Heterogeneous BISR Techniques for Yield and
Reliability Enhancement using High Level Synthesis
Transformations

Miodrag M. Potkonjak
C&C Research Laboratories, NEC USA, Princeton, NJ

Lisa M. Guerra, Jan M. Rabaey
Dept. of EECS, University of California, Berkeley, CA

Abstract

Built-In-Self-Repair (BISR) is a fault tolerance technique against permanent faults, where in
addition to core operational modules, a set of spare modules is provided. If a faulty core module
is detected, it is replaced with a spare module. The BISR methodology has been used only in sit-
uations where a failed module of one type can only be replaced by a backup module of the same
type. We propose a new BISR approach for ASIC design which removes this constraint and
enables replacement of modules of different types with the same spare units by exploiting the
design space exploration abilities provided by the use of transformations in high level synthesis.
Fast and efficient high level synthesis algorithms which take into account peculiarities of trans-
formation-based design for BISR are presented. The potential of the approach is demonstrated
on a set of benchmark examples by showing significant yield and relative productivity improve-
ments which are calculated using state-of-the-art yield modeling techniques.

1.0 Introduction

As the cost of semiconductor manufacturing increases, it becomes imperative to improve pro-
cess yields as fast as possible. Process improvement techniques such as BISR therefore become
very important.

BISR is a hybrid redundancy technique where in addition to N core operational modules, a set
of spare modules is provided. If a chip is found to have defective modules, these modules can be
replaced by good ones -after wafer testing. Similarly, BISR methods can also be applied to
improve chip reliability. Chips can be made more fault tolerant to failures that occur during oper-
ation, by automatic replacement of failed modules with spare ones, so that the overall system can
continue to function correctly. This is especially important in military systems and space explo-
ration missions where it is critical that there are no system failures, even in the face of errors, or
where manual replacement of failed modules is either impossible or prohibitively expensive.

BISR techniques are regularly used during the development and operation of primary and sec-
ondary memories [Moo86, Sie92, Pat88] and sometimes in general purpose bit-sliced execution
units [Sie92]. They have not received appropriate attention in ASIC design, but the ever increas-

454 0-8186-3492-8/93 $3.00 © 1993 IEEE

Session 9: Transformation and Synthesis Procedures 455

ing level of integration should soon make them an important methodology for ASIC yield
improvement.

This paper introduces a novel concept of BISR for ASIC designs, which can be used for yield
improvement or fault-tolerance against permanent faults. The concept is directly built on the
flexibility provided by transformations during design space exploration. The rest of the paper is
organized in the following way. After a survey of the previous BISR efforts in several areas and
a precise problem formulation, very simple, yet real-life examples are used to introduce the main
ideas. Next, a new high level synthesis transformation algorithm which minimizes hardware
overhead for BISR is discussed. The paper concludes by presenting experimental results on a
variety of real-life DSP examples and a brief outline of directions for future research.

2.0 Previous Related Work

High level synthesis provides the flexibility of design space exploration so that a variety of
design goals can be addressed [McF90, Cam91]. The same references survey a variety of high
level synthesis algorithms and provide an extensive high level synthesis bibliography. Most of
these works, however, have targeted the optimization of area and speed (throughput). More
recently, other important goals, such as power [Cha92]}, testability [Lee92]}, and fault tolerance
{Rag91, Kar92] have also been addressed. Relatively little work has been done on high level
synthesis techniques for fault tolerant design. Raghavendra and Lursinsap [Rag91] concentrated
on designs with self - recovery from transient faults using micro roll-back and checkpoint inser-
tion. Karri and Orailoglu [Kar92] presented a transformation-based method for minimizing hard-
ware overhead while achieving a certain level of fault tolerance for common mode failures.
While all previous high level synthesis methods for enhancing fault tolerance have addressed
intermittent and transient faults [Sie92], this work concentrates on permanent faults, where fault
tolerance is used for yield enhancement.

The main target for BISR techniques are systems that are bit-, byte-, or digit- sliced. This area
includes SRAM and DRAM memories [Moo86], which are made from a set of bit planes and
arithmetic-logic units (ALUs), assembled from ALU byte slices [Sie92]. By far the most impor-
tant use of bit-sliced BISR is in SRAM and DRAM circuits. This is regularly used in almost all
current day memory designs. The bit-sliced BISR in memories significantly increases memory
production profitability. A simple, yet powerful methodology for implementation of ALU byte
slices was proposed by Levitt et al. [Lev68]. Another important technique for preserving data
through a failure occurrence in primary storage systems was proposed by Arulpragasm and
Swartz [Aru80). The concept is based on the use of a shadow box, a spare memory box which is
identical to the other M operating memory boxes. A word stored at address j is the XOR of the
words stored at location j in the other M operating boxes and has to be updated after each write
to the memory system. In this reliability scheme, the content of a lost box can be reconstructed
from the operating boxes and the shadow box by XORing values at corresponding locations. The
shadow box technique has been recently extended to secondary memory storage [Pat88]. It is
conceptually similar to the technique described in [Aru80], but makes updates on either the word
or page basis. Several other algorithms describing methods to recover lost information content
have been proposed [St090] and the performance and reliability of the methodology have been
analyzed [Bit88, Gib89].

Massive parallelism is another area where BISR is starting to play a crucial role, which will
become increasingly prominent with greater use of concurrent computations. For example, Grif-
fin et al. [Gri91] recently designed an 11-Million transistor neural network execution engine,

456 International Conference on Application-Specific Array Processors

which has a triple-level redundancy structure resulting in the consumption of an additional 2.8
million transistors for BISR. In wafer scale integration, BISR also plays a prominent role. In the
highly integrated ULSI system which contains both DRAM and SRAM as well as uncommitted
gate-array [Sat92], statistical studies showed that the BISR technique called interchip relief sig-
nificantly improves the yield. Several authors have also discussed and analyzed the role of BISR
techniques in systolic arrays designs, though mostly from a theoretical and statistical point of
view [Lei85, Neg89].

It is also interesting to note that BISR methodology is not limited to memory and execution
units, Lewis [Lew79], for example, proposed the use of a backup fault tolerant clock.

3.0 Hardware Model and Problem Statement

We will first introduce a number of assumptions. The algorithm to be implemented is repre-
sented as a hierarchical Control-Data Flow Graph G (N, E, C), (or CDFG), with nodes N repre-
senting the flow graph operations, and the edges E and C respectively the data and control
dependencies between the operations. The control dependencies are used to express relations
between operations, which are not imposed by the data precedence relations [Rab91).

The hardware model being considered is shown in Figure 1 [Rab91]. To stress the importance
of interconnect minimization early in the design process, this model clusters all registers in reg-
ister files, connected only to the inputs of the corresponding execution units. We also assume

Iy

-

FIG. 1. Hardware Model: Interconnect-Regfile-EXU

that there is no bus merging, so there exists a dedicated bus connecting any two units between
which there are data transfers. Faults can occur in either an execution unit, a register file, or a
bus. Under this hardware model and the just mentioned assumptions, all faults can be classified
as execution unit faults. A faulty register file prevents its corresponding execution unit from
receiving data, and thus has the same affect as a fault in the execution unit. Similarly, a faulty
bus can be treated as a failure in the execution unit at its receiving end. All other high level syn-
thesis hardware models, can be addressed using the methodology presented here, of course, with
proper modification of the algorithms.

The high level synthesis BISR process can be defined within this framework:
Given a hierarchical flow graph G(N,E,C), an underlying hardware model H and an

execution time bound t,y4;), Synthesize a minimum area design, so that up to K hard-
ware units can be faulty.

Session 9: Transformation and Synthesis Procedures 457

If these techniques are used for fault tolerance against permanent faults, it is assumed that an
error checking mechanism exists, and if they are used for yield enhancement, it is assumed that
manufacturing testing will detect the faulty units. In either case, the controller is reconfigured
upon detection of a fault. The controller is assumed to be either reprogrammable or to lie on a
separate chip than the datapath. [Che92] and [Yeu92] are typical examples of this type of system.

4.0 Transformations for BISR

Probably the most straightforward approach to BISR is to provide a spare for each hardware
instance, resulting in full duplication of the hardware. In this case, the number of additional units
needed would be W, where W is the number of units required for the non-BISR implementation.
With the detection of a faulty unit, reconfiguration takes place to initiate use of its spare. This
reconfiguration is conceptually a switch that passes control from the failed to the backup unit, or
a reassignment of operations.

Fortunately, the BISR overhead need not be so high. If the number of faulty units, K, is 1, for
example, the high level synthesis assignment step provides us with the flexibility under which it
is clear that only 1 spare for each hardware class is necessary, as opposed to one spare per hard-
ware instance. The operations from the failed unit will be transferred to the spare of the same
type. The number of additional units needed in this case is M, where M is the number of hard-
ware classes,and M < W.

The flexibility gained through assignment clearly reduces the amount of hardware redun-
dancy needed. However, by considering the additional flexibility brought by use of transforma-
tions, we can often use significantly fewer spares. This is possible since transformations enable
the ‘replacement’ of a module by a spare of a different type. When a failed unit is detected,
instead of reassigning only those operations of the failed unit, we completely transform, reassign
and reschedule ali operations of the CDFG. The specific goal addressed can now be restated as
follows: find the minimum area solution, for which the CDFG can be transformed, reassigned
and scheduled in 14,,;, even when as many as K units are faulty.

4.1 Transformations in High Level Synthesis

Transformations are alterations in the computational structure such that the behavior (the rela-
tionship between output and input data) is maintained. They are used extensively in several com-
puter science and CAD areas, most often in compilers [Fis88] and high level synthesis [Pot92].
Transformations have been successfully applied for the optimization of a variety of high level
synthesis goals: area, speed [Pot92], power [Cha92], and run-time fault tolerance [Kar92]. This
section shows how transformations, using specificaily tailored optimization techniques, can sig-
nificantly reduce the area of implementation for designs with BISR requirements.

4.2 Key Ideas: Motivational Examples

The basic idea behind the application of transformations in high level synthesis based BISR
methodology is to transform the computation in several different ways according to the needs
imposed by the available hardware, for each possible scenario of failed units. The simple exam-

458 International Conference on Application-Specific Array Processors

ple in Figure 2 will be used to illustrate this idea. In all the examples in this section, assume that
each operation takes one control cycle. HYPER simulation tools can be used to verify that
important numerical properties (e.g. numerical stability and overflow control) are maintained in
all transformed designs. The assumed available time for the first example is 2 control cycles. The
following identity is used to transform 2a into 2b:

(a+b)-(c+d) = (a-c)+(-4d)
a b ¢ d a c b d
(a) (b)

FIG. 2. Transformations for BISR: Motivational Example

It is easy to verify that both implementations calculate the same output for the same set of
inputs. If we consider only implementation 2a, and assume that any unit can fail, then 3 adders
and 2 subtractors are needed, since 2 adders and 1 subtractor were needed for the non-BISR
implementation. However, if we consider both implementations, only 2 subtractors and 2 adders
are needed. If the subtractor fails, we can use implementation 2a which needs 2 adders and 1
subtractor, and when the adder fails we can use implementation 2b which needs 2 subtractors
and 1 adder.

In general, there exist a large variety of transformations, each of which reduces a computation
in different ways. The transformations to reduce BISR overhead, however, can be classified into
two classes: (1) Transformations to increase the chance for high resource utilization (and there-
fore reduced need) of the units of the same type as the failed EXU, and (2) Transformations to
reduce the number of operations of the same types as the failed resources.

Some transformations can be used for both strategies simultaneously (e.g. inverse element
law, distributivity, loop fusion and loop blocking), while others are specific to only one. The
former group, for example, includes retiming (and functional pipelining), associativity, and loop
permutation, while the latter group includes strength reduction (i.e. substitution of multiplication
with constant by shifts and additions), constant propagation, dead code elimination and common
subexpression elimination.

The remainder of this section iilustrates how three important and powerful transformations,

associativity, inverse element law, and retiming, can be used for high level synthesis based
BISR. Note that although it is not explicitly stated, it is implied that transformations in the

Session 9: Transformation and Synthesis Procedures 459

explanatory examples and in the final software application are supported by the commutativity
transformation.

Failed Unit Shifter Multiplier Adder
Control Step | >> * + >> * + >> * +
1 C EB C A F C A
2 A D,G B D,G B D,G
3 E H E H H

Table 1: Potential Schedules for Example of Fig. 3

Figure 3 shows the application of associativity for BISR. Notice that the only difference
between Figures 3a and 3b is that associativity is applied so that shift A on Figure 3a and multi-
plication B on Figure 3b are the only operations which are not on the critical path. It is easy to
figure out that the minimum hardware configuration, for the computation of Figure 3a requires 2
adders, 2 multipliers and 1 shifter. Associativity reduces the minimum BISR overhead, so that
only one additional adder and one additional shifter are needed. Table 1 shows the feasible
schedules when 3 adders, 2 multipliers and 2 shifters are available for various scenarios of unit
failures. When a shifter fails, the implementation from Figure 3a is used, when a multiplier or
adder fail the implementation of Figure 3b is used. (Actually, either 3a or 3b can be used when
an adder fails).

(a) (b)

FIG. 3. Associativity for BISR: CDFG before (a) and after (b) application of
assoclativity

The inverse element law transformation is used in the example shown in Figure 4. For an
available time of 2, the non-BISR design can be implemented with 1 adder and 1 subtractor.

460 International Conference on Application-Specific Array Processors

The inverse element law (combined with the enabling transformations of distributivity and asso-
ciativity), gives the following two identities which can be used to transform 4a into 4b:

a-(b+c)=(@-b)-c
f+(d-e)=d-(e-0

(@ (b)

FIG. 4. Inverse Element Law for BISR

By using this transformation, just two subtractors and one adder are sufficient to enable the
implementation of the required functionality, regardless of which unit is detected as faulty. If one
of subtractors fails, the structure on the left side of Figure 4 is used; if the adder fails then the
structure on the right side is used.

Note that it is sometimes possible to totally eliminate the need for a particular type of unit.
The computation of Figure 4, for example, could be implemented for BISR using only three sub-
tractors. This BISR scheme is not preferred however, since a subtractor is slightly more expen-
sive than an adder. Also notice that this particular application of the inverse element law can
similarly be applied to pairs of multiplications and divisions. In such a case, however, it would
be significantly more efficient to use the BISR scheme which uses two dividers and one multi-
plier instead of the solution where three dividers are used.

Using a larger set of transformations (to include algebraic and redundancy manipulations)
brings more options for the trading of operations. For example, x2- y2 can be implement in two
ways, either as (x Xx) — (y Xy) oras (x—y) X (x+y).In this identity one multiplication
can be traded for an adder.

Finally, Figure 5 shows how retiming can be used for high level synthesis BISR. The avail-
able time in this example is two control cycles.

Although retiming cannot, in this case, change the slacks [Cam91] on various operations, it
can reshuffle the operation overlaps. This redistribution is done such that operations competing
for a faulty unit are no longer bound to happen in the same control step. It is easy to figure out by
analyzing the various schedules, that for the final BISR implementation, 3 subtractors, 2 adders
and 2 shifters are sufficient. This results once again in a lower overhead than that achievable
using only allocation and assignment.

Session 9: Transformation and Synthesis Procedures 461

Uy ury

FIG. 5. Retiming for BISR

4.3 Optimization Algorithm for Transformation-Based BISR Hardware Minimization

The global strategy for transformation-based BISR design is illustrated in Figure 6. Note that
transformations must be able to modify the graph so that a successful reassignment and schedul-
ing can be obtained for all scenarios of failed units.

For each Proposed Allocation:

Order Execution Units By Stress
For each Failed Unit:

Transformations for BISR

Assign/Schedule

FIG. 6. Transformation Based Optimization: Global Strategy

As the basis for the BISR transformation-based optimization algorithm, a probabilistic sam-
pling algorithm is used [Pot91]. The algorithm applies two types of basic moves: retiming and
generalized associativity. Generalized associativity is a transformation that combines associativ-
ity moves with inverse element law and commutativity moves. The algorithm has two phases.
The first phase is a global search using probabilistic sampling, where the design space is proba-
bilistically evaluated to detect the k most promising starting points (m is a small integer which is
a function of the number of nodes in the computation). A value of m=5 was used for the experi-
mental results which are presented in the next section. In generating the starting points, we also
change the number of operations of various types (e.g. subtraction vs. addition) using general-
ized associativity moves to trade off between the number of those operations.

The second, local optimization phase, uses the basic steepest descent approach to locally
maximize these starting points. After each move, the objective function is evaluated, to get an
estimate of the final area (execution units, interconnect, and registers) expected from the system.

462 International Conference on Application-Specific Array Processors

This objective function is composed of 3 key parts, all of which are strongly correlated to the
final area: the critical path, the number of delays, and a measure of the expected resource utiliza-
tion of each hardware type (the overlap component). The objective function has been statistically
validated on a set of 25 real-life examples, by showing the high correlation between it and the
implementation cost of the final implementation [Pot91]. During the local optimization phase,
the overlap components of the objective function are normalized by the available number of
resources of each hardware type. When a unit is in short supply due to failure, the overlap com-
ponent for the resource is large, and thus the algorithm will transform the graph in such a way
that the need for this unit is alleviated.

When this algorithm is used for the optimization of BISR overhead, the proposed allocation
is changed, by assuming that various units, one at time, have failed. Transformations are tried for
the various scenarios in decreasing order of estimated difficulty. A heuristic global stress func-
tion is applied on the initial configuration and after each attempted scenario, to determine the
estimated difficulty. The global stress function has three intuitively appealing, experimentally
observed and statistically validated parts: (i) Resource Utilization Factor, (ii) e-Critical Network
Stress, (iii) and Scheduling Stress.

The stress functions are highest for resources which are in the highest demand. Resource Uti-
lization Stress captures the idea that scheduling under the premise that a particular resource type
will have resource utilization close to 100% is rarely feasible. The e-Critical Network Stress
expresses the observation that resources for operatjons that lie on the critical path of computa-
tion or paths which are almost critical are particularly important. The e-critical network consists
of all paths which have lengths within a small € percentage of the critical path length. The
Scheduling Stress assembles statistical data about the observed difficulty for scheduling the var-
ious types of operations during previously attempted schedules on already transformed designs.
The global stress is a nonlinear combination of these three factors, with statistically derived
weighting parameters. The detailed description of all algorithms and functions, is presented in
[Gue93].

Notice that both classes of transformations for BISR are utilized: (1) transformations to
increase the chance for high utilization (and therefore reduced need) of the units of the same type
as the failed EXU, and (2) transformations to reduce the number of operations of a failed type by
trading operations of that type for other operations.

5.0 Experimental Results and Yield and Relative Productivity Analysis

Table 2 shows physical characteristics of several examples designed using the transformation-
based methods of BISR design. The average area increase is only 9.7%, and an average of only
1.57 additional hardware units were needed. Note that an average of 3.71 additional hardware
units would be used in a BISR implementation that exploited only assignment flexibility.

The consequences on yield and productivity can be calculated for all examples, and in Tabie
3, we present these values. For the yield and productivity calculations, we followed the state-of
the-art procedure presented in [Sta92]. Over the last three decades, Stapper has presented a num-
ber of yield and productivity models. This effort started with a negative binomial distribution

Session 9: Transformation and Synthesis Procedures 463

model for fault distribution. He then improved it by using a “unified negative binomial” model.

Non- BISR Area
Example IU FU NT BISR Area Overhead
Area (%)
11 FIR 8 9 4 545 6.5 19.3
7R 7 9 4 9.27 9.92 7.0
35FIR 7 8 4 12.31 13.34 84
55 FIR 14 16 4 20.77 2344 12.9
8 IIR 16 18 4 24.85 27.04 8.8
LIN3 18 19 3 33.06 34.52 44
LIN4 21 23 3 36.00 38.49 6.9

Table 2: Physlcal characteristics of examples used during valldation of
transformations for BISR: WU - # of EXU units in non-BISR implementation; FU - #
of EXU units in BISR Implementation; NT - # of hardware classes; 11 FIR - 11th
order high pass FIR filter; 7 lIR - 7th order low pass IIR filter; 35 FIR - 35th order
Butterworth Flat Low Pass FIR filter; 55FIR - 55th order multiband FIR filer; 8lIR -
8th order IIR Avenhaus direct form Il filter; LIN3 and LIN4 - 2 different 5-state
linear controllers.

Recently, he has presented an even better model based on the combination of the binomial and
beta distributions. The high accuracy of this model has been demonstrated on a variety of real-
life production designs. At the same time the model is general enough to encompass even
designs where limited repairability (e.g. using laser intervention) is used. Although Stapper’s
procedures primarily target BISR memory design, they have been regularly and successfully
used in BISR for both dedicated [Kor84] and programmable {Pat89] datapath analysis.

Stapper’s formula calculates the probability that exactly m out of n modules operate correctly
for a given value of the variability parameter y and single module yield, Y1. A slight modifica-
tion is made to the formula to take into account units of largely different areas. Yield, which is
defined as the percentage of functional dies on a wafer, is an important parameter, but it is not
the only indicator of wafer productivity. The redundant circuitry will in general increase the
design area and thus reduce the number of chips which can be placed on a wafer. The productiv-
ity of BISR methodology can be obtained by dividing the relative change in yield by the relative
change in area.

The initial yield was assumed to be 10%, as was assumed in Stapper’s paper. Similar data was
also used in [Kor84] and [Pat89]. We calculated changes in both yield and productivity, for vari-
ous values of the variability parameter y. This parameter gives an indication of the assumed
probability of clustered defects, which are the most common sources of chip malfunctions.
Large values of correspond to smaller levels of clustering, and therefore lower processing vari-

464 International Conference on Application-Specific Array Processors

ability [Sta92]. For all examples, a significant improvement in relative productivity is apparent
for all values of .

Yield Productivity
Example

=05 | u=1.0 | p=2.0 | u=5.0 | p=Inf | p=0.5 | p=1.0 | u=2.0 | u=5.0 | p=Inf

11 FIR 16.62 | 18.42 | 20.50 { 23.52 | 30.02 | 1.393 | 1.544 | 1.718 | 1.971 | 2.531

71R 15.30 | 16.60 | 18.00 | 19.89 | 23.34 | 1.430 | 1.551 | 1.682 | 1.859 | 2.181

35FIR | 16.82 | 18.69 | 20.80 | 23.78 | 29.63 | 1.552 | 1.719 | 1.919 | 2.199 | 2.733
55FIR | 15.18 | 16.48 | 18.02 | 20.46 | 27.82 | 1.345 | 1.460 | 1.596 | 1.812 | 2.464

8IIR 15.11 | 16.38 | 17.88 | 20.32 | 28.42 | 1.389 | 1.506 | 1.643 | 1.868 | 2.612

LIN3 15.49 | 16.89 | 18.58 | 21.37 | 31.62 | 1.484 | 1.618 | 1.780 | 2.047 | 3.029

LIN4 14.92 | 16.13 | 17.56 | 19.93 | 29.49 | 1.396 | 1.509 | 1.643 | 1.864 | 2.759

Table 3: Yield (in %) and Relative Productivity change due to use of
transformations for BISR for 7 examples from Table 2 for various value of the
variabllity parameter p. The Initial yleld Is 10%.

The results and discussion presented here are for the number of faulty units, K, equal to 1.
Handling larger values of K does not introduce any new conceptual ideas, and modifications are
straightforward. Larger values will place an exponential strain on the number of different sched-
ules to be generated. It has been shown, however, that in general as K is increased, the improve-
ment in the relative productivity can give diminishing retumns, and can even produce lower
productivity [Sta92]. An interesting issue for BISR design is the actual selection of the value of
K which gives the optimal effective yield, as a trade-off between resilience to failure and hard-
ware overhead.

6.0 Conclusions

High level synthesis of datapaths has traditionally concentrated on synthesizing a specific
implementation for a given computational problem. This paper has presented new techniques to
compose a BISR implementation with a minimum amount of area overhead. BISR is an efficient
yield, productivity, and reliability fault tolerance improvement technique, which will continue to
gain importance especially with the increase in commercial significance of massive parallelism.
However, until now the BISR scope has been restricted to the substitution of operation modules
with only those of the same type. This paper has presented novel transformation techniques
which support a new heterogeneous BISR methodology for ASIC designs. These methods are
based on the flexibility of the design solution space and the exploration potential of transforma-
tions to find designs where resources of several different types can be backed up with the same
unit.

High Level Synthesis for BISR is a new and unexplored field, which opens many new venues
of research. Future research topics includes the extension of current ideas to support the use of

Session 9: Transformation and Synthesis Procedures 465

other hardware models, the exploration of other high level synthesis tasks (e.g. module selection
and partitioning), and algorithm selection (e.g. one of several types of filters with the same trans-
fer function are selected depending on the available resources).

7.0 References

[Aru80} J.A. Arulpragasm, R.S. Swartz, “A Design for Process State Preservation on Storage Unit Failure,” 10th Int.
Symp. on Fault-Tolerant Computing, pp. 47-52, 1980.

[Bit88] D. Bitton, J. Gray, “Disk Shadowing,” 14th Conference on Very Large Data Bases, pp. 331-338, 1988.

[Cam91] R. Camposano, R.A. Walker, A Survey of high-level Synthesis Systems, B : Kluwer Academic, Boston,
MA, 1991.

[Cha92] A. Chandrakasan, et al., “HYPER-LP: A System for Power Minimization Using Architectural Transforma-
tions,” IEEE ICCAD-92, pp. 300-303, 1992.

[Che92] D. Chen, J. Rabaey, “A Reconfigurable Multiprocessor IC for Rapid Prototyping of Real-Time Data Paths”,
ISSCC DIGEST of TECHNICAL PAPERS, pp. 74-75, 1992.

[Fis88] C.N. Fischer, R.J. LeBlanc, Jr.,, Crafting a Compiler, The Benjamin/C ings, Menlo Park, CA, 1988.

[Gib89] G. Gibson, L. Hellerstein, R. Karp, R, Katz, D. Patterson, “Emor Correction in Large Disk Arrays,” ASPLOS
11, pp. 123-132, ACM, 1989.

[Gri91) M. Griffin, et al., “An 11-Million Transistor Neural N k E ion Engine,” 1991 JEEE ISSCC, pp. 180-
181, San Francisco, CA, 1991.
[Gue93] L. Guerra, M. Potkonjak, J. Rabaey: "High Level Synthesis for R figurable Datapath Str ’, Techni-

cal Report 93-C107-4-5510-9, NEC USA, Princeton, NJ, 1993.

[Kar92] R. Karri and A. Orailoglu, “Transformation-Based High-Level Synthesis of Fault-Tolerant ASICs,” 29tk
ACM/IEEE Design Automation Conference, pp. 662-665, 1992.

[Kor84] I. Koren, M. Breuer, "On Area and Yield Considerations for Fault-Tolerant VLSI Processor Arrays," IEEE
Transactions on Computers, Vol. C-33, No. 1, pp. 21-27, Jan. 1984.

[Lee92] T. Lee, W. H. Wolf, N.J. Jha, “Behavioral Synthesis for Easy Testability in Data Path Scheduling,” IEEE
ICCAD-92, pp. 616-619, 1992.

[Lei85] T. Leighton, C.E. Leiserson, “Wafer-scale integration of systolic arrays,” IEEE Trans. on Computers, Vol. 34,
No. 5, pp. 448461, 1985.

[Lev68] KN. Levitt, M.W. Green, J. Goldberg, “A Study of the Data Communication Problems in a Self-Repairable
Multiprocessors,” Conf. Proc. of AFIPS, Vol. 32, pp. 515-527, Thompson Book, Washington, DC, 1968.

[Lew?79] D.W. Lewis, “A Fault-Tolerant Clock Using Standby Sparing,” 9tk Int. Conf. on Fault Tolerant Computing,
IEEE Computer Society, Madison, W1, pp. 33-40, 1979.

[McF90] M.C. McFarland, A.C. Parker, R. Camposano, “The High-Level Synthesis of Digital Sy ,” Pr ding
of the IEEE, Vol. 78, No. 2, pp. 301-317, 1990.
[Moo86] W.R. Moore, “A review of fault-tolerant techniques for the enh of integrated circuit yield,” Pro-

ceedings of the IEEE, Vol. 74, No. 5, pp. 684-698, 1986.

[Neg89] R. Negrini, M.G. Sami, R. Stefanelli, Fault Tolerance Through Reconfiguration in VLSI and WSI Arrays,
MIT Press, Cambridge, MA, 1989.

[Pat88] D. A. Patterson, G. Gibson, R.H. Katz, “A case for redundant arrays of inexpensive disks (RAID),” Proceed-
ings SIGMOD, pp. 109-116, 1988.

[Pat89] D.A. P: JL.H y, Comp Archit e: A Quantitative Approach, Morgan Kaufmann Publish-
ers, San Mateo, CA, 1989.

[Pot92] M. Potkonjak, J. Rabaey, "Maximally Fast and Arbitrarily Fast Implementation of Linear Computations,”
IEEE ICCAD-92, pp. 304-308, 1992.

[Rab91] J. Rabaey et al., “Fast Prototyping of Data Path Intensive Architectures,” IEEE Design & Test Magazine,

June 1991.

[Rag91] V. Ragh dra and C. Lursinsap, “Automated Micro-Roll-Back Self Recovery Synthesis,” 28th ACM/IEEE
Design Automation Conference, pp. 385-390, 1991.

[Sat92] K. Sato et al., “A System-Integrated ULSI Chip Containing Eleven 4 Mb RAMs, Six 64kb SRAMs and an 18k

Gate Array,” ISSCC-92, pp. 52-53, San Francisco, CA, 1992

[Sie92) D.P. Siewiorek, R.S. Swartz, Reliable Computer Systems: Design and Evaluation, 2nd edition, Digital Press,
Burlington, MA.

[Sta%2] C. H. Stapper, “A New Statistical Approach for Fault-Tolerant VLSI Systems,” The 23rd Annual International
Symposium on Fault-Tolerant Computing, pp. 356-365, Boston, MA, 1992.

[St090] M. Stonebraker, G. Scholss, "Distributed RAID - A New Multiple Copy Algorithm,” Conference on Data
Engineering, pp. 430-437, 1990.

[Yeu92] A. Yeung and J. Rabaey, “A Data-Driven Architecture for Rapid Prototyping of High Throughput DSP Algo-
rithms,” IEEE VLSI Signal Processing Workshop, pp. 225-234, 1992.

