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Abstract

In this paper, we have developed a methodology for behavioral synthesis of an impoz-
tant class of reconfigurable data path designs called configurable spare processors.
Traditionally, a processor failure has been tolerated by dedicating a spare for the pro-
cessor. However, this has a significant area overhead. In contrast, we present a new
technique wherein several processors share one or more configurable spare processors.
A configurable spare efficiently implements any of k applications and can be configured
to substitute for a faulty processor implementing one of these k applications.

In this paper, we address three important techniques targeting configurable spare pro-
cessor synthesis.

o Firstly, we address application bundling wherein n application control-data
flow graphs (CDFGs) are bundled into at most m groups such that the sum of
the areas of the corresponding implementations is minimized. All throughput and
fault-tolerance constraints for all applications are satisfied.

o The area overhead of each of the application bundles is further optimized by
retiming the applications within a bundle by considering its effects on the
remaining applications in the bundle.

o Finally, each application bundle is synthesized into a configurable spare
Processor.

The effectiveness of all approaches, algorithms, and software implementations is demon-
strated on a number of real-life examples. The validation of all presented examples is
complete in a sense that we conducted functional simulation to complete layout imple-
mentations.

1 Introduction

Configurable data paths are especially useful in designing low-cost fault-tolerant systems
by providing multiple functionalities and flexibility. Towards illustrating the benefits of
configurable data paths in the context of low-cost fault-tolerant system design consider a
system consisting of dedicated data paths for three signal processing applications shown in
figure 1.

The area overheads of the physical layouts of each of the data paths are shown in figure 2.
A straightforward approach to tolerate any single processor failure within such a system
involves adding a backup processor of each type. This entails 100% area overhead. The
area overhead becomes even more prohibitive as the number of faulty processors that can
be tolerated increases.

1This research was partially supported by SAMSUNG Electronics Co., Ltd.
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Figure 1: Dedicated data paths for (a) Low pass LDI filter (LDILP) (b) fifth order wave
digital filter (WDF5) and (c) ninth order wave digital filier (WDF9)
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Figure 2: Layouts of (a) LDILP (21.3 mm?) (b) WDF5 (25.4 mm?) (c) WDF9 (45.1 mm?)
and (d) Configurable Spare Processor (66.5 mm?)

Alternately, consider a configurable spare data path that subsumes the functionality of the
three applications as shown in figure 3 2

The flexibility provided by such a configurable spare data path can be used to tolerate the
failure of any single processor in the system. For example, when the LDILP processor fails,
the spare data path can be configured to implement the LDILP application. Similarly, when
the WDF5 or WDF9 processors fail, the spare data path can be programmed to implement
the corresponding functionality. Furthermore, the area of the layout of such a configurable
spare is only 66.5 mm?. The overhead when compared with the dedicated spare approach
is only 72.4%. These savings become even more significant as the number of functionalities
increases. However, the overhead due to the disparity of the requirements in terms of
hardware, interconnection, and word length prevents excessive number of functionalities
from being implemented on a single spare processor.

*The schematics and layouts of figures 1, 2, and 3 are generated automatically by the system.
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Figure 3: Confignurable spare data path supporting LDILP, WDF5 and WDF9 applications

In this paper, we present a behavioral synthesis approach for designing such configurable
spare data paths and discuss the relationship between configurable data paths, degree of
fault-tolerance and area overhead.

2 Related Research

Behavioral synthesis has been an active area of research for more than two decades [4, 2,
10], and numerous outstanding systems have been built targeting both data path oriented
and control oriented applications. Behavioral synthesis traditionally has been addressing
synthesis and optimization of a single CDFQG for sampling rate, area, and more recently
power and test hardware overhead minimization {10, 2]. Recently, a few efforts have been
reported on behavioral synthesis techniques for fault tolerant designs. Karri and Orailoglu
[13] presented scheduling, assignment and transformation-based methods for fault-tolerance
against transient faults. Guerra et al. [5] presented the first work which concentrates on
permanent faults. They showed how fault tolerance achieved using a set of spare units
can be used for yield and productivity enhancement. Recently Iyer et al [6] introduced a
method which explores trade-offs between performance and yield.

Automatic synthesis of self-recovering microarchitectures has been previously addressed.
An algorithm that intertwines checkpoint insertion and scheduling (of operations in the in-
put algorithm to clock cycles) to synthesize self-recovering microarchitectures for supporting
fault-recovery in hardware was first presented in [12, 7]. Guerra ef. al have developed syn-
thesis for built-in self-repair using redundant modules(5]. More recently, Blough, Kurdahi
and Ohm [3] presented an algorithm for recovery point insertion in recoverable microarchi-
tectures that minimizes the number of rollback points given constraints on the number of
registers and maximum number of time steps between any two rollback points (the stride).
These RT-level techniques for transient and permanent fault-tolerance have been successful
in certain design scenarios. The main target for built-in-self-repair (BISR) techniques for
yield enhancement are traditionally systems that are bit-, byte-, or digit- sliced, and in
particular memories [11, 15} and PLAs [8, 15].

3 Preliminaries

Computational and Timing Models: Majority of multimedia, DSP, vidco, communica-
tion, control, and graphics application are specified as periodic computations on a stream
of data. Therefore, a natural and proper computational model for those important ap-
plication domains is homogeneous synchronous data flow [9]. Each application is defined
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by a control data flow graph (CDFG) and the set of timing constraints, most commonly
throughput requirements{14]. ‘

Hardware Model: Modern data path designs, both general purpose and application spe-
cific, invariably group registers in register files in order to better enable sharing of control
logic and to facilitate area-efficient layouts. We assume the dedicated register file model
[14] where each register is connected to a single input of an execution unit, while each unit
can send data to an arbitrary number of registers. This model is also exceptionally well
suited for implementing fault tolerance for yield enhancement. The control is synthesized
by combining different controllers into one using logic synthesis tools resulting in small
hardware overhead.

System Level Fault Model and Fault Diagnosis: We assume that a processor is ei-
ther faulty or fault-free. The proposed approach requires fault detection and diagnosis as
a preprocessing step. Any off-line testing and diagnosis scheme such as full-scan, combina-
tional ATPG and BIST can be used.

Although in our implementation we followed the presented models, the approach can be
casily retargeted to models of other design'platforms.

4 Algorithm

In this section we describe the synthesis and optimization algorithms used in programs

which realize the proposed configurable spare approach to system level fault-tolerance.

The overall flow of our synthesis system for design of fault-tolerant application specific

systems using configurable spare processors is given by the following pseudo-code.
Synthesis_Algorithm(}

ASIC Synthesis();

Application. Bundling();
Bundle_Retiming();
Configurable_Spare_Synthesis(};

The ASIC Synthesis(} is the standard behavioral synthesis step where each CDFG is re-
alized. The information on scheduling vis-a-vis the hardware and interconnection require-
ments is created in this step and fed into following steps.

4.1 Application Bundling

Towards synthesizing area-efficient spare processors, we propose an approach within which
applications with similar topology, hardware types, etc., are identified and bundled into a
<hip. This is because designing a reconfigurable data path for an arbitrary set of applications
will be often time counter-productive. Whereas putting topologically incompatible applica-
tions can entail significant interconnect overhead, applications with incompatible hardware
types can entail significant functional unit overhead. Following application bundling, each
bundle is synthesized into a separate, area-efficient configurable processor. Formally, appli-
cation bundling can be defined as follows:

Given an underlying hardware model and N applications, each with its own
execution time bound and hardware requirement when implemented as a dedi-
cated processor, partition the applications into bundles minimizing the overall
area of the configurable processors programmed for the N applications.

A probabilistic rejectionless framework has been used for application bundling. First, appli-
cations are bundled randomly. Based on the incompatibility between the applications and
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the bundles, the algorithm proceeds in a way similar to probabilistic iterative techniques. A
source bundle is randomly chosen, probabilistically favoring bundles with incompatible ap-
plications. From such a bundle, an incompatible application is probabilistically selected and
moved to another bundle where applications are compatible with the selected application.
The hardware area of all bundles is then computed and the current bundling configuration
is saved if it is the best one so far. This continues until no more improvement is obtained
for a given number of iterations.

In most data path intensive systems, the area of an IC is approximated as the sum of the
active region and the interconnection region. Also, the increase in area of the controller
and the dead spaces are regarded as proportional to the total area, and therefore excluded
from the estimation. If h¢(g) is the number of units of type ¢ and Area; is the area of a
unit of type ¢, the area of the active region is:

Areaciive = Z max he(g) - Area;
tex 7€

Let b; be the number of bits of bus 7 and p be the wire pitch. Since the average wire length
of buses is (Areaactive + Area;)!/?, and the total number of bits is b = Y ;¢ b;, the area of
the interconnection region is:

B2p? + (b%p* + 4b%p® Areautive)t/?
2

Area;. =

For increased accuracy, the number of fanouts of bus i, f; is taken into account, and the
effective total number of bits becomes b = 3, b; - (1 + 0.25(f; — 1)). The fanouts for
all the buses are determined as follows. Firstly, the interconnection between the hardware
units is expressed as a matrix with rows of execution units and columns of register files.
If an entry is 1, a connection exists between the execution unit corresponding to its row
and the register file corresponding to its column. For each application, this table is created
by ASIC_Synthesis(). Since the hardware and interconnection are shared among the ap-
plications in a bundle, the hardware units and register files of each application have to be
mapped into those of the bundle, and then the interconnection matrix of the application
also has to be projected on to that of the bundle. Now, for each bus, the number of fanouts
can be obtained by counting 1’s in the row which corresponds to the fanin hardware unit
of the bus.

k~—processor fault-tolerance is incorporated by ensuring that that each application is in-
cluded in at least & distinct bundles.

4.2 Bundle Retiming

The area overhead of each configurable spare processor can be further reduced based on
the following two observations:

o The peak usage of a given hardware type for an application can be minimized by
retiming the CDFG corresponding to the application(14].

e In a configurable spare processor, different applications may contribute to the hard-
ware requirements of the different hardware types. The peak usage of one type of
hardware may be reduced by exploiting the flexibility afforded by the the peak hard-
ware usage of a different type of hardware. For example, let applications A and B
be implemented as a configurable spare processor. If application A uses three adders
and two multipliers, and application B uses two adders-and three multipliers, the
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configurable spare processor uses three adders and three multipliers. Application B
can be retimed to reduce the number of multipliers by one even if this results in it
requiring three adders.

‘We have developed an integrated retiming technique that retimes all of the application CD-
FGs concurrently so as to mix-and-match the hardware requirements of some applications
with the peak hardware requirements of some other applications.

4.3 Configurable Spare Synthesis

To take into account the unique characteristics of configurable spare synthesis, we have
developed area-efficient allocation, upgrading, assignment and scheduling schemes for map-
ping heterogeneous applications onto a configurable processor. The configurable spare
synthesis can be defined within this framework:

Given an underlying hardware model and N applications, each with its own
execution time bound, synthesize a minimum area design so that any one of
these N applications can be executed at any given time.

G = { g | applications in the bundle }

A = { a | hardware allocation }

T = { ¢ | temporary hardware allocation }
Cltype] = hardware criticality

ConfigurableSpareSynthesis(G)

{
1 A « InitialAllocation(G, ¢)

/* Find a Feasible Solution */
while { (g — ApplicationOrdering(G, Viypes, A) ) # ¢)
T « InitialAllocation({g}, A)
while (AssignAndSchedule(g, T, &C) = FAIL)
type «— MostCriticalHWTypeToUpgrade(C)
T «— T U { a — Upgrade(y, A, type) }
RemoveRedundancy(g, T, C)
A—~—AUT

Ll A ol 4

/* Remove Global Redundancy */
9: while ( (type — LeastCriticalHWTypeToDowngrade(C) ) # ¢)

10: while ( (g «— ApplicationOrdering(G, type, A) ) # ¢)
11: T « Downgrade({g}, A, type)

12: if (AssignAndSchedule(g, T, &C) = FAIL) break
13: if (g = ¢) A «— Downgrade(G, A, type)

Figure 4: Configurable Spare Synthesis Algorithm
The configurable spare synthesis algorithm is outlined in figure 4. An initial allocation, 4

for the bundle, G is derived in step 1. Beginning with the most critical application, a feasible
solution for the entire bundle is obtained in steps 2-8. From the total hardware allocated
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to the bundle, the hardware allocation T for the candidate application is obtained in step
3. Steps 4-6 constitute the synthesis loop. Assignment and scheduling of the candidate
application are carried out using this allocation. I the allocated hardware is not sufficient,
either the wordlength of one of the existing hardware units is increased or a new hardware
instance is added. This is called upgrading. The upgraded hardware in T is reflected in
the overall allocation in step 8. In step 7, any subset of the current allocation is checked for
feasibility. Since the criticality of the applications changes dynamically with the changes in
allocation, application ordering is included in the loop. In the global redundancy removal
phase, the applications are also ordered dynamically, and the downgrading of a hardware
type aborts as soon as an application fails to tolerate the removal.

5 Experimental Results

#of | #of | word | crit’ | avail allocation area
applications | nodes | edges | len’ path | time [+ T-TF[ reg (mm?)
ADAPT 24 24 16 6 9 2103 28(0) 33.93
ARAI 51 63 22 8 10 71512 44(13) | 83.87
DEC 67 | 79 | 16 | 16 | 16 | 2 |42 |58(12) | 39.49
FFT8 30 31 16 5 5 3 1312 20(2) 35.76
FIR20 32 42 16 3 7 101013 | 52(10) | 45.04
GM1M 20 27 20 14 14 2112 22(7) 31.96
IIR8 39 57 11 9 12 2 10712 42018) | 14.11
LDILP 14 18 16 6 6 21211 19(4) 13.96
NC 66 73 16 12 19 21113 71(11) | 52.33
VOLTERRA 30 39 24 12 12 11027 28(10) | 43.50
WAVELET 53 65 16 14 14 2 |12 44(13) | 28.76
WDF5 23 29 16 12 12 2 121 25(6) 15.23
WDF7 31 37 22 12 12 2 |42 35(7) 48.46
WDF9 23 28 26 9 9 2 |11 27(5) 32.33

Table 1: Example Applications

Configurable spare data path synthesis techniques proposed in this paper were validated on
the set of DSP, video, control and communication applications summarized in table 1. The
selected applications span a wide range of complexities in computational structures and
include Arai’s fast DCT algorithm (ARAI), decimate-by-four wave digital fileter(DEC), S.
Winograd’s small-N DFT for N = 8 (FFT8), noise canceler (NC), and ninth degree bi-
reciprocal WDF with Butterworth response (WDF9). For each application, columns 2-5
show the number of nodes, the number of edges, the word length, and the critical path,
respectively. The input latency for each application is shown in column 6. The next four
columns give the hardware allocation. The column titled “reg” shows the number of reg-
isters used in the implementation. The numbers in parentheses are the Tegister counts
for constants. The last column reports the estimated area in mm? of the dedicated im-
plementation. This is used to evaluate the area overheads of the configurable spare data
paths.
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# of faulty Area

PIOCessors Bundles dedicated | config’ble
{ADAPT, GM1M, IIR8, NC, WAVELET}, {WDF9}, 518.7 368.0
1 {ARAI DEC, VOLTERRA, WDF7}, {FFT8, LDILP}, (100%) (71%)

{FIR20, WDF5}

{ADAPT, GMI1M, VOLTERRAYJ, {IIR8}, {WDF5},
{WAVELET, WDF9}, {ADAPT, LDILP, NC}, {GM1M} | 1037.4 736.6
2 {ARAI, VOLTERRA, WDF7, WDF9}, {DEC, FFT8,}, | (200%) | (142%)
{ARI, FFT8, WDF7}, {DEC, LDILP, WDF5},
{FIR20}, {FIR20, IIR8, NC, WAVELET},

Table 2: Application Bundling: Minimization of Overall Area

5.1 Application Bundling: An Evaluation

Application bundling was invoked on this set of applications, targeting single and double
processor failures. Table 2 summarizes the results. Column 2 shows the applications in each
bundle which are enclosed in braces. The total area when implemented as dedicated chips
and that of configurable spare processors are shown in columms 3 and 4. The overheads of
configurable spare processors (with respect to a non-fault-tolerant implementation) are 71%
and 142% for single and double processor failures, respectively. In row 2 of table 2, four of
the bundles have a single application. This is because the applications are incompatible in
terms of hardware and interconnection requirements with the remaining applications.

For a system with fourteen such dedicated application specific processors, five configurable
spare processors and one dedicated processor as in the first row of table 2 can tolerate
any single processor failure with. Similarly, the twelve configurable spare processors and
four dedicated processors which implement the bundles in row 2 of table 2 can tolerate
any two-processor failures. This is because each application is a member of at least two
bundles.

5.2 Experiments using Configurable Spare Data path Synthesis

Each of the application bundles from table 2 is retimed to minimize the area of the config-
urable spare processor, and synthesized by the system. The results of twelve configurable
spare data paths are summarized in table 3.

The applications in each configurable spare processor are summarized in column 1. Failures
in a dedicated processor can be tolerated by programming the spare data path to implement
the application. The hardware allocation is summarized in the next four columns. The area
of the synthesized configurable spare data path is given in the 6th column. Finally, the
total area as a percent of the dedicated spare data path approach is summarized in the
last column. For the spare data path corresponding to the third row in table 3, this is

8

59.2
calculated as s3garizhersrm:

6 Concluding Remarks
We have presented a system level fault-tolerance technique using configurable spare data

paths by exploiting the flexibility afforded by implementing multiple applications. The
proposed techniques have been implemented and the resulting system has been used to

302



Configurable allocation area | area as a % of dedicated
Spare Data path +T-TF] reg {mm?) spare approach
{FIR20, IIR8, NC, WAVELET} 4 [1]2]110(49) | 59.43 42.38
{ADAPT, GM1M, IIR8, NC, WAVELET} {2 [ 1 [ 3 | 98(47) | 94.39 58.60
{ADAPT, LDILP, NC} 3 |22 70(14) | 59.28 59.15
{ADAPT, GM1M, VOLTERRA} 2 |12 53017) | 72.80 66.55
{ARAI, VOLTERRA, WDF7, WDF9} 4 |33/ so(s6) | 146.14 66.99
{DEC, LDILP, WDF5} 2 142 71(22) 49.34 71.84
{ARAIL DEC, VOLTERRA, WDF7} 4 | 43| 105(43) | 155.75 72.23
{WAVELET, WDF9} 2 |12 58(18) | 5598 73.82
{FIR20, WDF5} 5 |22 69(16) | 44.61 74.02
{DEC, FFT8} 3 |4]2] 69(14) | 60.m1 80.68
{ARAI, FFT$, WDF7} 4 | 3|3 56(22) | 126.58 81.13
{FFT8, LDILP} 3 |32 26(26) | 40.95 82.36

Table 3: Configurable Spare Data path Synthesis

synthesize numerous industrial strength configurable spare data paths that can tolerate
single-processor and two-processor faults.
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