, we
assume that a multiplication and an addition take respectively 2
and 1 clock cycle). As can be observed from the table, the average
hardware savings due to the transformations are impressive. Also
interesting to notice is that the fastest solution after retiming for
critical path still needs 16 clock cycles [Har89]. The combination
of retiming and associativity succeeds in producing a solution
which requires only 15 cycles.

15|16117} 18

3/2
2/2

Number of Control Steps 19

BEFORE
AFTER

# of adders / # of multipliers
# of adders / # of multipliers

NA
3/3

NA
2/2

3/3
2/2

2/2
2/

Table 5: Number of adders and multipliers used for Implementa-
tion of 5th Order Elliptical Filter before and after applying retim-
ing and associativity

The effectiveness of the algorithm is illustrated by the fact that,

even for graphs with several hundred nodes, the run time was
shorter than one minute.

The proof that retiming for resource utilization is NP-complete
problem, the rationale why it is necessary to combine associativ-
ity and retiming in order to better explore their potentials as well
as the number of other interesting properties of proposed transfor-
mation are discussed in detail in [16].
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6 CONCLUSIONS

A transformational approach, aimed at improving the resource
utilization in high level synthesis, has been introduced. The cur-
rent implementation combines retiming and associativity in a sin-
gle framework. This combination of transformations results in
considerable area improvements as is amply demonstrated by the
benchmark examples. A novel learning while searching iterative
improvement probabilistic algorithm has been developed and is
used to resolve the associated NP-complete combinatorial optimi-
zation problem. The proposed algorithm has proven to be very
effective both in reaching the optimal solution as well as in run-
time.
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