PROTECTING OWNERSHIP RIGHTS OF A
LOSSLESS IMAGE CODER THROUGH
HIERARCHICAL WATERMARKING

Hea Joung Kim William H. Mangione-Smith Miodrag Potkonjak

Electrical Eng. Electrical Eng. Computer Sci.
U. of California U. of California U. of California
Los Angeles, CA Los Angeles, CA Los Angeles, CA

Abstract - Current market forces make it necessary for designers to protect their
work against illicit use. Digital watermarks can be used to sign a design and thus
establish ownership. We present a hierarchical set of techniques for intellectual
property protection of a linear predictive image coder. Watermarking techniques
employed include switching entries in the Huffman coding table, applying zero cost
hardware transformations, embedding a signature in the scheduling of shared
hardware resources, and applying a watermark to the physical layout. Using these
methods, it is possible to watermark complete ASIC or FPGA designs with little
overhead in performance or achieved compression rates.

1 INTRODUCTION

Recently, there has been an increased interest in the area of intellectual
property (IP) protection due to threat of piracy and counterfeiting. We have
developed a hierarchical approach that can be used to watermark a complex block
of IP at multiple levels of the design process. These sorts of techniques are
evaluated in the context of a lossless image coder [1]. By watermarking the image
coding hardware a designer will be able to assert ownership rights in the face of
theft, even if sophisticated means are employed. The next few paragraphs will
introduce the steps involved (Figure 1).

The assumptions made for the following hardware design is that the images are
256 by 256 arrays of 8-bit gray scale pixels. Furthermore, the training set used to
construct the Huffman table for the errors of the linear prediction are F15, Bob,
Lena, Footballl, Football2, and Trit (Appendix A).

The linear predictive model employed here uses the pixel to the left, diagonal
to left and above, above, and diagonal above to the right (Figure 1). This approach
facilitates data re-use during raster scan processing. As shown in Figure 1, the
first step in constructing a coder is to obtain the error(x,y) distribution of the
training set using the model(x,y) and the image(x,y). A linear prediction code is
used for the entire image except the first column, first row, and last column of the
image, which are predicted using the previous row, column, and row, respectively.
The linear prediction can easily be modified for the predictors used in JPEG [2] by
performing similar operations on a different set of pixels as described in the JPEG
standard.

0-7803-4997-0/98/$10.00 73

Figure 1. Pixels used for linear prediction error(x,y) = Image(x,y)-
Model(x,y) = D — %4*(A+B+C+E)

An identified set of representative training images is used to generate a
probability density function (PDF) for the error values ranging from -128 to 127.
Each error value, ranging from —128 to 127, has a probability of occurrence with
the O error (i.e. the model is correct) having the highest probability. The
probabilities are used to generate the Huffman tree as shown in Figure 2. The first
step is to get the probabilities of all the error symbols. The second step is to
combine symbols having lowest probability into a new symbol node with the
original nodes as children. This step repeats until a single tree remains [3].

The Huffman tree encodes each error values to some specific number of code
bits. This coding scheme allows low probability errors to be coded with a large
number of bits while those with high probability (e.g. ‘0”) get coded with a fewer
number of bits. The upper-left pixel and a sequence of variable length error values
represent coded images.

Figure 2. Huffman Tree Example

Watermarks are applied by modifying the table used to construct the Huffman
tree, the labels applied to edges, the hardware for computing the model value, the
order of computing intermediate terms, and finally the finite state machine (FSM)

1. Get probability distribution function of linear prediction errors for specified
training set of images

2. Watermark the symbol (error) table by swapping specific entries or extending

the code length and the code itself with edge labeling (depth first search)

Watermark hardware using functionally equivalent logic structure

Watermark controller using scheduling of shared hardware resources

Watermark state machine

Watermark physical FPGA design

Sl

Figure 3. Design Hierarchies Supporting Watermarks

used for control. Each technique will be discussed in the following sections.

74

2 RELATED WORK

With the wide spread use of the internet, many valuable digitized images
require some form of title certification. Quite a few techniques have been
developed for watermarking images [4], video [5], and audio [6]. Unlike this
work, these techniques involve watermarking the media, and not the media codec.

There have been numerous papers on linear and non-linear prediction for
lossless image compression [7,8] from different application domains. Most of
these papers describe the different x,y coordinate pixels to use to do linear
prediction more efficiently for the images of different types, e.g. medical images,
synthetic aperture radar images, infrared images, and others. All these papers
present a method to predict the errors from a smaller range so the prediction is
easier. The techniques presented here are directly applicable to this broader
domain.

Recent research results have investigated a range of hardware watermarking
techniques [9,10] at a number of distinct levels. The work present here is the first
multi-level system, and the first attempt to watermark an application algorithm
(i.e. linear prediction image compression).

3 APPROACH

The following sections will describe all the steps involved in a complete top-
down watermarking solution.

3.1 Watermarking the Compression Code

The first step is to create a look-up table for the Huffman coding of the error(x,y)
distribution. The Huffman table is generated by the summed errors of the training
set images. The probability density function is calculated to generate the Huffman
table of the image collection. The PDF of each error (ranging from —128 to 127
given an 8-bit gray scale image) is found using a C program. Following the
algorithm for constructing the Huffman code, the pair of the least probable errors
is iteratively combined to generate the Huffman tree.

An arbitrary sequence of length 36 and 72 signature can embedded into the
Huffman table. The simple approach is to take the first 8-bits of the signature to
select one of the probabilities of the error symbols listed in decreasing order. Then
if the ninth bit is a 1, the probabilities of the error below and above the 8-bit
number are swapped. If the ninth bit is a 0, the probabilities of the selected entry
and the immediately preceding locations are switched. If the code length is the
same for the two probabilities that will be switched, the error code is extended by
one bit to embed a ‘0’ or ‘1’. Thus, this approach may result in increasing the
code length of certain error symbols. Figure 4 shows the method described.

1. Take the first eight bits to get the location of decreasing probabilities of the error
symbols

2. Take the ninth bit to swap the probabilities and error code (if the error code is the same
length swap and extend 1 bit)

3. 01110100,0 (116,0) the 116" and 117" are switched 116" probability code is 11 bits
and is extended to 12 with the 12" bit being a ‘0’

75

4. 00000011,1 (3, 1) the 2 and 4™ are swapped and 3™ probability code is lengthened
to 6bits with the 6 bit being a ‘1’

10100000,1 (160,1)

00000000,1 (neglect...too expensive to change location ‘0’ or ‘1’)

11010000,0 (208,0)

00000010,1 (2,1) ..neglect since duplicated

00000111,0 (7,0)

0. 00011110,0 (30,0)

[l

Figure 4. Watermarking the Compression Code

Loc Size |error | trit lena fball2 fballl F15 bob prob
0 5 0 28795 | 27315 35140 34935 54045 101095} 0.14308
1 5 255] 9120 24160 14870 14710 10105 (5270 0.03979
2 5 1 13535 14470 1510 8890 0.03593
4 5 4 10280 10335 15845 [8655 0.03377
5 5 5 9275 9075 5580 0.03355
6 5 2 12590 12730 6980 0.03175
ENEEE | BE | 8% "
8 5 253 11875 12630 9915 0.03100
9 5 251 9985 10040 6665 0.02969

Table 1. Original Huffman Table with no watermarking

Loc Size |error|trit lena Fball2 fballl FI5 bob
0 |5 0 28795 | 27315 35140 34935 54045 101095
i 14710 5270
5
8 8585 17065 12630 895 9915 0.031
9 7530 9605 9985 10040 14565 6665 0.029

Table 2. Huffman Table with Watermarking

Table 1 and Table 2 show the exact procedures taken to embed a signature in
the Huffman table for the two examples listed in Figure 4. The first example is
where the first 8-bits are a 3 and the 9% bit is a ‘1’, while the second example is
where the first 8-bits are a 7 and the 9" bit is a ‘0",

The assignment of the zero and one to the Huffman tree edges can be used to
watermark the codes of the error symbols. We set a rule that two nodes emerging
from an interior node will be sorted so that the sub-tree with the lowest probability
will be assign an edge value of zero. If the actual edge assignment follows this

76

rule it encodes a ‘0, otherwise it encodes a ‘1°. Thus, if the training set is known,
a signature can be retrieved through systematic probing.

3.2 Watermarking the Datapath

The hardware is watermarked at multiple stages of the design (Appendix B).
The first step involves transformations as shown Figure 2. The model(x,y) is
obtained by Y4*(Image(x-1,y-1) + Image(x-1,y) + Image(x+1,y) + Image(x,y-1)).
The basic operations needed are to shift and add or to add and shift.

0 1
[~ [B] [2] [B]

@ @ ®
® @

Figure 5. Transformations for embedding 0 or 1

Figure 5 shows that a shift-add operation designates a ‘0’ and an add-shift
operation designates a ‘1’. A parallel datapath can be used to embed a 10-bit
signature as shown on Figure 6. The hardware markings discussed in sections 3.2,
3.3, and 3.4 are more difficult to extract after a design appears in the field. Unlike
modifications to the coding structure, hardware marks cannot easily be extracted
through external probing. Nonetheless, techniques do exist for extracting RTL and
datapath information using optical inspection [11].

Figure 6. Signature ‘10101010°

3.3 Watermarking the Control Structure

The next form of signature embedding is to use scheduling to insert artificial
dependencies between operations in the datapath (Figure 7). An operation delayed
even when it could have been executed in parallel embeds a ‘1’ (operations —gray
filled - Figure 7), while an operation that follows the normal execution flow
embeds a ‘0’.

77

Se
3C
O

rr
[®n
<

5
\

e

|
&/ ¢

[
o]
Y

i
®

T1
T2

H @

g

T4

Figure 7. Scheduling to embed ‘“000111” a signature

3.4 Watermarking the Finite State Machine

Following hardware transformations and datapath scheduling, another
signature can be embedded using the states for the finite state machine that
controls the flow graph of the operations shown above. The state numbers for the
state machine can be created from an arbitrary sequence of numbers.

STATE 1

Figure 8. Finite State Machine used to embed signature

Figure 8 shows exactly how another signature can be embedded in the
design. This is not a very rigorous or undetectable signature but it would be easy
to demonstrate ownership if the design is copied with no thought. The signature
would read ‘11001->->10101->->00110->->01101".

The entire design would be specified in Verilog and synthesized to an
FPGA.

4 EXPERIMENTAL RESULTS

The experimental results available are for the Huffman table used for
compression of the image data and the cost associated with embedding a signature.
The raw performance rates are not interesting given that any hardware
implementation will be faster than a software implementation. The Verilog code
embeds signatures using scheduling, transformations, states in a FSM, and jump
conditions signatures. Thus, the focus of the experimental results is on the cost of
coding an image using the Huffman table with a signature embedded in the table.

The first set of data shows the best compression possible assuming that errors
with value greater than 20 can be coded using 20 bits. Despite the fact that it is
possible to code any error greater than 10 with a fixed bit-length of 9, the method
of coding errors greater that 20 bits can be just as effective in showing the cost of
embedding a signature in the Huffman table.

78

Figure 9 shows the different sizes of the compressed images for the different
types of images. The best code represents a Huffman tree generated using each
images probability density function to compress the same image. The summed
Huffman is the code generated from the sum of all the PDFs of the images. The
36-bit signature is the size of the compressed image given that 36 bits of data has
been embedded into the summed Huffman code using the method described in
Figure 4. Figure 9 shows a graph comparing the results.

600

EINo code

8 Best code
O Summed Huffman Table

BWith 4x9=36 bits of
watermarking

EWith 8x9=72 bits of
watermarking

Images

Figure 9. Comparison of image coders (uncompressed, compressed, and
watermarked)

Figure 9 and Figure 10 show the percentages that the image sizes increases or
decreases relative to the summed Huffman table, non-watermarked, and non-
compressed images. It is important to note that the cost of watermarking is less
than 2% of the compressed image size and in some cases even better since the
summed Huffman table is not optimal for a specific image. In some instances, the
size is smaller after the watermarking due to the switched probabilities from
watermarking the code table.

105
104
103
102
101

—o—No Watermark

~#— With 4x9=86 bits of

& 100 — - - + + watermarking
99 #-- With 8x9=72 bits of
08 watermarking
97

96

95

& N
A

<© &
Images

Figure 10. Cost of Watermarking the Huffman codes

79

Finally, the layout generated on an FPGA by synthesizing the Verilog code is
shown in Figure 11. The critical path is 40ns without optimizations, and the
clocking frequency is 25MHz. The empty CLBs (gray spots) can be used for
embedding signatures as describe in [9,10].

Figure 11. Layout from the Xilinx FloorPlanner for Linear Prediction

Coder Circuit
Watermarking Method Number of Signature | Cost
PDF manipulation for Huffman code | 32 or 72 Maximally 2% inc. file size
Huffman code edge labeling 20 ~ 256 (theor. max) None
Hardware Datapath Transformation 8 (4 pixels processed) ~?? | No perform. loss (more gates)
Hardware Datapath Scheduling 6(1 bit per depend) 20% performance loss
State Machine 40 bits (5 bits per state) More registers
FPGA physical layout 16 bits per CLB LUT Reserved or unused CLBs

Table 3. Signatures and cost of signature for specified algorithm

Table 3 is a brief summary of all the bits embedded in the hierarchical design.
The Huffman table is manipulated to embed either a 36 or 72 bit signature. The
edge labeling embeds another 20 or more bits depending on the maximum code
length for the error symbol with no negative impact. The transformations embed 8
bits of signature that can embed more bits if more image pixels are processed in
parallel. The hardware scheduling decreases the performance due to the execution
delay resulting from the artificial dependencies. More bits are embedded with
more parallel execution. The finite state machine is used to embed 40 bits and the
associated cost is more registers. The FPGA configurable logic blocks (CLB) are
used to embed as many bits a possible in the FPGA physical layout.

80

S CONCLUSION

Based on the results, we can cheaply and efficiently watermark a lossless linear
prediction hardware using the Huffman table. The cost of adding a 72-bit
signature in the Huffman code is at most 2% of the compressed image. The
technique is simple enough to incorporate. Furthermore, the hardware methods
allow for a “without reasonable doubt” conclusion that the design is that of the
owners. The techniques used here are not limited to FPGAs and can be applied to
ASICs. Given that it took some engineers a few weeks to reverse engineer an Intel
386 [11], it would be easy for others to copy one’s hardware. By using the
techniques developed here, one may embed a 20-bit signature. This 20-bit
signature may be sufficient to prove in the court of law that the design is
proprietary. Using 20-bits, there is a 1 in 1,000,000 chance that the next designer
could use the same set of transformations, scheduling, and state machine
watermarking. These efforts show that watermarking a lossless linear prediction
for lossless image compression hardware and the Huffman table is simple and
effective.

Appendix A: Images

[Fbatl |

81

References

[1] H.G. Mussman. Predictive Image Coding. Advances in Electronics and
Electron Physics, Supplement. 12, pages 73-112. Academic Press Inc. 1979.

[2] G.K. Wallace. The JPEG Still Picture Compression Standard.
Communications of the ACM. 34(4):31-44, 1991.

[3] M. Nelson and J-L. Gailly. The Data Compression Book (second edition).
M&T Books, 1996.

[4]1 LJ. Cox, J. Kilian, T. Leighton, T. Shamoon, "Secure spread spectrum
watermarking for images, audio and video", International Conference on
Image Processing, 1996, vol. 3, pp. 243-246.

[5] F. Hartung and B. Girod,"Watermarking of MPEG-2 encoded video without
decoding and re-encoding", Multimedia Computing and Networking, 1997, pp.
264-274.

[6] L. Boney, A.H. Tewfik, and K.N. Hamdy, "Digital watermarks for audio
signals", International Conference on Multimedia Computing and
Systems, 1996, pp. 473-480.

[7] P. G Howard and J.S. Vitter. Fast and efficient lossless compression.
Proceedings of the Data Compression Conference, pages 351-360. IEEE
Computer Society Press, 1993.

[8] N. D. Memon, K. Sayood, and S. S. Magliveras. “Lossless Image Compression
— a comparative study.” Still Image Compression, pages 8-20. SPIE
Proceedings Volume 2418, 1995.

[9] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. “FPGA Fingerprinting
Techniques for Protecting Intellectual Property,” Custom Integrated Circuits
Conference, 1998.

[10] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. “Fingerprinting Digital
Circuits On Programmable Hardware.” International Workshop in Information

Hiding, 1998.

[11] R. Anderson and M Kuhn, “Tamper Resistance — A Cautionary Note”,
USENIX Workshop on Electronic Commerce, Nov. 1996.

82

