Quantitative Selection of Media Benchmarks

Chunho Lee and Miodrag Potkonjak
Computer Science Department, University of California
Los Angeles, CA 90095-1596, USA
e-mail: leec@cs.ucla.edu, miodrag@cs.ucla.edu

Abstract— Over the last decade, significant advances
have been made in compilation technology and micro-
processor architectures for capitalizing on instruction-
level parallelism (ILP). While most of the processors
containing superscalar, VLIW and SIMD structures
that are well matched to the needs and capabilities
of the ILP compilers are targeted at embedded ap-
plications, the majority of all ILP compilation work
has been conducted in the context of general-purpose
computing. As a consequence, there currently exists
a gap between the compiler community and embed-
ded application developers. We present a quantita-
tive benchmark selection and validation technique to
close the gap. It is based on more quantitatively rig-
orous metrics to accurately measure usefulness and
effectiveness of benchmarks. We assemble a collec-
tion of DSP and communication applications written
in a high-level language.
of benchmarks from the collected applications is con-

An experimental selection

ducted and its applicability and usefulness are verified
through an application specific system synthesis.

I. INTRODUCTION

As computer hardware and software systems become in-
creasingly more complex, testing and simulation tend to
replace verification and validation. Since developers have
to address the issues of correctness and performance at the
same time, benchmarks play a more critical role than ever
in complex system development processes. ¥From the sys-
tem synthesis point of view, optimizing synthesis efforts
to poorly designed benchmarks can be very costly due to
the resource-restricted nature of embedded systems.
Most benchmarks designed to evaluate DSP systems
have mainly been composed of a mix of low level ker-
nels or small hand-written applications in assembly lan-
guage [13, 15, 16]. Many general-purpose processors with
so-called multimedia extensions were mainly motivated
and developed by benchmarks based on the kernels. Two
major problems have been raised concerning the validity
and usefulness of the existing benchmarks. First, quality
and performance of the existing benchmarks in system de-
velopment or system synthesis have never been reported.
Second, the existing benchmarks does not adequately re-
flect major advances in architecture and compiler tech-

105

nology.

Modern advances in compiler technology for
instruction-level parallelism (ILP) have significantly
increased the ability of a compiler to capitalize on the
opportunities for parallel execution that exist in various
programs [9]. At the same time, a number of new
microprocessor architectures have been introduced. They
present the hardware structures that nicely matches with
most ILP compilers. Architectural enhancements found
in commercial products include predicated instruction
execution, VLIW execution and a split register file.
Multi-gauge arithmetic (or variable-width SIMD) is
found in many mediaprocessors. Most of the multimedia
extensions of general-purpose processors also adopt
this architectural enhancement. The majority of ILP
research, however, has focused on general-purpose com-
puting, and in particular the integer SPEC benchmarks.
As a consequence, there currently exists a gap between
the compiler community and embedded application
developers.

We present a quantitative benchmark selection and val-
idation technique to close the gap. It is based on more
quantitatively rigorous metrics to accurately measure use-
fulness and effectiveness of benchmarks. We assemble a
collection of DSP and communication applications writ-
ten in a high-level language. First, we characterize col-
lected applications by measuring a number of run-time
characteristics of the program. And then we develop an
algorithm to select a subset of collected applications. An
experimental selection of benchmarks from the collected
applications is conducted and its applicability and useful-
ness are verified through experimental application specific
system synthesis.

The remainder of this paper is organized as follows.
Section II discusses the relevant previous works and our
contributions in the area. Preliminary materials including
applications of a benchmark suite, quantitative bench-
mark selection criteria, and tools used in this work are
described in Section III. Section IV briefly discusses the
global design flow of a media benchmark suite. Section
V presents the approach used for collecting media appli-
cations and explains key components of each application.
After metrics measured and used to characterize an ap-
plication are briefly discussed, run-time characteristics of
all the applications are given in the section. Section VI

0-7803-4425-1/98/$10.00 1998 IEEE

presents a benchmark selection approach. Section VII
presents an experimental media benchmark selection and
an experimental core-based system synthesis based on the
selected benchmark suite is discussed. Finally, Section
VHI draws conclusions.

II. PREVIOUS WORKS AND OUR CONTRIBUTIONS

Most DSP system evaluation has been focused on assem-
bly language or the use of very small kernels [16]. Saghir
et al. developed a mix of low level kernels and small appli-
cations with the goal of compiler evaluation and system
synthesis [14]. This suite emphasizes kernel codes and
low-level filter operations. Furthermore, no clear mea-
surement is made to establish the value of the new code
base.

A number of researchers have used benchmark suites
to drive automatic synthesis of embedded systems [4, 6].
However, we know of no study that quantitatively evalu-
ated the quality and performance of a benchmark suite.
Without this step, it is unclear what the benefit of the
benchmark suite is.

The quantitative media benchmark design effort pre-
sented in this paper is the first to focus on complete ap-
plications for multimedia and communications systems, as
well as the first to use only applications written in a high-
level language in order to stress compilation technology.
Furthermore, this paper presents a philosophy for bench-
mark design that is more rigorous, and consequently well
tested, than ad hoc methods used previously.

I1I. PRELIMINARIES

This section presents the reasoning and goals of the quan-
titative approach to benchmark selection. Conventional
wisdom, and a history of benchmarking, suggests that
benchmarks serve a number of purposes throughout de-
sign, simulation, implementation, and testing phase of
computer systems development. The primary objective
in designing benchmark suite is to select a set of applica-
tions in a domain in such a way that it can satisfy all the
prescribed purposes.

Through rigorous analysis of objectives, we identified
quality criteria that guide benchmark design: relevancy,
compactness, comprehensiveness, and resolvability. A
benchmark suite should be based on real applications rep-
resenting their full diversity and complexity. As it is pro-
hibitively expensive to include a large number of appli-
cations in a benchmark suite, the size of a benchmark
suite should be as small as possible while providing a cer-
tain degree of assurance that it covers applications in a
domain comprehensively. A good benchmark set strikes
balance between its size and comprehensiveness based on
real life applications. Finally, a benchmark should result
in a fair comparison among designs and approaches with
good resolutions. In other words, we do not want all the
benchmarks too easy or too difficult, which may result in

106

Source program written Ma
in high level language

" Simuation resuits
IMPACT simulator

enemnn | BTB, eache performance
Lsim IPC, etc.

(a) Using IMPACT suite

IMPACT compiler Apptication

binary] l

Peode, Heode, Leode, ete,

Application

k’r. i B . cati
fexcoutable binary] Dafd [execuable binary] Data

[executable binary] ¥
; ; |
| SHADE |+ ISHADE) i Spix
1 t
1 il
1)
' I Binary translation I v 11| Binery transtation J H I Profiling
¥ 1 H
i P"m Vo Trace ,
' ! .. L L -
1 ANALYZER |1 ANALYZER , Spixstats Profile information
$ [
'] R Memory address ' -]
' ALU operation analysis | | ! generation) Statistics collection
!) 1)
TPRRpTEEDERN DRI [PAPTUI PR
W Dincrollf
Analysis results] Cache simulation resuits Program statistics
i
Integer ALU operation Memory accesses, Instruction counts,
characteristics Cache misses, etc. branch statistics, etc.

(b) Using SpixTools, SHADE and Dinerolll

Fig. 1. Run-time characteristic measurement flows

Application cotlection Application characterization

Collecting and analyzing Identifying relevant parameters
media applications for application characterization :

Fig. 2. The global design flow of quantitative benchmark selection

Benchmark selection

Selecting benchmarks from
collected media applications

no differentiation among the various systems that may or
may not equal in their quality.

We use a set of profiling, tracing, and simulation tools
as well as compilers to conduct the application character-
ization experiments. We measure a set of metrics which
computer architects generally agree are important.

Application characterization begins by executing each
application under two different execution environments on
two different processor architectures. The IMPACT tool
suite [1] was used to collect execution characteristics for
the HPPA processor architecture. We used a single-issue
processor core along with a pair of direct-mapped 16KB
caches. IMPACT provides cycle-level simulation of both
the processor architecture and the implementation (see
Figure 1(a) for the simulation flow).

Run-time characteristics of programs were collected on
the SPARC architecture using the SpixTools suite [2],
SHADE tracing environment [3], and DinerolII [8]. Fig-
ure 1(b) shows the overall measurement flow of run-time
characteristics. SpixTools is a collection of programs that
allow instruction-level profiling of application programs.
spiz instruments application programs. As it runs, an
instrumented program generates the program execution
profile. spizstats analyzes the profile information and gen-
erates a summary of run-time statistics of the program.

SHADE is a library that provides uniform interfaces to
tracing facilities. It allows users to define custom trace
analyzers and thus collect rich information on runtime

TABLE I
A BRIEF DESCRIPTION OF APPLICATIONS AND DATA USED IN THE EXPERIMENT

I Application | Instr.® I Source | Description ” Data file? | Data Description
JPEG encoder 13.9 Independent JPEG image 101,484 PPM (bit map)
JPEG decoder 3.8 JPEG Group encoding/decoding 5,756 JPEG compressed
MPEG encoder 1,121.3 | MPEG Simul- MPEG-2 movie 506,880 YUV 4 frames
MPEG decoder 175.5 | ation Group encoding/decoding 34,906 MPEG-2 (http://www.mpeg2.de/)
GSM encoder 184.2 Technische Uni- European wireless 295,040 16 bit PCM
GSM decoder 73 versitdt, Berlin voice coding standard 30,426 GSM encoded
G.721 encoder 274.1 Sun Micro- CCITT voice 295,040 16 bit PCM
G.721 decoder 511.7 systems, Inc. coding standard 14,7520 G.721 encoded
PGP encryption 169.9 MIT encryption/ 91,503 plain ASCII
PGP decryption 155.3 decryption 20,163 PGP encrypted
Pegwit encryption 34.0 George Barwood encryption/ 91,503 plain ASCII
Pegwit decryption 18.5 decryption 91,537 Pegwit encrypted
Ghostscript 708.9 Aladdin Software | postscript interpreter 78,519 PS color picture
Mipmap 47.6 University of 3-D renderers N/A mipmap texture mapping example
0OS-demo 9.0 Wisconsin using Mesa graphics N/A 3-D rendering pipeline example
Texgen 83.9 library N/A texture mapped Utah teapot
Rasta 24.4 ICSI at UCB rasta-plp processing 17,024 SPHERE format
EPIC encoder 50.3 University of Wavelet image 65,595 PGM Gray scale 256 X 256
EPIC decoder 7.2 Pennsylvania encoding/decoding 7,432 EPIC encoded Gray scale 256 x 256
ADPCM encoder 6.8 Jack Jansen speech compression 295,040 16 bit PCM
ADPCM decoder 5.9 and decompression 73,760 ADPCM encoded

*Dynamic instruction count measured using SpixTools(millions)

bbytes
events. We wrote two custom analyzers composed of ap-
proximately 500 lines of C code to collect run-time statis-
tics of applications such as ALU operation counts, ALU
operation width counts (i.e. 8-bit, 16-bit, and 32-bit), and
percentage of ALU operations that are associated with
memory operations.

Memory reference characteristic of the programs are
measured by DinerollIl. A small SHADE program is used
to generate memory reference traces and they are con-
sumed by Dinerolll. Dinerolll simulates cache models
specified by a user and measures a set of cache perfor-
mance metrics such as miss rates, write-back counts, bus
traffic amount, etc.

IV. DESIGN FLow OoF MEDIA BENCHMARK SUITE

The global design flow of a media benchmark suite is
shown in Figure 2. The first step in benchmark design is
to collect applications in a domain as diverse as possible.
Although we do not claim that we have exhaustively col-
lected all the media applications, we believe that the set of
application used in this experiment represents reasonably
good coverage of applications in the domain. The col-
lected applications are instrumented, profiled, simulated
and analyzed. We select a subset of measured metrics us-
ing a statistical method as relevant ones for use in bench-
mark selection. Finally, a subset of collected applications
is selected as a media benchmark suite using a benchmark
selection algorithm.

V. MEDIA APPLICATION COLLECTION

The set of media applications used in this experiment is
composed of complete applications coded in C. The collec-
tion is composed of 21 applications culled from available

107

image processing, communications and DSP applications.
A brief summary of the collected applications and the set
of data used are given in Table I.

We use the raw measurement numbers reported by the
IMPACT suite to identify to relevant parameters charac-
terizing applications. The IMPACT Lsim simulator pro-
vides a number of measurements such as IPC (instructions
per cycle), BTB (branch target buffer) hit rate, cache
hit rate, bus utilization, branch issue rate, and ALU is-
sue rate. We expected media applications to provide less
stress on instruction caches than other applications (e.g.
SPECint) since the applications were generally intended
for embedded execution. The expectation is verified by
the simulation results.

The measurements made by SpixTools, DineroIII, and
SHADE analyzers on SPARC are summarized in Table 1I
and III. Note that IPC numbers reported by the IMPACT
Lsim and those of Table IT are not the same in nature. The
former is reported by Lsim accounting all the architectural
details such as BTB, cache, etc. The latter is computed
based on raw performance numbers reported by SpixTools
assuming perfect cache. The formula is given by

IC —Nop

IpC = IC + branch_penalty x annulled’

(1)

where IC stands for total instruction count, Nop nop
count, and annulled squashed instruction count.

Table ITI shows an analysis of ALU operations. ALU
ops column displays the percentage of integer ALU oper-
ations. The percentage of ALU operations involving an
immediate value are in the next column. In the final four
columns, integer ALU operations associated with mem-
ory operation (i.e. store) and their breakdown in terms of
their operation width. By “integer ALU operations asso-

TABLE II
RUN-TIME CHARACTERISTICS BY SPIXT0OOLS AND DINEROIII
Application ‘ IPC | I-cache® D-cache?
1 2 2 4

JPEG encoder 0.966 2.19 1.32 17.22 11.36
JPEG decoder 0.995 2.39 1.15 21.67 7.15
MPEG encoder 0.896 0.74 0.12 5.36 4.23
MPEG decoder 0.971 1.93 0.47 4.53 2.95
GSM encoder 0.991 3.60 1.02 0.51 0.14
GSM decoder 0.966 0.89 0.68 1.40 1.09
(G.721 encoder 0.977 11.33 7.01 0.37 0.24
G.721 decoder 0.978 10.31 7.30 1.98 0.19
PGP encryption 0.980 3.67 2.71 10.16 6.97
PGP decryption 0.980 3.63 2.79 9.50 6.63
Pegwit encryption 0.994 6.12 3.32 23.89 18.04
Pegwit decryption 0.995 6.47 2.55 25.41 17.07
Ghostscript 0.952 21.89 16.47 9.40 6.20
Mipmap 0.933 15.60 8.98 13.84 5.19
Osdemo 0.969 7.39 3.94 8.92 7.59
Texgen 0.967 15.61 13.15 12.70 8.27
Rasta 0.961 13.20 9.58 10.30 7.46
EPIC encoder 0.988 0.05 0.04 21.31 16.68
EPIC decoder 0.942 0.52 0.12 16.09 13.04
ADPCM encoder 0.856 0.05 0.03 4.16 1.88
ADPCM decoder 0.852 0.04 0.01 4.12 1.80

“miss rate (%)

bmiss rate (%)

TABLE III
RUN-TIME CHARACTERISTICS MEASURED BY A SHADE ANALYZER

Application ALU” | Immed? | Mem® | ops Width (%)
(%) (%) (%) 8 16 32
JPEG encoder 59 64 27 22 12 66
JPEG decoder 60 52 36 55 08 37
MPEG encoder 51 31 08 06 19 75
MPEG decoder 45 76 21 12 02 85
GSM encoder 73 50 41 00 94 05
GSM decoder 72 53 75 00 99 01
G.721 encoder 60 72 30 01 27 T2
G.721 decoder 59 71 32 04 35 82
PGP encryption 50 38 27 00 08 92
PGP decryption 50 37 28 00 04 96
Pegwit encryption 64 53 23 00 34 66
Pegwit decryption 81 56 17 00 51 49
Ghostscript 46 53 57 53 00 46
Mipmap 32 55 29 18 03 70
Osdemo 37 60 45 21 10 66
Texgen 40 53 32 25 01 50
EPIC encoder 51 54 03 14 19 66
EPIC decoder 50 63 24 00 17 83
ADPCM encoder 67 59 47 39 00 01
ADPCM decoder 66 77 15 02 96 02

“number of ALU operations
®ALU operations with immediate
“iALU ops that produce results shipped out to memory

ciated with memory operation,” we mean ALU operations
involved in lifetime of a value that is eventually stored in
memory.

A correlation test among measurements made by the
IMPACT suite indicates that bus utilization, branch is-
sue rate, and iALU issue rate are closely correlated to
IPC. The observation is intuitively understandable since
a program can execute faster if it does not have to wait
for memory access and can issue more ALU instructions.
It turns out that other factors does not have great impact
on IPC. Measurements on SPARC shows a similar results.

VI. QUANTITATIVE BENCHMARK SELECTION

The goal of benchmark selection is achieving the same or
similar quality and performance in benchmarking as using
all the applications in a targeted domain. The selection
problem is formulated as an optimization problem and the
validity of the formulation and its solution is verified by
experimental results.

The basic idea of quantitative benchmark selection
methodology is finding a minimum subset of applications

108

in an application domain space using the notion of opti-
mization. The quality of the selected benchmarks should
be measured quantitatively and by maximizing the mea-
sured quality, we can find a subset which best charac-
terizes the application domain. As an example, Figure
3 shows a conceptual domain space. Each application is
numerically characterized and plotted in the application
space. The example shows five candidate benchmarks in-
dicated by shaded dots.

The benchmark selection problem is informally de-
scribed as follows:

“A sufficiently large set of N applications is given and
each application is numerically characterized by a set of
relevant properties. The task is to select k& applications
which according to some quantitative criteria are the best
representatives of all applications.”

We now define the problem using more formal Garey-
Johnson format.

Quantitative benchmark selection problem

Instance: A sufficiently large set X of N applications
and a constant M are given. Each application z;
is numerically characterized by a set of m relevant
properties, zj, | =1, ..., m.

Question: Is there a set Y of k applications y;, ¢ =
1,..,k such that) . D(z,) < M, where D(z,) =
miny; Dist(z,,y;) and R=X —Y?

Dist(z,,y;) can be any distance measure, e.g. geo-
metric />, (Zr — yi1)2, or Manhattan Y ;" |z. —
Yatl-

Determination of the constant M is not a trivial task.
For practical reasons the problem is divided into two sub-
problems: benchmark set size determination and bench-
mark selection. The benchmark selection subproblem
given a benchmark set size is defined as follows:

“Given the size of a benchmark set k and a set of N
applications X = {xz;|¢ = 1,2,..., N}, find a set of appli-
cations Y = {y;|j = 1,2, ..., k} such that

Minimize :
| R}

Dy =) d, (2)
i=1

where R = X — Y, d; = min{d(rs,y;)lj = 1,2, ..., k},
and d(r;,y;) refers to a distance function from r; to y;.”

The size of a benchmark set is determined by an iter-
ative test that examines the effect of selecting a certain
size by measuring total distances from each application to
selected applications as given by the expression (2). We
continue the set size determination process until we reach
a point where the set size strikes balance between the
economy of benchmarks and its effectiveness. We com-
pute and compare the total distances incrementing the

20 -

. ° .

-
o " 3

P AU S S S— MU 2
78 80 82 B4 86 B8 00 92 94 96 98 100

BTE hit rate

Fig. 3. An example of an application domain space and its
members: Parameterized characteristics in this example are BTB
hit rate and bus utilization from the IMPACT simulation results.

size one at a time until we get no significant improvement
by adding more applications to the benchmark set.
The benchmark set size problem is formally given by
“Given a set of N applications X = {z;|i = 1,2,..., N},
select a benchmark set size k such that

Dg“,k: 1,2,..N — 1}, (3)
k

min{k|p <

where Dy, is given by the expression (2) and p refers to
a target ratio.”

We proved that the quantitative benchmark selection
problem is NP-complete by using polynomial “local re-
placement” transformation from a special instance of the
MIN-MAX MULTICENTER problem where the selected
points are from the set of the available points.

The overall procedure for the quantitative development
of benchmarks which includes a general combinatorial op-
timization technique known as simulated annealing [10],
is given by the pseudo-code in Figure 4. We use the stan-
dard geometric cooling schedule.

Benchmark Selection()
Determine relevant properties by correlation test;
Normalize the values;
Generate an initial solution;
while not done do
if equilibrium criterion is satisfied
exit;
if system is frozen
exit;
obtain the next solution;
if the new solution is better than older one
Accept the new solution;
else
Accept the new solution with standard probability;
enddo;
endSelection();

Fig. 4. A pseudo-code of simulated annealing-based benchmark
selection algorithm

The benchmark set is validated using the resubstitu-
tion technique {5]. A number of randomly chosen applica-

109

tions are eliminated from the application collection from
which the original benchmark set is selected. And then
a new benchmark set is selected. By comparing the new
benchmark set with the original by the weighted bipartite
matching technique, we can statistically validate the se-
lected benchmark set. We use the Hungarian Method [12)
for the matching problem.

VII. SELECTED APPLICATIONS AND EXPERIMENTAL
EVALUATION OF BENCHMARKS

We select a subset of applications using parameters ob-
tained on SPARC. Instruction count, IPC, miss rates, and
bus traffic used to characterize applications. Out of 21
applications, 6 applications are selected: G.721 encoder,
Pegwit decryption, PGP encryption, Texgen, EPIC en-
coder, and MPEG decoder.

Evaluation of the selected media benchmarks is con-
ducted by using them to drive a system-on-a-chip synthe-
sis experiment. If the resulting systems are the same then
we know that the suite demonstrates value to the practice
of designing embedded systems.

The synthesis process adopted here is similar to those
currently being pursued in the CAD research community
[11]. The fundamental goal of this experiment is to eval-
uate the usefulness of the selected benchmarks, not to
present a fundamental new approach to system synthesis.

One of the most pressing demands on embedded system
designers is to reduce cost, in large part through reducing
die size. Because of this concern, we have decided to focus
on a system with a simple single-issue RISC processor core
and on-chip cache memories. The synthesis experiment
will optimize the cache architecture in order to maximize
the ratio of performance to cost. The equation used to
evaluate performance/cost is:

Per formace Ic

Cost (Core + Cache) x (IC + M x P)’)

where IC is the instruction count, Core the area of proces-
sor core, Cache the cache area, M the cache miss count,
and P the cache miss penalty.

By effectively normalizing to an IPC, this expression

avoids the problem of application weighting that would

be introduced with a direct Delay*Cost measure. The
SpixTools are used to measure the raw instruction count
for each application. The core is based on the IBM 40x
PowerPC cores, with an estimated size of 8mm? in 0.5um
technology. Cache area is calculated using the Cache De-
sign Tools [7]. Two models exist for miss penalty: critical-
word first and full-line blocking. We assume that the ex-
ternal memory bus is wide enough to satisfy a fundamen-
tal read operation with a single transaction. Thus, the
penalty for a miss under the critical word first model is
simply the main memory latency. For the experiments
here we use a value of 10 clocks.

TABLE IV
ACHIEVABLE IPC ESTIMATES FOR EACH SYNTHESIZED SYSTEM WHEN
ALL COLLECTED APPLICATIONS ARE USED

TABLE VII
PERFORMANCE/COST ESTIMATES FOR EACH SYNTHESIZED SYSTEM
WHEN SELECTED BENCHMARKS ARE USED

I I-cache] I T-cache |

D-cache | 1RKB | 2KB | 4KB | BKB] 16KB | D-cache | TRB | 2KB T IKE | 8KB___| 16 KB |}
1 KB 0.468654 0.484169 0.496126 0.508322 0.517997 1 KB 0.0328342 0.0287636 0.0227204 0.0160445 0.0111374
2 KB 0.53417 0.554503 0.570247 0.586422 0.599339 2 KB 0.0325374 0.0293537 0.0240297 (0.0176446 0.0125651
4 KB 0.615828 0.643011 0.664278 0.686332 0.704092 4 KB 0.0300942 0.0282212 0.0243075 0.018945 0.0140687
8 KB 0.688917 0.723113 0.750119 0.778361 0.801282 8 KB 0.0240271 0.0234779 0.0214378 0.0180162 0.0141689
16 KB 0.721115 0.7568672 0.788456 0.81972 0.845183 186 KB 0.0170331 0.0170685 0.0162282 0.0144558 0.0120227

TABLE V REFERENCES

PERFORMANCE/COST ESTIMATES FOR EACH SYNTHESIZED SYSTEM
WHEN ALL COLLECTED APPLICATIONS ARE USED

[I-cache 1
I/D—cache [TKE | KB | _4Ks [8K T 15K]
1 KB 0.0352662 0.0309254 0.0243599 0.0170932 0.0119559
2 KB 0.0341191 0.0307664 0.025084 0.0182657 0.0131168
4 KB 0.0302374 0.0282848 0.0242049 0.0186424 0.0139693
8 KB 0.0231661 0.0225232 0.020375 0.0168523 0.013405
16 KB 0.0166441 0.0166039 0.0156431 0.0137135 0.0115207

This experiment is focused on sizing the cache mem-
ory. Each cache is direct mapped with 16-byte lines. The
instruction and data caches were independently sized be-
tween 1 KB and 16 KB. The area cost for each cache
configuration can be fixed statically, while each appli-
cation has a different performance level. Performance
measures were calculated for each application on each of
the 25 cache configurations, using the base spiz instruc-
tion counts and cache performance numbers generated by
Dinerolll. The Performance/Cost numbers for each con-
figuration were aggregated through the arithmetic mean.
The results of this experiment are shown in Table IV and
V for all applications and Table VI and VII for the se-
lected benchmarks. The discrepancies between the two
cases are less than 4% for both IPC numbers and Perfor-
mance/Cost numbers. The benefits of having a smaller
set of quantitatively selected applications to drive the syn-
thesis effort include greatly reduced simulation time and
a higher level of confidence that the synthesis result is
reasonably good.

VIII. CONCLUSION

A benchmark selection algorithm is introduced and an ex-
perimental benchmark set is selected. Evaluation of the
selected media benchmarks is conducted by using them
to drive a system-on-a-chip synthesis experiment. A tra-
ditional experiment was conducted to optimize system
Performance/Cost across a range of cache configurations.
The resulting optimization surfaces for all application and
the selected benchmarks implies the benchmark set is very
effective and efficient in driving the synthesis effort, thus
demonstrating the applicability and usefulness.

TABLE VI
ACHIEVABLE IPC ESTIMATES FOR EACH SYNTHESIZED SYSTEM WHEN
ALL SELECTED BENCHMARKS ARE USED

T T-cache]

D-cache [1KB | KRB | 4KB | B5KB | 16KE |
1 KB 0.456335 | 0.470323 | 0.492735 | 0.497136 | 0.502535
3 KB 0520407 | 0.540042 | 0.566279 | 0.566482 | 0.584131
1KB 0612013 | 0.641565 | 0.667093 | 0.657473_ | 0.709106
8 KB 6704523 | 0.733764 | 0.760245 | 0.792122 | 0.818732
16 KB 0.737968 | 0.760001 | 0.797947 | 0.524088 | 0.852012

110

[1] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and
W. m. W. Hwu. IMPACT: An architectural framework for
multiple-instruction-issue processors. In International Sym-
posium on Computer Architecture, 1991.

[2] B. F. Cmelik. SpixTools: Introduction and user’s manual.
Technical Report TR-93-6, Sun Microsystems Laboratories,
1993.

(3] R.F.Cmelik and D. Keppel. Shade: A fast instruction-set sim-
ulator for execution profiling. Technical Report SMLI 93-12,
UWCSE 93-06-06, Computer Science and Engineering, Uni-
versity of Washington, 1993.

[4] T. Conte and W. Mangione-Smith. Determining cost-effective
multiple issue processor designs. In International Conference
on Computer Design, 1993.

{5] B. Efron and R. J. Tibshirani. An Introduction to the Boot-
strap. Chapman and Hall, New York, NY, 1993.

[6] J. A. Fisher, P. Faraboschi, and G. Desoli. Custom-fit pro-
cessors: Letting applications define architectures. In Interna-
tional Symposium on Microarchitectures, Paris, France, 1996.

[7] M. J. Flynn. Computer Architecture: Pipelined and Parallel
Processor Design. Jones and Bartlett, 1996.

[8] M. D. Hill. Test driving your next cache. Magazine of Intel-
ligent Personal Systems (MIPS), pages 84-92, August 1989.

[9] P. Y. Hsu. Highly concurrent scalar processing. Technical
Report CSG-49, Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign, 1986.

[10] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671-680, 1983.

{11] D. Kirovski, C. Lee, W. H. Mangione-Smith, and M. M.
Potkonjak. Application-driven synthesis of core-based sys-
tems. In Proceedings of ICCAD, 1998.

[12] H. W. Kuhn. The Hungarian method for the assignment prob-
lem. Nawval Research Logistics Quarterly, 2:83-97, 1955.

[13] P. Lapsley and J. Bier. DSP benchmarks: Methodology and
results. In Proceedings of the 5th International Conference
on Signal Processing Applications and Technology, volume 1,
pages 871-876, Dallas, TX, USA, October 1994. DSP Asso-
ciates.)

(14] M. A. R. Saghir, P. Chow, and C. G. Lee. Application-driven
design of DSP architectures and compilers. In International
Conference on Acoustics, Speech, and Signal Processing, 1994.

[15] D. Shear. EDN’s DSP benchmarks. EDN, pages 126-148,
September 1988.

[16] V. Zivojnovic, J. Martinez Velarde, C. Schlager, and M. Meyr.
DSPstone: A DSP-oriented benchmarking methodology. In
Proceedings of the 5th International Conference on Signal

Processing Applications and Technology, volume 1, pages 715~
720, Dallas, TX, USA, October 1994.

