Behavioral Synthesis of High Performance, Low Cost, and Low
Power Application Specific Processors for Linear Computations

Miodrag Potkonjak
C&C Research Laboratories, NEC USA, Princeton, NJ

Mani B, Srivastava
AT&T Bell Laboratories, Murray Hill, NJ 07974

Abstract

Throughput has been widely traditionally recognized as the most popular performance metric for imple-
mentation of application specific computations. However, increasingly applications such as embedded
controllers impose constraints on both throughput and latency as important metrics of speed. Although
throughput alone can be arbitrarily improved for several classes of systems using previously published
techniques, none of those approaches are effective when latency constraints are considered.

DSP, communications, and control systems are often either linear, or have subsystems that are linear.
Recently, an optimal technique for simultaneous optimization of throughput and latency of linear compu-
tations was introduced in [Sri94]. However, in many cases this technique introduces significant area over-
head. In this paper we apply certain key aspects of that technique (on-arrival-processing and maximally
fast implementation of linear computations) with exploration of state-space based transformations to
develop four synthesis techniques which generate high throughput, low latency, low area, and low power
application specific processors for the special case of single input linear computations. The new transfor-
mation techniques can also be used to increase the implementation efficiency while achieving the same
latency and throughput as the original design - we obtained large improvements in area and power on
many benchmarks when using the proposed transformations in this alternate role.

1.0 Introduction

Throughput has been widely traditionally recognized as the most popular performance metric
for implementation of application specific computations. Many algorithm transformation tech-
niques have been developed to obtain high-throughput implementations of such computation
[Kun88, Par89a, Par89b, Par89c, Fet91, Pot92]. Transformations such as lookahead, unfolding,
retiming, and algebraic manipulations restructure the original computation algorithm to an
equivalent algorithm that can achieve higher throughputs - in some cases even arbitrarily high
throughput - although most often at the cost of increased implementation cost and latency
[Par89c, Pot91].

However, increasingly application specific computation are used in systems where both
throughput and latency are of importance [Par93, Sta88]. An example is DSP subsystems used
in hard real-time embedded systems where the reactive nature of the system imposes hard con-
straints on throughput as well as latency. For instance, in an embedded system controlling an
industrial process, not only does it have to keep up with the rate of arrival of sensory data, but
also has to generate the corresponding output within a certain period of time. A proper address-
ing of these hard real-time constraints is widely recognized as one of the most important
research issues [Par93, Sta88].

Although throughput alone can be improved using previously published techniques, only one
of them {Sri94] is effective when latency constraints are simultaneously considered. However,

1063-6862/94 $4.00 © 1994 IEEE

45

46 International Conference on Application Specific Array Processors

the technique in [Sri94], while general in its scope, often results in high area overhead. In this
paper we present new techniques for the special case of single-input linear time-invariant sys-
tems with zero initial state. These techniques produce solutions with good latency-throughput
characteristics, while also significantly reducing area and power requirements.

1.1 Related Work

Transformations have been used for optimization of a variety of performance parameters in a
number of engineering and scientific domains, including databases, compilers, and numerical
and DSP and communication related computations [Par89c, Fis91]. Two main streams of efforts
can be recognized in the application of transformations for optimization of application specific
processors. The first group of researchers, primarily from the VLSI DSP community is mainly
targeting the application of sophisticated and hand tailored transformations procedures on
important instances of application specific computations [Fet91, Par89a, Par89b]. The second
group addresses the problem from the high level synthesis viewpoint, and aims for the develop-
ment of generic algorithms and complete software platforms which automate the transforma-
tional synthesis process in a wider class of computations [Wal91, Pot92].

While transformations have been used for the optimization of a number of goals, including
throughput, area, power, permanent and transient fault-tolerance, and testability overhead, only
recently, with a growing widespread recognition of the importance of embedded computations,
has joint optimization of latency and throughput been addressed.

2.0 Problem Description

The starting point for the optimization of latency and throughput is the following set of equa-
tions which describes an arbitrary linear computation. Note that any linear computation can be
easily transformed to this form using, for example, the procedure for maximally fast implemen-
tation of linear computations {Pot92].

S[n] = AS(n-1] + BX[n} (EQ1)
Y[n] = CS[n-1] +DX[n)
ne {0,1,2,3,...} X[n] € RF*! S[n] € REx1 Y{n] e R2x1

Ae REXR Be RRxP Ce ROxR D e R2xP S[-1] € RRA1

We also assume, without loss of generality, that addition takes one control steps, while each
multiplication takes m control steps for execution. In a recent paper [Sri94] we described a tech-
nique to transform a linear time invariant control data flow graph (LTI CDFG) to satisfy, if feasi-
ble, arbitrary simultaneous constraints on latency and throughput. While the technique presented
in [Sri94] is completely general in that it produces guaranteed results and is applicable to any
LTI CDFG, the technique, and the theory behind it, do not make use of the values of the coeffi-
cients in the initial state-space equation - the four coefficient matrices A , B, C,and D in
(EQ 1) were assumed to be absolutely arbitrary. In the work presented here our goal is to take
advantage of the coefficient values. In particular, coefficients that are 0 need not be considered,
and coefficients that have magnitude 1 need not be multiplied. Consequently, it may indeed be
possible to achieve combinations of throughput (Ts) and latency (Tp) that the technique from
[Sri94] fails to achieve. Further, the knowledge about 0 and 1 coefficients may also be used to
obtain more cost efficient implementations - for example, it may be possible to achieve a combi-
nation of Tg and T with a smaller unfolding factor than is predicted by the algorithm in [Sri94],
or it may be possible to use simpler transformations.

Session M-3: CAD I 47

Taking advantage of coefficients with values O and 1 is, unfortunately, extremely difficult -
the mathematical analysis becomes intractable - unless there is some regularity and mathemati-
cal structure to the location of these coefficients in the matrices A, B, € ,and D. Of course
there is no such regularity or structure in the general case of a LTI CDFG. However it is well
known in DSP and Linear System Theory that a special case of these LTI CDFGs, namely LTI
CDFGs with single-input and zero initial state can always be transformed to certain standard
(canonical) CDFG structures [Del88, Rob87]]. Since throughput and implementation cost (area,
number of operations) have been the more popular metrics in traditional DSP, these standard
CDFG structures have been developed and analyzed with those two metrics in mind - latency
has been overlooked. Some of these standard forms either have good latency and throughput
characteristics at low cost, or are good starting points to apply some of the techniques of [Sri%4],
such as algebraic transformation, unfolding, on-arrival processing, maximally fast computation,
and skew between the arrival of the input and the state, to obtain solutions with low latency and
high throughput at a low cost. On-arrival processing is a technique were input samples corre-
sponding to different iterations after loop unfolding are processed as soon as they arrive [Sri94],
unlike what is done in block processing were sample are initially buffered [Par89a, Par89b,
Par89c].

In this paper we describe four techniques that are based on the approach of first converting a
single-input single-output LTI CDFG with zero initial state (a single-input multiple-output
CDFG can be treated as a collection of multiple single-input single-output CDFGs) into one of
the standard forms, and then applying a fixed sequence of transformations to yield cost efficient
solutions with good (often optimal) throughput and latency characteristics. Since a large fraction
of applications (e.g. many filters and controllers) are single-input, these techniques can indeed
be useful in a variety of designs.

3.0 Transformation Techniques for Simultaneous Improvements in Latency,
Throughput, Area and Power

Technique #1: Modified Direct Form Il

We begin by describing a technique that is based on the well known standard form: Direct
Form II. Any single-input single-output LTI CDFG with zero initial state can be transformed to
the Direct Form II (shown in Figure 1(a)) using the following steps:

Step 1: Transform the given single-input single-output zero initial state LTI CDFG into state
space equations, as in (EQ 1), characterized by P=1, Q=1, R, A, B, C, and D. P is the number of
inputs, Q is the number of outputs, and R is the of states in the linear computation.

Step 2: Taking the Z-Transform of the two state space equations, calculate the Transfer Func-
tion H(z) = Y(z)/X(z). The zero initial state condition is required for this step.

_Y(z) Cadjzl-A)B

H() = g5 = Cal-A)1B+D = 22 +D (EQ2)

It is clear that H(z) will be a ratio of two polynomials in z, and can be expressed as:

N .
oz
Y i=
H(z) =x8 - gﬁ By %O, N<R EQ3)
-z

i=0

i

48 International Conference on Application Specific Array Processors

Step 3: Taking Inverse Z-Transform, the time-domain equations corresponding to (EQ 3) are:

Yin) %(a”“]xt] i[B”-‘]Yl] EQ9)
n| = n-i| + B n-i
i=0 By iml By
Comparing (EQ 8) to the CDFG for the Direct Form I structure in Figure 1:(a) it follows that
the coefficients in the Direct Form II structure can be expressed in terms of the coefficients of the
numerator and denominator polynomials of H(z) as below:

g =Nt p=NJ jelLNjeON (EQ5)

The Direct Form II structure is widely recognized as a low-throughput, high-latency, high-
cost structure, and does not appear to be particularly useful - in the general case of arbitrary
coefficients this structure has latency 7, = 2m+N+1 and sample period Tg = m+N . How-
ever, we found that a simple and fixed sequence of transformation steps can yield a modified
structure that has latency 7, = m+1 and sample period 7= m+2 . By way of compari-
son, the general technique presented in [Sri94] can achieve T, =m+1 forall Tg22 , and

X2 e »Y
_’D——} {—v
ifby1=0
COEFFICIENT
SCALING
@ (L]
if by == (@ RETIMING RETIMING
Y Y
by by/bg

d) ©

FIG. 1. Transforming Direct Form I/ to a Low Latency and High Throughput Structure

Session M-3: CAD I

T, =m+2 at T;=1 forthe single-input case. The algorithm to modify the Direct Form II
structure is as below.

Step 1: If the coefficient b0 in Figure 1(a) is not equal to 0, we first apply a coefficient scaling
transformation to obtain the CDFG in Figure 1(b), and then apply a sequence of retiming steps
that move the delay nodes in the middle branch of the CDFG to two sides as in Figure 1(c).

If the coefficient b0 in Figure 1(a) is equal to 0, we remove the corresponding multiplication
node and directly apply a sequence of retiming steps to move the delay nodes in the middle
branch of the CDFG to the two sides as shown in Figure 1(d).

Step 2: We convert the CDFG obtained in Step 1 into the state space representation. The state
space equations for the case 5,20 are:

4 10..0000..0]| (54a,]
4 01..0000..0 bya,
00..0000..0 b
Sty =| Sin=1] + | " x[n]
(b/b) 00..0010..0 b, (EQ6)
(by/by) O 000 b,
(by/bg) 0 0 .. 0 0 0 0.0 by
Yin) = [10..010.. gSIn-11 +[b]X(n]
and, the state space equations for the case b, = 0 are:
[, 10..0000..0] (a,]
ay 0 000..0 a,
0..0000..0
stn = |°¥ Stn-11 +| "X n]
;00 ... 0 10 b, EQN
5,00 ..000 1 ,
by © 0 .0 000 .. 0 by

Yinl = [00..010..0Sln-11+[gXInl

Step 3: Apply maximally fast linear computation transformation [Pot92] - the resulting
latency and sample period willbe T, =m+1 and Tg=m+2 forthe case ;=0 , and
T, =0 and T;=m+2 forthecase b, =0 .

Note that most multiplications in the structures in Figure 1(c) (for 5,=0) and in Figure 1(d)
(for b, = 0) are of different constant coefficients with the same variable. By transforming
those multiplications to the bit-level, and assuming that word length is W, the multiplications
with the various coefficients can all be done using only W shifts regardless of the values of the
coefficients.

49

50 International Conference on Application Specific Array Processors

Technique #2: Modified Direct Form |l with One Level of Unfolding + On-Arrival
Processing

This is an extension to technique #1 where we unfold once the system obtained in technique
#1, and then use maximally fast computation, on-arrival processing, and state arrival skew T;=0
toget T, =m+1 and T;=m+1 .Following are the steps corresponding to this technique:

Step 1: Unfold once the modified Direct Form II structure that was obtained in technique 1.
We consider only the case 5,0 to illustrate this technique, and obtain the following state
space representation of the once unfolded system using (EQ 8):

a?+a2 a 1..0000..0 bo("%"‘“z) byay
aa,+a; a, 0..0000..0 by(a,a, +a,) bya,
Stne1] = | YW ay 0. 0000 .0l gy, l %oy |x(n 4 [P0 xnay
(@b, +b,) /by b /by 0 ... 0 00 1..0 ab, +b, b,
(@yby+b3) /by by/by 0 .. 0 0 0 0 ... 0 a,b, + b, b(EQ 8)
(a;b) /by by/by 0 .. 0 000 .. 0 ayby L o~ |

Yin) = [10..010..qS[n-11+[p)|X(nl

Yin+1l = [(a,+5,/bg) 1.. 001 ... O]S[n=11 +[bya, + 5| XIn] + [b|X [n+1]

Step 2: Now use a combination of maximally fast linear expression computation and on-
arrival processing. Note that X[»] and S[n-1] arrive at T, X[n+1] amivesat (n+1)T; ,
S[n+1] must be calculated by (n+2)T; , Y[s] must be calculated by n»T+T, , and
Y(n+1] mustbe calculatedby (»+1)Tg+T, .Using (EQ 8)itis easy to show that the small-
est sample period at which this system is feasible are T; = m+1 , and that the corresponding
latencyis T, = m+1 (which, according to Section 6.2, is the minimum latency for a general
1-input system). As a comparison, recall that the general technique of Section 6.3 can achieve

T,=m+1 forallTg22 ,and T, =m+2 at Tg =1 forthe single-input case.

Compared to technique #1, this technique reduces the sample period by 1, achieves the same
latency, and has (8N+4) coefficients as opposed to (4N+1) for significant increase in coefficient
memory.

Technique #3: Transposed Direct Form I

This technique is based on the observation that another standard form known as Transposed
Direct Form II (also known as the Companion Form) has good latency throughput characteris-
tics. This form is shown in Figure 2:, and has sample period T;=m+2 and latency

T, =m+1 (which is equal to the minimum latency for a general single-input system). The
coefficient matrices for the corresponding state space representation are also shown in the figure.
The coefficients in Figure 2 for Transposed Direct Form I are equal to the corresponding coeffi-
cients in Figure 1:(a) for Direct Form I1, and can therefore be calculated for any single-input sin-
gle-output zero initial state LTI CDFG using (EQ 8) under technique #1. The advantage of this
structure over that obtained in technique #1 is that there are only N state nodes, as opposed to

Session M-3: CAD

b, +ab,
by +ayb, c=[10.09
B = .
D= |p
1 by_1+ay_15, I: u]
. 0 by +ayb,

FI?. 2.The g'ranaposad Direct Form li (also called Companion Form)with 7, =m+1 and
g = m+

2N. Same throughput and latency is obtained as in technique #1 with twofold savings in number
of registers used to store state variables, and only 2N+1 coefficients being required as opposed to
4N+1 resulting in significant savings in coefficient memory as well.

Technique #4: Transposed Direct Form li with One Level of Unfolding + On-Arrival
Processing

Similar to the approach used in technique #2, alatency of T, = m+1 and a sample period
of Tg=m+1 areobtained if the Transposed Direct Form II of Figure 2 is unfolded by 1, and
then implemented using on-arrival processing and maximally fast linear computation. We omit
the details since they are similar to those of technique #2 although this technique has at twofold
advantage in the number of states and a twofold advantage in the size of coefficient memory
over technique #2 for the same latency and sample period.

4.0 Experimental Results

We implemented the four techniques presented in the previous section using a software plat-
form which combines power of a high level synthesis system with a computer algebra system.
We used Maple V, a computer algebra system originally from University of Waterloo [Cha91],
with HYPER 2.1 [Rab91], a high level synthesis system from University of California, Berke-
ley. While HYPER is used for simulations and high-level synthesis tasks such as module selec-
tion, various transformations, scheduling, and allocation, MAPLE executes a script which
performs a number of transformations (such as unfolding, minimum latency transformation,
conversion to standard forms) in the described order.

Using the HYPER-Maple based software platform described in the previous section, we
tested the effectiveness of the transformation technique presented in [Sri94] and the new heuris-
tic techniques on a number of examples. The latency-throughput transformation techniques can
be used for two distinct purposes: to transform a CDFG to meet joint constraints on latency and
throughput, and to transform a CDFG so as to improve the cost of implementation at the same
latency and throughput as that of the initial CDFG. We tested new techniques in both these
modes, and the results are reported later in this section. Since we are not aware of any previous
work on algorithm transformations that simultaneously addresses latency and throughput, we are
unable to compare our results when using our transformations in the first mode, i.e. to meet con-
straints on latency and throughput. When using the transformations in the second mode - to
improve the cost of implementation for unchanged latency and throughput requirements - we

51

52 International Conference on Application Specific Array Processors

compare the cost of implementing the initial design and the final design using the HYPER syn-
thesis system.

Characteristics of the Initial CDFG
Design -
Name Description b 0 N T Ts
[cycles] [cycles]
mat 3-state 1-input linear controller 1 1 3 4 4
ellip 4-state 1-input linear controller 1 1 4 5 5
lin4 5-state 1-input linear controller 1 1 5 6 6
lin5 S-state 1-input linear controlier 1 1 5 6 6
iir5 5th order low pass elliptic wave digital IIR 1 1 5 7 9
filter
iir6 6th order lowpass elliptic cascade IIR filter 1 1 6 8 7
iir8 8th order bandpass direct form IIR filter 1 1 8 11 10
. 10th order bandstop Butterworth cascade
iir10 IR filter 1 1 10 17 15
iirl1 11th order low pass Chebyshev cascade IIR 1 1 1 19 19
filter
.. 12th order bandpass Chebyshev cascade
iirl2 IIR filter 1 1 12 20 18
steam power plant controller 1 1 5 6 6

Table 1: Characteristics of the benchmark examples

The characteristics of the examples that we tested our techniques on are shown in Table 1. All
the results in this section were obtained under assumption that both addition and multiplication
take one control step each. The area numbers were obtained using the HYPER [Rab91] synthesis
system which implements the designs as a custom chip made using a set of communicating
word-parallel dedicated datapaths that are controlled by a central finite-state machine controller.
HYPER generates the physical layout of the chips by using the LAGER silicon compilation sys-
tem [Bro92] at the backend - datapaths are generated using the datapath compiler in LAGER, the
FSM controller using the logic synthesis and tiling tools in LAGER, the datapath control logic
using standard cells, and the overall chip using the macro-cell place-and-route and pad ring gen-
erator tools that are part of LAGER. We used a 1.2 micron feature size technology for the
designs in this paper.

Table 2 presents the results obtained when the transformations described in this paper were
used in the first mode mentioned above - to simultaneously reduce latency and sample period.
The table contains the latency, sample period, and chip area for the initial CDFG as given by the
user, and the corresponding numbers obtained by the four new heuristic techniques and the opti-
mum technique from [Sri94]. The results show that both types of techniques are successful at
achieving many factors of improvement in latency and throughput, although often at an
increased implementation cost. However, the new heuristic techniques result in significant area

savings compared to the previously published techniques. For example both the new technique
H4 and the previous technique O2 produce implementation with identical latency and through-

Session M-3: CAD 1

Initial Design {Sri%4) Technique® Heuristic Techniques®
sign
ame Ty T, Ar T, [T, Ar T T Ar

[cfeled) (oheled e (cheted] ety

2,3 1551 % ; ggg

mat 4,4 14.07 22 o
2.1 3529 2.2 10.52

2.3 36.33

. 2.3 50.02 2.2 65.41
ellip 55 52.58 23 21.65
2.1 159.77 >3 e

2,3 183.85 23 ;‘3)"1)2

lind 6.6 6759 ~2 iy
2,11 242,97 > o
2,3 614.47 23 o

linS 6.6 22331 2 o
2,11 805.25 ~3 b

2,3 138.16 > ; 17135'35‘2

iirs 7,9 2892 ~2 P
2,11 215.89 23 o2

2.3 7183 >3 23;;

iir6 8,7 1090 >3 o
211 218.79 »3 2%

2,3 253.82 ~3 3‘;'(7);

iir8 11, 10 2925 >2 by
211 42401 3 aa

2.3 250.80 » e

§ir10 17,15 22.69 > s
211 566.60 >3 e

2.3 70.15

) 2.3 166.94 2.2 106.63
iir1l 19,19 20.58 23 45.57
2,11 46636 > e

Table 2: Improvements in latency and throughput of the initial design using the new heuristic
techniques of, and the optimum technique from [Sri94].

53

54 International Conference on Application Specific Array Processors

Initial Design {Sri94] Technique® Heuristic Techniques®
?fsign
ame Ty T, Are T, Are T, T, Ar
[cgeted] fmm?) (oheled (mm?] [efelef) fmm?]
2,3 317.02 2.3 104.13
. 2,2 175.51
iirl2 20,18 25.73
211 886.13 23 69.96
) 2,2 106.28
2,3 184.00 >3 Fo
steam 6,6 82.34 > :
2,11 37030 2.3 3400
? - 2,2 54.28
Table 2: Improvements In latency and throughput of the initial design using the new heuristic

techniques of, and the optimum technique from [Srig4].

a. For each example the first set of numbers corresponds to the case when the technique from [Sri%4] is used to
achieve a minimum latency system; the second set of number corresponds to the case when it is used to achieve a
maximum throughput system.

b. The four sets of numbers for each example correspond to the four special-case heuristic techniques #1, #2, #3, and
#4 respectively in the paper.

put. But, the implementation produces using the new technique are, on average, smaller by fac-
tor 3.41. The median difference is by factor 2.98 times.

Initial ':)p 1? ique? Ti;l::mics"
l;f:‘fe“ E‘; ly‘éleTSS] Design_ Area frm?] Area [g:l:ﬁ]
Area [mm~]
o1 02 H1 H2 H3 H4
mat 4,4 14.07 9.29 1115 | 962 | 984 | 531 | 647
ellip 5.5 52.58 3869 | 3740 | 23.79 | 34.07 | 15.20 | 18.37
lin4 6,6 67.59 41.14 | 4239 | 31.55 | 33.24 | 16.03 | 19.53
lin§ 6,6 22331 126.34 | 118.39 | 77.35 | 108.3 | 28.70 | 56.68
iirs 7.9 2892 28.81 4462 | 27.77 | 34.63 | 18.16 | 34.63
iir6 8,7 10.90 21.53 26.29 | 16.66 | 20.41 | 10.90 | 13.90
iir8 11, 10 29.25 21.53 2629 | 14.18 | 20.22 | 12.95 | 15.34
iir10 17,15 22.69 39.10 | 47.75 | 23.19 | 32.22 | 19.36 | 26.06
iirl1 19,19 20.58 4386 | 44.44 | 20.65 | 28.81 | 15.12 | 22.25
iirf2 20,18 25.73 57.64 59.41 | 25.04 | 46.83 | 22.39 | 29.99
steam 6,6 82.34 41.14 | 4679 | 23.79 | 25.29 | 14.87 | 16.37
Table 3: improvements in area over the initial design using the new heuristic techniques, and the

technique [Srig4] when the transformed design is scheduled for the same latency and throughput
as the original design (using m =1)

Session M-3: CAD I

a. Ol corresponds to the case when the opti technique of Section 6.3 is used to achieve a minimum latency sys-

tem; O2 corresponds to the case when it is used to achieve a maximum throughput system.
b. H1, H2, H3, and H4 correspond to techniques #1, #2, #3, and #4 respectively of Section 7.0.

Table 3 presents the data obtained when the transformation techniques were used in the sec-
ond mode: to improve the cost of implementation for the same latency and throughput require-
ments as for the original CDFG. Again, the data is presented for the four special-case heuristic
techniques, and for two extreme cases of the optimum technique. The data shows that substantiat
reduction in the area is obtained in many cases. For example when we compare the initial imple-
mentation and the implementations under the same initial timing constraints using technique H3,
the area of all benchmark design was reduced. The average and the median reduction in area
were by factors 2.93 and 2.26 respectively. When the approach H4 is used, then the average and
median improvements were by factors 2.15 and 1.91 respectively.

As the data in Table 2 (where the transformed designs are scheduled under the new, and sig-
nificantly stricter, latency and throughput constraints) suggests, a sharp reduction in the latency
and sample period of designs is often achieved simultaneously with reduction, or a very limited
increase, Table 3 in the number of operations and the size of final implementation. An intuitive
generalization of the results of [Cha92] to the case where both throughput and latency are con-
strained suggests that the preceding set of conditions is sufficient for power reduction. Table 3
shows the reduction in power between the initial designs and designs obtained using the H4
technique. The power was reduced in all the examples. The highest reduction was for the lin5
linear controller by factor of 16.8 times, while the smallest improvement was for the ir6 filter,
by 86%. The average and the median reduction in power were by factors 6.15 and 3.58 times.
Although the average increase in area was by 88.8%, this number is biased by the sharp increase
in areas for a few examples - in more than half the examples both area and power were simulta-
neously reduced, resulting in an overall median decrease in area by 1.3%.

Desion | e, Erey | ImProvement
[nJ / sample] [nJ / sample]
mat 59.2 16.8 3.52
ellip 222 457 4.86
lind 288 30.2 9.54
lin5 756 45.0 16.8
iir5 118 33.0 3.58
iir6 40.2 21.6 1.86
iir8 119 14.1 8.44
iirl0 96.7 28.8 3.35
iirll 81.3 271 3.00
iirl2 89.2 283 3.15
steam 3n 39.2 9.62

Table 4: Improvements in energy per sample over the initial design
using H4, the technique #4.

55

56 International Conference on Application Specific Array Processors

5.0 Conclusion

Meeting simultaneous constraints on throughput and latency while synthesizing from a high-
level description is an important unsolved problem. We presented four techniques which do not
just simultaneously reduce latency and increase throughput in linear systems to a provably opti-
mal point, but can also be used effectively to reduce area and power requirements. Improve-
ments in all four parameters - latency, throughput, area, and power - have been demonstrated on
anumber of industrial and academic benchmarks.

6.0 References

[Bro92] R. W. Brodersen, editor. Anatomy of a Silicon Compiler. Kluwer Academic Publishers, 1992

[Cha91] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Managan, and S. M. Watt. Maple V: The Future
of Mathematics. Springer-Verlag, 1991.

[Cha92] A. Chandrakasan, M. Potkonjak, J. Rabaey, and R. Brodersen. “HYPER-LP: A System for Power Minimiza-
tion Using Architectural Transformations.” In Proceedings of IEEE International Conference on Computer-
Aided Design, pages 300-303, 1992.

[Cha83] A. Chatterjee and R. Roy. “ARTIST: An Architectural Transformation Program for Optimization.” In Pro-
ceedings of ACMIIEEE Design Automation Conference, pages 343-348, 1993.

[Dav88] J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra - Systems and Algorithms for Algebraic Com-
putation. Academic Press, London, UK, 1988.

[{Del88] D. F. Delchamps. State-Space and Input-Output Linear Systems. Springer-Verlag, 1988.

[Fet91] A. Fetweis, H. Meyr, and L. Thiele. “Algorithm Transformations for Unlimited Parallelism.” In Proceedings
of IEEE International Symposium on Circuits and Systems, pages 1756-1759, 1990.

[Fis91] C. N. Fischer and J. R. J. LeBlanc. Crafting a Compiler. The Benjamin/C ings Publishing Co. Inc., 1991.

[Fri89] B. Friedland. Control System Design: An Introduction 1o State-Space Methods. McGraw-Hill, Inc., 1986.

[Kun88] S. Y. Kung. VLSI Array Processors. Prentice-Hall, 1988.

[Par89a] K. K. Parhi and D. Messerschmitt. *“Pipeline Interleaving and Parallelism in Recursive Digital Filters - I:
Pipelining using Scattered Look-ahead and Decomposition.” IEEE Transactions on Audio, Speech, and Signal
Processing, 37(7):1099-1117, 1989.

[Par89b] K. K. Parhi and D. G. Messerschmitt. “Pipeline Interleaving and Parallelism in Recursive Digital Filters - II:
Pipelined Incremental Block Filtering.” IEEE Transactions on Audio, Speech, and Signal Processing,
37(7):1118-1134, 1989.

[Par89c] K. K. Parhi. “Algorithm Transformation Technique for Concurrent Processors.” Proceedings of the IEEE,
77(12):1879-1895, 1989.

[Par93] T. Parks. “Prototyping Real-Time Systems in Ptolemy.” Handout at The 1993 ILP Conference at the Univer-
sity of California at Berkeley, 1993.

[Pot92] M. Potkonjak and J. Rabaey. “Maximally Fast and Arbitrarily Fast Impl ion of Linear Computations.”
In Proceedings of IEEE International Conference on Computer-Aided Design, pages 304-308, November
1992.

[Rab%1] J. M. Rabaey, C.-M. Chu, P. D. Hoang, and M. Potkonjak. “Fast Prototyping of Datapath-Intensive Architec-
tures.” IEEE Design & Test of Computers, 8(2):40-51, June 1991.

[Rob87} R. A. Roberts and C. T. Mullis. Digital Signal Processing, chapter 8-9. Addison-Wesley Publishing Com-

y, 1987.

[Simg()f%n. Simmon. “Four Comp Math ical Envir " Notices of the American Mathematical Society,
37(7):861-868, 1990.

[Sta88] J. A. Stankovic. “Real-Time Computing Systems: The Next Generation.” In J. A. Stankovic and
K. Ramamritham, editors, IEEE Tutorial on Hard Real-Time Systems, pages 14-38. Computer Society Press
of the IEEE, 1988.

[Sri94] M.B. Srivastava, M. Potkonjak: “Transforming Linear Systems for Joint Latency and Throughput Optimiza-
tion”, EDAC-94, paper 5B-2, 1994.

{Wol188] S. Wolfram. Mathematica - A System for Doing Mathematics by Computer. Addison-Wesley Publishing
Company, 1988.

