FAST IMPLEMENTATION OF RECURSIVE PROGRAMS USING
TRANSFORMATIONS

Miodrag Potkonjak
C&&C Research Laboratories, NEC, 4 Independence Way, Princeton, NJ 08540

Jan Rabaey
Dept. of EECS, University of California at Berkeley, Berkeley, CA 94720

ABSTRACT

An automatic transformational approach to reduce the itera-
tion bound of recursive DSP algorithms is presented. The
proposed approach combines delay retiming, algebraic trans-
formations and loop unrolling in a well defined order. The
effectiveness of the approach is demonstrated using exam-
ples.

1. INTRODUCTION

While in a number of application specific designs an efficient
hardware resource utilization is of primary interest, another com-
mon situation in signal processing is that throughput require-
ments are at the edge of what can be achieved using available
technology. In these cases, reaching the throughput requirements
is the single most important goal, even if it results in lower
resource utilization rates. A general intrinsic property of many
signal processing applications is that the increased latency can to
some extent be tolerated. This is in contrast with some other
areas, such as robotics, where the time between the acceptance of
the input and the issuing of the output is most important. There-
fore, during throughput optimizations, constraints on the latency
should be taken into account.

2. PROBLEM FORMULATION

When throughput rate is of primary importance and the CDFG
does not have feedback edges, pipelining provides a straightfor-
ward solution. It is sufficient to introduce as many pipeline stages
as are allowed by latency (e.g., add as many delays on all input,
or all output edges, but not on both) and then to retime the result-
ing graph using the Leiserson-Saxe retiming algorithm [1]. It is
important to notice that when CDFG has feedforward edges, an
introduction of a dummy transfer operation on those edges is
necessary [2]. Of course, the Leiserson-Saxe algorithm will do
this automatically.

However, most of the signal processing algorithms have internal
recursion. Examples of such algorithms include both relatively
simple cases, such as infinite response and adaptive filters, and
more complex ones, such as algorithms for solving systems of
non-linear equations and adaptive compression algorithms.
Graphs involving recursions display an upper bound on the com-
putation rate, called the pipeline stage bound (or iteration bound)
[3]. This pipeline stage bound is given by Tj,,=max(T/(ND))).
The maximum is taken over all loops, T; is the sum of the compu-
tation times of all the nodes in loop i, and ND; is the number of
delay elements in loop i [3].

Several researchers addressed some special program instances
(e.g., IIR filters, Viterbi processor, quantizer loops) and achieved
a significant progress in reducing the pipeline stage bound
[3,4,5,6,7]. Our goal is to find an approach that will automati-
cally transform arbitrary programs (including, of course, recur-
sive programs), into a form where the pipeline stage bound is
reduced to a minimum for a given latency. This can be achieved
in a dual way: reducing T}, by applying algebraic transforma-
tions (associativity, commutativity and distributivity) and by
moving delays (retiming). In order to provide more possibilities
for both approaches, it is often necessary to do partial unrolling
of the time loop.

3. SMALL EXAMPLE

Very often the best way to introduce a new idea is to explain its
steps using a simple example. This section has the goal of illus-
trating and explaining how basic transformations can be used to
reduce significantly the critical path of the pipeline stage. Neither
the example nor the idea of reducing the pipeline stage is new.
What is new is that minimization of the critical path in the pipe-
line stage is achieved by an explicit and systematic application of
basic transformations. This provides a framework for the solu-
tion of the problem of the fast implementation of arbitrary recur-
sive algorithms.

Consider the example shown in Figure 1a, which represents first
order IR filter. This is actually the smallest possible example on
which it is still possible to improve pipeline stage time, without
going into suboperation level transformations. This filter con-
tains only one loop with two operations: one addition and one
multiplication. Both operations are in the loop. Figure 2a shows
the corresponding pseudo-code. Assume that each operation
takes one cycle. Since the loop contains two operations and one
delay, the pipeline stage is 2 cycles long.

Figure 2b shows the pseudo-code after the loop is unrolled once.
Figure 1b shows the flow graph, after the application of this basic
transformation. The main effect is that the loop now contains two
delays. However, the number of operations in the loop also
increased twice, so the pipeline stage, which can be achieved
using retiming, is still two. Although we did not immediately
profit from the application of the loop unrolling, this transforma-
tion is creating a starting position for the other basic transforma-
tions.

We can see that the associativity cannot be applied to the result-
ing flow graph. However, we can apply distributivity. The result-
ing pseudo-code is shown in Figure 2c, while the new flow graph

V-569

0-7803-0532-9/92 $3.00 © 1992 IEEE

is in Figure lc. Again, the critical path is not reduced; actually,
the required amount of the hardware has increased. However,
associativity can now be applied to both additions and multipli-
cations to remove one addition and one multiplication from the
loop. The effect is shown in the pseudo-code format in Figure 2d,
and in the flow graph format in Figure 1d. As the consequence of
the application of associativity, we now have only two operations
in the loop. Since the loop also has two delays, the pipeline stage
is reduced to one. This can be achieved by using pipelining as
shown in Figure le. In this way we achieve the maximum
throughput increase without going to suboperational transforma-
tions.

4. FAST IMPLEMENTATION OF RECURSIVE PRO-
GRAMS USING TRANSFORMATIONS: PROCEDURE

We proved by using polynomial reduction from equal subset-sum
problem, that the combination of both retiming and algebraic
laws to transform programs into a maximally fast recursive
implementation is NP-complete even for a restricted formulation
of the problem, where the program contains only adders and
delays[8].

A simple, yet efficient procedure for transforming an arbitrary
computation graph so that it can be implemented with the very

short pipeline stage, can be given using the following six steps,
described by the following pseudo-code:

1 Using distributivity and associativity, move as many
operations as possible out of the cycles;

2 Unroll the time loop. The number of unrollings is
bounded either by hardware or timing constraints;

3 Repeat step 1;

4 Retime the graph so that the structure of the resulting
graph is such that algebraic transformations will have
a maximal effect;

5 Reduce the critical path of the resulting graph using
either the Valiant [9] or Miller [10] algorithm (which
optimally applies associativity and distributivity);

6 Introduce sufficient pipeline stages (using a revised
Leiserson’s retiming algorithm);

Steps 1, 3, 5 are reducing the iteration bound using algebraic
transformations. Step 4 is a crucial step, which provides valuable
pre-processing for the final iteration bound reduction in step 5.
Step 6 is the final auxiliary step.

One of the main problems to be addressed when implementing
the retiming step is the selection of the objective function. A sim-
ple and easy to compute function would be the number of nodes

X y

d) After Associativity

€) After Pipelining and Retiming

Figure 1: IIR Filter

a)y=x+a*y@1

b)y=x+a* (x@1 + a*y@2)
C)y=x+a*x@1 + a*(a*y@2)
d)y=x+a*x@1 + (a*¥a)*y@2

Figure 2: Effect of transformations, pseudo code format

V-570

a9

xin] [%] P> ® [’] +y[n] x{n]
zZ
a
f’ﬁ . o | [E%l
P>) <
a) Original b) After Associativity

o] xin] yin]

) After Additional Associativity

d) After Pipelining and Retiming

€) After transforming addition chain in Figure 3d to tree structure the critical path is 4

Figure 3: Volterra filter, bold line denotes critical path

V-571

contained in the largest pipeline stage. It is often possible to
reduce the critical path of a pipeline stage close to the optimal
logon, where n is the number of nodes in that stage. A more accu-
rate (but computationally more expensive) function can be used
for the important class of applications which use only multiplica-
tions, shifts, additions and subtractions. Linear as well as adap-
tive filters are part of this class. In this case, the smallest possible
critical path of the graph equals (log C) (log C + log d), where C
is the number of operations in the pipeline stage and d the degree
of polynomial represented by pipeline stage. The same formula
can also be used when the computation only contains addition as
well as min and max operations. Examples of such applications
can be found in the areas of neural networks, Markov modeling,
dynamic programming and fuzzy logic. The same also holds for
computations containing only logic “and” and “or” operations
(logic synthesis). This isomorphism was first observed by Miller
[10]. The retiming transformation itself can be implemented
using a statistical approach, identical to the technique described
in [11].

5. EXAMPLE: VOLTERRA SECOND ORDER POLYNO-
MIAL FILTER

The effect of the procedure is illustrated using a second order
Volterra filter (Figure 3a). It is a polynomial non-linear filter [12],
and previously has not been discussed in the context of fast
implementation of recursive programs. We assume that each
operation takes one cycle.

The critical path of the initial CDFG is 12, and it is denoted by
the bold lines. The application of pipelining cannot reduce the
critical path. However, the application of the just described pro-
cedure results in a reduction of the critical path to only 4 control
cycles, even when unrolling is not applied. An application of
unrolling will result in an additional reduction, but for the sake of
clarity we will only discuss the case where unrolling is not used.

Application of step #1 reduces the critical path to 9, as shown in
Figure 3b. Note that both multiplications by constants and all
additions which can be pipelined are removed from the loop
which is denoted by the bold line. Since we are not using unroll-
ing, we will skip steps 2 and 3.

After the application of step 4, we obtain the graph shown in Fig-
ure 3c. Using associativity we have “deconvoluted loops” and
using retiming we have separated the two feedback loops. Now
the critical path is 7. Finally, by using the associativity applied on
the adder tree (the chain of additions connected by the bold
lines) in Figure 3d, we can get the CDEG with the critical path 4.
Since all CDFG parts connected to the input can be easily pipe-
lined, and other loops have a shorter critical path, we achieved a
threefold reduction of the critical path.

6. PROCEDURE PROPERTIES

Several observations can be made about the proposed procedure
for transforming arbitrary CDFG for fast implementation.

During retiming, it is necessary to use both associativity and dis-
tributivity in order to get the best results. The rationale is very
similar to the one discussed during retiming for resource utiliza-
tion, ie., sometimes it is necessary to change the structure of a
control data flow graph in order to apply retiming more opti-
mally. Therefore, for this step we can use the same algorithm as

for the retiming for resource utilization. The only modification is
a different objective function.

During step 4, the key profit often comes from the so-called
“loop deconvolution” (as in the Volterra filter example). This
refers to the minimization of the number of edges which belong
to more than one loop using associativity. This can be by
enforced using an appropriate objective function when associa-
tivity is applied.

A good objective function is the number of nodes in a pipeline
stage. It is often possible to reduce the critical path to near opti-
mal logyn, where 7 is a number of nodes in a pipeline stage. A
better objective function can be used in several important special
cases: (i) when the computation graph has only additions, multi-
plication and subtractions; (ii) when it has only min, max and
addition operations; and (iii) when it has only “and” and “or”
operations. The first case is important in signal processing, e.g.,
for many filter structures [13], the second one in a large number
of artificial intelligence and game theory applications as well as
in fuzzy logic [14]. The third one has a significant application in
logic synthesis [15].

7. CONCLUSION

An automatic transformational approach to reduce the iteration
bound of recursive DSP algorithms is presented. The proposed
approach combines delay retiming, algebraic transformations
and loop unrolling in a well defined order.

8. REFERENCES

{1] C.E. Leiserson, EM. Rose, J.B. Saxe: “Optimizing synchronous circuits by
retiming", Proceedings of Third Conference on VLSI, pp. 23-36, Computer Sci-
ence Press, 1983,

[2] A. Nicolau, R. Potasman: “Incremental Tree Height Reduction for High Level
Synthesis”, 28th ACM/IEEE DAC, pp. 770-774, 1991.

[3] D. Messerschmitt, “Breaking The Recursive Bottleneck”, in Performance Limits
in Communication Theary and Practice, Kluwer Academic Publishers, 1988.

[4] K K. Parhi, D.G. Messerschmitt: “Pipeline interleaving and perallelism in recur-
sive digital filters - Part I & Pan II” IEEE T-ASSP, pp- 1099-1117 & pp. 1118-
1134, July 1989.

(5] H-P. Lin, D.G. Messerschmitt: “Finite State Machine has Unlimited Concur-
rency”, IEEE Trans. on Circuits and ' ystems, Vol. 38, No. 5, Pp. 465-475, 1991.

(6] A. Fetweis, H. Meyr, L. Thiele: “Algorithm Transformations for Unlimited Par-
allelism”, JEEE International Symposiwm on Circuits and Systems, pp. 1756-
1759, New Orleans, 1990.

[7] K. Parhi, “Algorithm and architecture design for high speed digital signal pro-
cessing”, Ph.D. Dissertation, University of California, Berkeley, 1988,

[8] M. Potkonjak: “Algorithms for High Level Synthesis: Resource Utilization
Based Approach”, Ph.D. Dissertation, University of Califomia, Berkeley, 1991.

[9] L.G. Valiant, S.Skyum, S. Berkowitz, C. Rackoff: “Fast Parallel Computation of
Polynomials Using Few Processes,”, SIAM Journal on Computing, Vol. 12, No
4, pp. 641-644, 1983,

[10] G.L. Miller, S. Teng: “Dynamic parallel complexity of computational circuits”,
Proc. 19th Ann. ACM Symp. on Theory of Computing, pp. 254-263, 1987,

[11] M. Potkonjak and J. Rabaey, “Optimizing the Resource Utilization Using
Transformations”, Proc. IEEE ICCAD Conference, Santa Clara, Nov. 1991,
[12] V.J. Mathews: “Adaptive Polynomial Filters”, JEEE Signal Processing Maga-

zine, Val. 8. No. 3, pp. 10-26, July 1991,

[13] R. E. Blahut, “Fast Algorithms for Digital Signal Processing”, Addison-Wesley
Publishing Company, 1985.

[14] B. Kosko: “Neural networks and fuzzy systems: a dynamical systems approach
to machine intelligence”, Englewood Cliffs, NJ: Prentice Hall, 1991,

[15] RK. Brayton et al.: “Logic minimization algorithms for VLSI synthesis”, Bos-
ton: Kluwer Academic Publishers, 1984,

V-572

