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ABSTRACT

A simple formulation of pipelining: “Pipelining with N stages is equivalent to retiming
where the number of delays on all inputs or all outputs, but not both, is increased by N” is
used as the basis for a convenient and efficient treatment of pipelining in design of application
specific computers.

Classification of pipelining according to the optimization goal (throughput and resource
utilization) and the latency is introduced. For polynomial complexity pipelining classes, opti-
mal algorithms are presented. For other classes both proof of NP-completeness and efficient
probabilistic algorithms are presented. Both theoretical and experimental properties of pipe-
lining are discussed. In particular, a relationship with other transformations is explored. Due
to close relationship between software pipelining and pipelining presented here, all results
can be easily modified for use in compilers for general purpose computers. Also, as the side
result, the exact bound (solution) for iteration bound is derived.

1.0 Introduction

Pipelining is an implementation technique where different instances of programs primi-
tives are partially overlapped during execution. Depending on what is considered as a basic
building block of a program, three forms of pipelining are most often discussed: suboperational
(also called bit level pipelining, structural pipelining or just pipelining), control loop pipelining
(software pipelining, loop winding and loop folding) and functional pipelining. The program
primitive in suboperational pipelining is an operation, in control pipelining it is a program loop
and in functional pipelining the instance is the whole program which is executed iteratively.
Pipelining is probably the most often used transformation in DSP ASIC design and high level
synthesis as well as the most discussed one in the DSP VLSI and CAD literature. An excellent,
engineering oriented reference is the book by Kogge [Kog81]. He discusses many important
technical questions in detail. Another excellent references include Chapter 6 of Hennessy’s and
Patterson’s book “Computer architecture” [Hen89, Pat89], Chapter 3 in “High-performance
computer architecture” by Stone [Sto90] and Chapter 3 in “Computer architecture and parallel
processing” by Hwang and Briggs [Hwa84). These books contain an extensive discussion in the
field of pipelining research in the context of general computing and long lists of additional refer-
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ences. Therefore, we will limit our overview of previous work to the DSP ASIC design and high
level synthesis treatment of pipelining.

This paper refers to functional pipelining, the technique of the partitioning of the control
data flow graph into subgraphs that will be performed concurrently. Successive subgraphs,
called pipeline stages, are streamed into the pipe so that different control data flowgraph (CDFG)
instances are executed simultaneously on the same hardware. Since there is a close relationship
between functional and control loop (software) pipelining all techniques and results presented
here can be easily adapted for the software pipelining.

Suboperational pipelining is the most often discussed as a feature in scheduling algo-
rithms. While Moritz and Chen [Che91] discuss the simultaneous application of both structural
and functional pipelining techniques, the majority of the work addresses functional pipelining.
The major reason why functional pipelining is getting high attention is due to its ability to some-
times significantly reduce the critical path, and to increase the scheduling freedom of operation.

Park and Parker produced the most comprehensive treatment of pipelining[Par88b,
Par88c]. They discussed both the theoretical foundations and practical implementation issues.
Later on, research at the University of Southern California has been continued with numerous
studies on the effectiveness of pipelining and its relationship to other high level synthesis tasks
[Jai89, M1i91]. Casavant and his co-workers at GE developed the PISYN- high level synthesis
system for the application specific pipelined hardware [Cas91]. [Hwa91] used integer program-
ming technique for the optimization of the pipelined designs. Kim [Kim91] discussed in detail
how specific logic synthesis techniques can be used for synthesis and optimization of controller
in pipelined design.

However, it is important to stress that in a significant part of the high level synthesis publi-
cations, only CDFG’s without feedback edges are considered. Actually, even when the original
examples do have feedback loops, those are sometimes ignored. This approach highly simplifies
the study of pipelining and its application, but have a very limited application range. When it is
applied to computations, which do have feedback in their CDFG, this results in a change in
input-output relationship and therefore incorrect results.

In the digital signal processing community, pipelining is also a well discussed topic. The
accent here is on how to manually apply pipelining in conjunction with other flow graph trans-
formations for specific application areas (e.g. infinite response filters, dynamic programming
based calculations such as the Viterbi algorithm), in order to achieve maximal speed-up [Par88a,
Lin91, Fet90]. An excellent introduction to this type of research is again Kogge’s book [Kog81].

In the compiler research, where a repeated execution of programs rarely occurs and where
the most important transformations are related to program control, pipelining is most often dis-
cussed during its application on loops (L.am88, Lam89]. While this technique is often called loop
winding or loop folding in high level synthesis, [Goo89, Gyr84] in the compiler literature it
appears under the name of software pipelining. Jouppi {Jou89] discussed the amount of software
pipelining potential in various classes of programs.

This paper treats functional pipelining as a high level synthesis transformation. This
approach enables a simple and straightforward inclusion of pipelining in the HYPER transfor-
mational environment, and therefore its combination with other transformations, which signifi-
cantly enhance pipelining power. HYPER is the high level synthesis system for the ASIC
implementation of computationally intensive applications [Rab91]. In HYPER, structural pipe-
lining is treated during scheduling. There is a very close relationship between software pipelin-
ing and functional pipelining. The only conceptual difference is that while software pipelining
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operates on program control loops, functional pipelining operates on time loops. Also, from
technical point of view, software pipelining includes additional important issues of loop pro-
logue (initiation) and loop epilogue (finishing) effects [Goo89]. All results and techniques pre-
sented here can, therefore, be also easily applied on software pipelining.

The work presented here differs from the previously reported in both the scope and the
used techniques. Four different forms of pipelining are identified and discussed. For the two of
these problems the optimal polynomial complexity algorithms are presented. For the other two
an NP-completeness proof is established and new probabilistic algorithms are used to generate a
solution. The effects on the resulting hardware implementation for a number of diverse examples
are reported and analyzed.

The rest of this paper is organized in the following way. After a definition of the four dif-
ferent forms of pipelining, their computational complexity is established. Next, an optimal poly-
nomial algorithm is presented when the goal is the minimization of the critical path. For the case
when the goal is the optimal resource utilization, the objective function during pipelining is
defined, and a learning while searching algorithm is used for the optimization. After a discussion
of experimental results, conclusions are drawn.

2.0 Problem Formulation

In the following section, the following simple, yet effective framework of the pipelining
concept will be employed: “Pipelining with N stages is equivalent to retiming where the number
of delays on all inputs or all outputs, but not both, is increased by N,

As we have already mentioned we treat pipelining just as yet another transformation.
Strictly speaking pipelining is not really a transformation, as it changes the phase between input
and output signals. However, since it preserves the input/output computational relationship, we
will consider it as a transformation in the broad sense.

Depending on the goal and the level of the introduced latency, four different forms of pipe-
lining can be identified. Those four pipelining forms, which are implemented in HYPER, are:

(1) pipelining for the minimization of the critical path;

(2) pipelining for the minimization of the critical path for a given number of pipeline

stages;

(3) pipelining for resource utilization;

(4) pipelining for resource utilization for a given number of pipeline stages.

We will denote them as CP, CP(n), RP and RP(n) respectively, where n stands for the
number of pipeline stages. Before discussing the algorithms, a precise definitions of those
classes are given first.

Pipelining for critical path (CP) produces a minimal stage time. The stage time is
defined as the length of the critical path of the CDFG after pipelining.

Pipelining for critical path using n pipeline stages (CP(n)) produces a CDFG with a
minimal stage time, but so that exactly n pipeline stages are introduced.

Pipelining for resource utilization (RP) produces a CDFG which realizes the minimum
area for a given timing constraint.




166 International Conference on Application Specific Array Processors

Pipelining for resource utilization using n pipeline stages (RP(n)) produces a CDFG,
which can be implemented using a minimum area, for a given timing constraint. The number of
introduced pipeline stages should equal exactly n.
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FIGURE 1. (a) Initial CDFG; (b) CDFG after the application of pipelining for the minimization of
critical path; (c) CDFG after the application of pipelining for the resource utilization

Cycle A B C
1 Al A2 - -
2 A3 B1, B2 -
3@) - B3 C1,C2
4 - - C3

Table 1: Schedule after pipelining for critical path; () Schedule after pipelining for resource
utilization
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Cycle A B C
1 Al B2 C3
2 - B1 Cc2
3 A3 - C1
4 A2 B3 -

Table 2: Schedule after pipelining for resource utilization

It is sometimes argued that pipelining for critical path and pipelining for resource utiliza-
tion are the same. Actually, until now difference between those two types of pipelining were not
discussed in the literature. The discussion of the computational complexity of the associated
optimization problems will denote that it is not true, but the following simple example provides
intuitive insight into difference. Their relationship closely resembles the relationship between
retiming for critical path and retiming for resource utilization,

Suppose that we have the computation shown in Figure 1(a), 1(b) and 1(c) in the flow
graph format. Assume that each operation takes one control cycles, and that available time
equals 4 control cycles. There are three different types of operations: A (operations A1, A2, A3),
B (operations B1, B2, B3) and C (operations C1, C2, C3). For the sake of simplicity, we will
only take the cost of the execution units into account. Due to the recursive bottleneck [Mes88],
at most three pipeline stages can be introduced.

Pipelining for critical path will result in the transformed CDEG shown in Figure 1(b). The
critical path is 3. It is easy to see that the optimal schedule needs at least 2 executional units of
each type. A possible schedule is shown in Table 1.

The effect of pipelining for resource utilization on the CDFG is shown in Figure 1(c). The
critical path is 4. However, although the critical path is longer than in the former case, only 3
executional units are needed for the realization. The schedule is shown in Table 2. Therefore, we
can conclude, that pipelining for critical path and pipelining for resource utilization are indeed
two different transformations.

3.0 The Computational Complexity of Pipelining

Sometimes a very small change in the formulation of a problem can result in a drastic
change in its computational complexity. There are many pairs of similar problems, where one is
NP-complete and the other can be solved in polynomial time [Gar79]. However, there are very
few such pairs in high level synthesis. It is interesting that maximal pipelining and pipelining for
resource utilization, as well as maximal pipelining for a given number of stages and pipelining
for a resource utilization for a given number of pipeline stages, constitute two such pairs. While
maximal pipelining problems have a polynomial complexity (see next section), pipelining for
resource utilization problems belong to the class of NP-complete problems.

It is easy to prove that pipelining for resource utilization is an NP-complete problem.
Actually, since we already proved that retiming for resource utilization is an NP-complete prob-
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lem [Pot91a], we can use the simplest and most frequently applicable technique for proving NP-
completeness: restriction [Gar79). If we look at the NP-completeness proof for retiming for
resource utilization we see that in the used CDFG it is impossible to introduce any new pipeline
stages, since all operations are in recursive loops. So, if we have a polynomial complexity algo-
rithm for either RP or RP(n) we will be able to solve the retiming for resource utilization prob-
lem, and therefore also the MAX-CUT problem, which is NP-complete [Gar79]. Therefore, we
can conclude that both RP and RP (n) are at least as difficult as NP-complete problem. On the
other hand, if we have a solution for either PR or RP(n) with a given assignment and schedule,

we can easily check the cost of the proposed solution. Thus, both RP and RP(n) are NP-complete
problems.

4.0 Pipelining Algorithms

4.1 Pipelining for minimization of the critical path for a given number
of pipeline stages (CP (n))

The definition of pipelining as retiming where the number of delays on all inputs is
increased by the number of pipeline stages directly leads to the efficient algorithm in the case of
CP(n). The obviously correct and efficient algorithm can be obtain by applying the Leiserson-
Saxe retiming algorithm to the CDFG where the number of delays on the input edges is
increased by n. Since there is an excellent and extensive literature on the Leiserson-Saxe retim-
ing algorithm, [Lei83, Goo86] we will not further elaborate this issue.

4.2 Pipelining for minimization of the critical path

Only a slightly more complex modification of the Leiserson-Saxe algorithm is needed to
generate the fastest possible solution, using only pipelining as the transformational means. We
can add on pipeline stages a very large number of delays (say as many as the number of opera-
tions in the CDFG), and obtain the CDFG which will have the minimum stage time achievable
by pipelining. If we are interested in the minimum number of pipeline stages needed for the
maximal minimization of the critical path, we can use a binary search over the number of intro-
duced delays. In that manner, we can detect the situation where we still achieve the minimal crit-
ical path, with the smallest number of pipeline stages. Of course, during the binary search, we
can still use the Leiserson-Saxe retiming algorithm to solve the pipelining problem with a given
number of pipeline stages.

A more elegant approach, but conceptually very similar, is to directly modify the Leiser-
son-Saxe retiming algorithm, so that either all inputs or all outputs (but again not both) are not
connected to the host node. (See [Lei83] for a detailed and clear description of the algorithm). In
this case the algorithm will automatically introduce the necessary minimum number of pipeline
stages. The correctness proof of the introduced modification is straightforward.

The interesting and important side result of the just described algorithm is that it also
answers the questions about fast derivation of optimum pipelining rate in systolic array proces-
sors design [Kun88], as well as iteration bound for ASIC designs [Mes88, Par89]. The previous
techniques required the search over all loops in CDFG, and since their number can be exponen-
tial with the respect to the number of nodes, all previous algorithms had an exponential com-
plexity. The new approach has run time O (IVI [El 1g IVI), where VI is the number of nodes in the
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CDFG, and [El is the number of edges. [Lei91]. Since all CDFG are sparse (each node has usu-
ally two inputs, or at most some small integer number of inputs), this procedure has the essen-
tially quadratic run time, so that very large CDFG can be treated.

4.3 Pipelining for resource utilization with n stages

Again, as in the previous two cases, the formulation of pipelining as the retiming with the
increased number of delays on all inputs provides a good starting point for the design of an effi-
cient fast algorithm. It is easy to see that it is sufficient to increase the number of delays on all
inputs simultaneously by n and then to apply retiming for resource utilization in order to design
the algorithm for CP(n) [Pot91b]. However, in order to make the algorithm as efficient as possi-
ble, it is necessary to make several modifications in the algorithm for retiming for resource utili-
zation. These modifications are needed because in the case of pipelining, especially in cases
when a large number of pipeline stages are introduced, the number of delays in the graph grows
extensively and therefore the solution space is far larger. Hence, the set of possible moves is
growing, decreasing the effectiveness of the algorithm.

For the sake of completeness we will briefly describe the retiming for resource utilization
learning while searching optimization algorithm.,

The leaming while searching algorithm is organized as a two phase process. In the first
phase, the solution space is scanned in an organized fashion to detect areas where the objective
function has a small value. Those areas are used in the second phase as the starting points for a
more elaborate search towards a final solution.

The goal of the first phase is thus to discover (learn) k solutions where the objective func-
tion has a small value. In order to achieve this goal, we will traverse the search space a number
of times, each time favoring one particular direction of traversal. For instance, we will first
(probabilistically) favor moves in the forward direction (moving the delays from the inputs to
the outputs for the retiming and favoring the forward associativity moves). After 1/4 of the opti-
mization process, the preferred direction is reversed: moving the delays from output to input as
well as the reverse associativity moves are now probabilistically favored. Finally, for the last 1/4
of the time, the forward moves are favored anew.

At every point in the optimization process, we select a move in a probabilistic fashion,
proportional to the improvement in the objective function, while also accounting for the favored
direction at that time. No selected moves are ever rejected. Moves, which increase the objective
function, can be selected, but the changes for this to happen are inversely proportional to that
increase.

The first phase results in k starting points for the second phase.

Those are used as the seeds for a steepest descent search towards the final solution. The
objective function is now observed at each step and for all possible moves. The move offering
the best decrease in the objective function is automatically selected. For each starting point, the
search is concluded when a local minimum is reached. The best of those minima is selected as
the final solution. We have set the number of starting points k to 10 for the examples discussed in
the next section. The length of the first phase was set such that the number of moves during the
first forward traversal equaled 10 times the number of nodes in the graph. Moves in the forward
direction were preferred with a ratio 4:3. We have varied these values of large ranges and did not
notice any significant changes in the quality of the solution, although the effects on the run time
were outspoken.
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5.0 Experimental Results

For testing of the proposed pipelining algorithms we used a set of 15 different instances of
7 designs:
*  iir7 - 7th order IR filter,
iir5 - Sth order IIR filter,
firl1 - 11th order FIR filter,
iir11 - 7th order IIR filter followed by 4th order equalizer,
dct8 - DCT transform for 8 points,
» decby4 - decimation elliptic filter,
» volterra2 - second order Volterra filter.

Initially After CP
Example | CP(M | A|S| BS | R|cPp|ms|{mM|A|{s]|BS|R
iir7 0| 321 -3 33 [21[1] - ]33
iir7 B3| -1212( 2(38] 6| 1]-[1[1]1]2
iirs 8321 - |26 2| 3)2]1]2]-12
iirs 0] -3]3[ 3 |32]e6] 1]-[2]1]2]2
firtl | 1| 21| -] - {28 1 2]1]1]-]-7]2
firt1 | - j 2 1| 3|32 a] 1 [-]2]1]2]3s
iiri1 |2 3]1{1] - |[ss{3]e6f]2]1]1]-T@&
il st -2 2|stl e o -]1]1] 2]s3
det8 7 313 - |33 1] 63|24l -1[9
decbya | 14| 4| s3] - |[s7| 3| a|2]2]2]-1ss
decbya | 34| - [ 2[2] 2 [aa| u| 3| -[1]2] 2762
volterra2 | 12 | 2 [ 1 [ 1] - |23 | 2] o |21 ]1]| - ]2
volterra2 | 15| 4 [ 2| 2] 6 [38] 10| 1 [1]1 1] 1712
volterr2 | 10| 7| 5| 3] - |48 s |1 |3]2]1]-1[a
volterra2 | 14 | 1 [ 3| 2] 4 |s8| 7| 1 |1]|3]1]|2]ss

Table 3: The effect of the maximal pipelining

CP - Critical Path; M - number of Multipliers; A - number of Adders; S - Number of Subtractors;
BS - number of Barrel Shifters; R - number of Registers; IPS - number of Introduces Pipeline Stages.
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The available time in all examples was equal to the initial critical path. All designs (except
dct8) were done in two ways: before and after the application of substitution of multiplications
by constant with shifts and additions. In the two last cases of the Volterra filter, we also applied
time loop unrolling. The effects of pipelining for minimization of the critical path are shown in
Table 3 and Figure 2. The effects of pipelining for minimization of the resource utilization are
shown in Figure 3
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FIGURE 2. The changes in (a) execution units area and (b) registers area due to the application of
the pipelining for the minimization of critical path

In the case of CP, the average improvement in the area of execution units was 32.5%, the
median reduction was 28.6%, best improvement was 69.2%, and in the worst case the area was
unchanged. For the registers the situation was very different. The average register area was
larger 12.9%, the median value was unchanged, the best improvement was only 33.2%, and in
the worst case the register area increased 178.8%.

In the case of RP, the average improvement in the area of execution units was 39.1%, the
median reduction was 33.3%, best improvement was 69.4%, and the smallest improvement was
16.7%. For the registers the situation was again very different. The average register area was
only 5.9% smaller, the median saving was 9.4%, best improvement was 36.8%, and in the worst
case the register area increased 36.4%.

In the final experiment we combined RP with the application of two other transformations:
associativity and commutativity. Associativity was applied simultaneously with pipelining,
while commutativity was applied independently after RP. The average improvement in the area
of execution units was 46%, the median reduction was 46.7%, best improvement was 81.6% (the
final implementation was more then 5 time smaller), and in the worst case improvement was
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20%. The average, median, best and worst case improvement in the register cost was 19.9%,
16.4%, 43.1% and 3%. In this case pipelining with the aid of two algebraic transformations was
able to improve in all cases both execution units and register cost

Analyzing experimental results we can draw many conclusions, but the most important
are:

(1) That although pipelining is powerful transformation for both critical path reduction, as
well as resource utilization improvement, on examples with feedback loops, which
have many computational elements and few delays it has very limited efficiency.

(2) Actual prediction of the effects on pipelining application should be always carefully
analyzed, since they heavily depend on the ratio of the operational elements’ cost to
the register cost.

(3) In order to fully explore the potential of pipelining, it is necessary to combine it with
other transformations.

6.0 Conclusion

Classification of pipelining according to the objective (throughput and resource utiliza-
tion) and the latency is introduced. For polynomial complexity pipelining classes, optimal algo-
rithms are presented. For other classes both proof of NP-completeness and efficient probabilistic
algorithms are presented. Both theoretical and experimental properties of pipelining are dis-
cussed. In particular, a relationship with other transformations is explored. Due to close relation-
ship between software pipelining and functional pipelining presented here, ail obtained results
can be easily modified for software pipelining. Also, as the side result, the exact bound (solu-
tion) for iteration bound and optimal pipelining rate in systolic array processors are derived.
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