[EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, JUNE 1994 669

Estimating Implementation Bounds for
Real Time DSP Application Specific Circuits

Jan M. Rabaey and Miodrag Potkonjak

Abstract—This paper discusses techniques for estimating im-
plementation bounds on computational resources and their role
in the high-level synthesis process. Accurate estimations can be
extremely useful in a multitude of synthesis operations, such
as algorithm and architecture selection, design space search,
module selection, transformations, allocation, assignment, and
scheduling. Several techniques to efficiently estimate sharp min-
imum and maximum bounds on the resource requirements of
a hardware implementation are discussed. The performance of
the algorithms as well as their applications is analyzed using
an extensive benchmark set. The proposed techniques have been
implemented in the HYPER synthesis system.

I. INTRODUCTION

T NUMEROUS times in the design process of a real time
application, important decisions have to be made that
might dramatically affect the quality of the final solution. Un-
fortunately, most of these decisions are currently made on an
ad hoc base, since evaluating the effect of a decision requires
a complete run through the design process and is therefore
extremely time consuming. The advent of high-level synthesis
helps to alleviate this problem, as it allows for a much faster
traversal of the design cycle. However, the majority of the
high-level synthesis tasks, such as optimizing transformations,
allocation, assignment, and scheduling have been proven to be
at least N P-complete. To solve the problems in polynomial
time, numerous heuristic as well as probabilistic solutions
have been proposed. As a result, it is hard for a designer to
determine the quality of a solution obtained with a particular
synthesis environment. Furthermore, even though faster than
the manual approach, running through the complete synthesis
cycle still takes a substantial amount of computation time and
is hence not effective for traversing the global design space.
The problem could be alleviated considerably if estimations
of the implementation requirements of an application could
be made fast and accurately. Currently, the implementation
quality of an algorithm is usually expressed by the number of
operations required during the execution of an algorithm [2].
Very often, a significant emphasis is placed on the number of

Manuscript received September 22, 1991; revised April 26, 1993, This work
was sponsored in part by DARPA, the Semiconductor Research Consortium,
and grants from MICRO, Harris Semiconductor, LSI Logic, Analog Devices,
and Sony Corporation. This paper was recommended by Associate Editor R.
Camposano.

J. M. Rabaey is with the Department of Electrical Engineering and
Computer Science, University of California-Berkeley, Berkeley, CA 94720
USA.

M. Potkonjak was with the Department of Electrical Engineering, University
of California-Berkely; he is now with C & C Research Laboratories, NEC
USA, Inc., Princeton, NJ 008540 USA.

IEEE Log Number 921546.

multiplications. However, such measures are poor predictors of
the ASIC implementation cost of the algorithm. For example,
important parameters such as the distribution of the operators
over the algorithm, the critical path, and the cost of memory
and interconnect are neglected.

This paper presents a set of techniques to accurately predict
the computational requirements of an algorithm, given the
algorithmic flow graph and the maximum execution time. A
technique called discrete relaxation is introduced to establish
sharp minimum and maximum bounds on all hardware re-
sources. The computed bounds can be used for a myriad of
purposes in the design synthesis process.

1) The derived minimum and maximum bounds delimit
the search space, thus speeding up the design synthesis
search process.

2) The minimum bounds can serve as an initial solution for
the above search process. We have experienced that this
solution is often very close to the final solution.

3) Most synthesis tasks are optimization tasks that attempt
to minimize a cost function, which is very often the
implementation area. The accuracy of this cost func-
tion will directly influence the quality of the synthesis
process. Accurate estimations can therefore help to boost
synthesis performance by contributing to the accuracy
of cost functions.

4) Estimations can help to establish the relative or absolute
quality of a proposed solution. This information is
extremely useful to direct the overall synthesis search
process. For instance, in an iterative transformation
environment, it is important to know how much a
proposed transformation will influence the implemen-
tation cost, hence establishing a relative ordering of the
candidate moves. It is also useful to know the maximum
improvement to be expected from a transformation.

5) Estimation of the optimal solution can help to determine
the absolute quality of a synthesis algorithm (such as a
scheduler or a transformation). Since most algorithms
are at least N P-complete, benchmarking (with all asso-
ciated traps [23]) is the dominant approach at present.

6) Finally and most importantly, estimations can play a
crucial role in the algorithm and architecture selection
and partitioning processes, topics that are by and large
unexplored territory at present.

The estimation techniques described in this paper were de-
veloped for the analysis of high-performance signal processing
applications, where the implementation cost is dominated by
the computation and storage resources and the cost of the

0278-0070/94$04.00 © 1994 IEEE

670 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, JUNE 1994

controller is only of secondary importance. Therefore, this
paper will concentrate on the former components.

After a brief discussion of the previous work in this area and
a description of the global estimation framework, the proposed
techniques for the estimation of maximum and minimum
bounds will be discussed in detail. The effectiveness and
efficiency as well as the application domain of the estimation
techniques will be demonstrated with a number of examples.

II. PREVIOUS WORK

While the idea of estimations is relatively new in the high
level synthesis arena, the concept of resource requirement
prediction has been around for quite some time in the areas of
compiler design, performance modeling, operations research,
and VLSI and digital signal processing. An overview of the
state of the art in those areas will help to substantiate the
presented results.

Until recently, the software compiler literature has ignored
the topic of estimations and their use. This is easily explained
by the fact that the designers of software compilers are as
much concerned about compilation speed as about execution
speed. Therefore, the most complex scheduling algorithms
used are of a quadratic worst case complexity, which is as
fast as any nontrivial estimation technique can achieve. With
the introduction of vector computers [1], [28], very long
instruction words [43], and super-scalar and super-pipeline
architectures [24], [54], numerous studies have been published
on the available parallelism in both general purpose and
numerically intensive computations. The scope of those papers
is quite different from the one addressed here: their main
goal is to demonstrate that a particular class of algorithms
has sufficient parallelism for a given architecture. This is
measured by explicit scheduling of the algorithms on the target
architecture.

Performance modeling, and benchmarking in particular,
have recently received a lot of attention [18], [23]. The major
concern here is to predict the average performance of a general
purpose machine for a particular group of users. The most
often-used techniques are simple statistical models, which are
built either manually or with the help of statistical packages
and use as input parameters the run-time results of a set of
benchmark programs typical for a particular area (for instance
linear algebra or databases).

The operations research and theoretical computer science
efforts that most resemble the problem addressed here is in the
framework of approximation algorithm development [19]. The
goal is to develop algorithms for a particular N P-complete
scheduling problem, which guarantee that the solution will be
within € percent of the unknown optimal solution. Although
those algorithms have a polynomial complexity, their complex-
ity order is most often high. The goal is once again different:
explicit solution generation versus prediction.

The prediction of implementation requirements is of ex-
treme importance in the area of digital signal processing and
has therefore been discussed extensively [2]. The predominant
measure used to express the quality on an algorithm is the
number of operations, often with stress on the number of

multiplications. Since the late seventies, the regularity of an
algorithm has also become an important measure {31], [40].

In the VLSI arena, theoretical computer science has made
some significant progress in the study of lower bounds on
area and time of elementary circuits such as adders and
multipliers [59]. Three fundamentally different techniques are
used, providing complexity measures on A (area), A x T
(area-time), and A x T2.

It seems that the use of prediction has predated CAD in the
circuit design area. In the early 1960’s, an unpublished study
was performed at IBM by E. Rent on the structure of computer
logic design. His formulation, now known as Rent’s rule, was
followed by many other studies, not only on the block-to-pin
ratio, but also on other physical implementation parameters
[17]. More recent studies achieved an excellent correlation
between predicted and actual physical design characteristics
[34], 146], [53]. .

The role of estimation has not received much attention in
the architectural and high-level synthesis area. Early estimation
efforts include a model developed by Davio et al. [10]. One
of their assumptions was that all nodes (called universal logic
elements) have identical delay, area, and functional charac-
teristics, which greatly reduces the prediction complexity but
severely limits the application range.

Significant and important work has been performed at the
University of Southern California. Kurdahi [33] presented a
technique to predict the number of required registers using a
variant of the Dinic max-flow/min-cut algorithm, which was
later refined by Mlinar [41]. Jain [21] used absolute min-
bounds (discussed later in this paper) to drive the module
selection process. Most recently, Kucukcakar [30] reported
the successful usage of prediction tools in the partitioning
phase of behavioral synthesis as well as several new estimation
approaches [29].

Kurdahi also developed PLEST [33], [34}—a CAD tool for
estimation of the area of standard cell VLSI chips. Several
other researchers addressed the problem of area prediction,
starting from the circuits schematic expressed in a hardware
description language. CHAMP [58] also estimates the areas
of standard cell blocks by using empirical formulas obtained
by extensive experimentation. Chen and Bushnell [5] reported
estimator modules in both standard cell and full custom
layout methodologies. Zimmerman [63] employs the min-cut
algorithm as a fast means to generate slicing trees used in area
estimation for both standard cell and general cell designs. All
four groups reported excellent prediction capabilities (within
10% of actual implementation).

Two approaches advocate the direct consideration of layout
information in high-level synthesis. Weng and Parker propose
integration of scheduling with floorplanning [61], and Knapp
[25] proposes use of layout data to drive the choice of
optimizing RTL transformations for iterative improvement of
designs. Minimization of literal count is a common objective
during logic synthesis optimization. Lightner and Wolf [37]
showed that for standard cell design, literal count is indeed a
good estimator of area before routing.

Several approaches on the border between high-level and
lower-level design have also been reported. The Chippe expert

RABAEY AND POTKONJAK: ESTIMATING IMPLEMENTATION BOUNDS

design system [3] analyzes interconnect in terms of perfor-
mance, area, and power using a worst-case waterfilling model.
The ELF system had a mechanism for the prediction of the
wiring area, given an RTL level description [15]. Several
authors, including [39], studied the area-delay performance
tradeoff, yielding a model that could be used in a prediction
tool. Wu, Chaiyakul, and Gajski [62] proposed layout area
models starting from an RTL description for two types of
datapath (bit-slice stack with abutment and bit-sliced macro
standard cells) and control (random logic and PLA) layout
models. Finally, Powell and Chau proposed an approximation
technique for the early estimation of power consumption [50].

The Tron system [11] uses a hierarchical min-flow algorithm
for estimating the upper bound on the number of required
registers so that register cost can be taken into account
during efficient list scheduling. Another high-level synthesis
estimation technique was recently proposed by Hagerman [16].
Hagerman uses the concept of a distribution graph [44] to
estimate the functional unit allocation used by a modified
force directed scheduling, allocation, and mapping tool [8]
and reports favorable results.

The techniques presented in this paper differ in both the
employed techniques as well as the application areas. The
idea of relaxation is introduced and applied extensively for the
estimation of computational units, memory, and interconnect.
Attention is paid to hierarchy in the representation, an area
that has until now been largely unexplored. Furthermore,
techniques to derive the best possible estimations for max-
bounds are presented. The obtained results are analyzed and
verified.

III. GLOBAL FRAMEWORK

Before starting the discussion of the estimation algorithms, a
number of assumptions and definitions have to be put forward.
First of all, we will define our target goal more precisely.
The goal is to develop sharp minimum and maximum bounds
on the required quantity of execution units, registers, and
interconnect in ASIC implementations of numerically inten-
sive applications. In these types of applications, the datapath
resources contribute a majority of the implementation costs.
Numerically intensive algorithms are common in a wide
range of important applications such as sonar, radar, speech
recognition and synthesis, image and video processing, and
sonographics. The developed techniques can be also used for
estimating the datapath cost in arbitrary architectures in an
application specific domain (for instance, control dominated
ASIC’s). In conjunction with estimation tools for controllers
and random logic modules, they provide an overall prediction
tool.

The techniques presented in this paper concentrate on deter-
mination of bounds on the number of execution units, registers,
and interconnect. Since there is a direct relation between the
number of execution units and registers and their respective
areas, simple calculation gives the corresponding areas. There
does not exist a direct relation, however, between the number
and area of interconnect, since the later is dependent on the
effects of lower level CAD tools and methodology. There

671

Fig. 1. Example of a Hierarchical Flow Graph. This graph is equivalent
to the following computation: ¢ = a™(b + 10*step). D represents a delay
operation with initial value In.

exists, though, a good correlation between the two. By pre-
senting the number of interconnect lines as the final result, we
enable comparison with other high level synthesis estimation
techniques. Also, it is important to note that this information
can be obtained significantly faster than interconnect area,
and can be used in conjunction with high-quality, lower-level
prediction tools.

We assume that the algorithm under study is represented as
a Data-Control Flow Graph G (N, E, (), where the nodes
N represent the flow graph operations with fixed latency
delay, and the edges F and C represent the data and control
dependencies between the operations, respectively. The control
dependencies are used to express relations between operations,
which are not imposed by the data precedence relations. The
control dependencies are particularly useful for the expression
of timing constraints, as well as for the implementation of side
effects caused by memory assignments (both for background
and foreground memories) [52].

We also assume that the graph G is a hierarchical graph:
each vertex N of GG can be an instance of a subgraph
G'(N’, E’, C'). An example of such a hierarchical flow
graph is shown in Fig. 1. The representation allows for the
simple introduction of loops and block-conditionals in the
flow graph. It is assumed that for each data dependent loop,
either the maximum or average number of iterations, is known.
Which one is chosen depends upon the application. Some
signal processing applications (for instance audio processing)
require that a fixed throughput rate is sustained, hence en-
forcing worst case design; others, such as speech recognition,
only require an average rate. The value of those nonde-
terministic parameters can be estimated through algorithm
profiling, based on simulation or sometimes using amortization
techniques [9].

In order to make the estimations useful and accurate, a well-
defined underlying hardware model is essential. The following
restrictions are placed on the implementation:

1) All edges E represent variables, which will be stored in

registers.

2) All leaf nodes N are purely combinational. The hard-
ware unit of choice r (such as adder, multiplier or ALU)
and its execution time ¢4, (in number of clock cycles)
is known a priori.

It is always possible to transform a noncomplying flow
graph into the format described above by contracting nodes,
connected by temporary edges (without storage), into a single,
complex combinational node.

672 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, JUNE 1994

EXU EXU EXU

H H*

(@) (b)

Fig. 2. Hardware Models. (a) INTERCONNECT-REGFILE-EXU. (b) IN-
TERCONNECT-REGFILE-INTERCONNECT-EXU.

The paper will adopt the hardware model H, shown in
Fig. 2(a). It is assumed that all registers are clustered in
register files, connected to the inputs of the execution units.
The techniques described below are, however, easily adapted
to other models, such as the “register file-interconnect-exu-
interconnect” model shown in Fig. 2(b) (called H* in the rest
of the text). Although the hardware model will not affect
the execution unit bounds, it will have a severe effect on
interconnect and register bounds (see Section IV.B).

The estimation process for real time applications can be
defined within this framework:

Given a hierarchical flow graph G(N, E, C), an un-
derlying hardware model H and a maximum execu-
tion time ¢,,,, determine the minimum and the max-
imum bounds on the required hardware resources
(execution units, registers and interconnect) such that
the graph G can be executed within ...

Flow graph transformations are often the most powerful
high-level synthesis tool, in that they can drastically reduce
implementation requirements. This power makes a comprehen-
sive prediction of transformation effects an extremely difficult
task. For several transformations (e.g. loop pipelining and
commutativity), insightful prediction tools are developed in the
HYPER high-level synthesis system [47]. In general, though,
a different strategy for estimating effects of transformations is
used. This is done for two reasons: the effect of a transforma-
tion greatly depends on the particular algorithm that executes
the transformation, and run times of transformation algorithms
are often short. HYPER first performs a transformation and
then estimates its effects. (If the effects are counterproductive,
the transformation is rejected.) Therefore, we assume that in all
presented examples no transformations will be applied. In the
experimental result section, half of the examples are obtained
by applying one or more transformations on the initial flow
graph.

For the sake of completeness, it should be mentioned that
the techniques presented below are easily adapted to address
the dual problem (given the hardware resources, estimate the
bounds on the execution time). The rest of the paper will now
proceed as follows: Section IV will describe techniques to
estimate the max-bounds on the resources, while a selection
of approaches to estimate min-bounds will be analyzed in
Section V. The paper will conclude with a study of the
applications of prediction techniques and future work. A
number of examples will be used throughout the paper to
demonstrate the effectiveness of the proposed techniques.

par,
)
t
tmax = 4 0 2 4
par,’
2 (c)
1 t
(1} 2 4

Fig. 3. Analysis of Max-Bound: example Flow graph (a), Parallelism Graphs
before (b) and after (c) precedence collapsing. It is assumed that each operation
takes one control step.

IV. ESTIMATING THE MAXIMUM BOUNDS

It might be argued that maximum bounds on hardware re-
sources are hardly interesting, since the synthesis process is in
essence a minimization process. However, knowing the upper
bounds helps to delineate the search space for the hardware
allocation and transformation processes. Furthermore, it is in
general advantageous to have the maximum bounds on the
resources as high as possible, since they are a measure of
the concurrency available in a particular instance of the flow
graph (this is demonstrated in this paper as well as in [48]).
Therefore, results of the max-bound estimation can act as a
driver for the concurrency-improving transformations.

A. Max-Bounds on Execution Units

For the sake of clarity, we will first assume that the graph G
does not contain any hierarchy. This constraint will be relaxed
further in the section. The estimation process starts with a
topological ordering and leveling of the graph with respect to
the input and output nodes. As a result, the earliest (tgsap) and
latest (t;lap) execution times are obtained for each node N;.
The length of the time slot available for the execution of IV;
is called the slack time (%, = th),, — tasap)- The length of
the critical path is also determined during this process.

Based on this information, a set of parallelism plots par ,.(t)
(with 7 = 1..R; R = total number of resource classes) can be

constructed:
par,.(t) = Z all nodes ¢ executed on resourcer T
(with (the,, <t < tha,) (1)

Such a parallelism plot displays the potentially available
concurrency over time. Hence, the max-bound on resource r
Equals:

tmax
max = MAX (par,.(t)) 2)
Tot=1

Equation 2 is, however, overly pessimistic, since it totally
ignores the precedence relationships that might prevent nodes
from being executed simultaneously, even though they have
overlapping slack times. We will call this bound the absolute
max-bound. The simple example of Fig. 3 will clarify the
issue. Assume that all operations take 1 control step and that
tmax €quals 4 clock cycles. The earliest and latest execution
times of each node are shown between brackets. par 4 (t) is

RABAEY AND POTKONJAK: ESTIMATING IMPLEMENTATION BOUNDS

plotted in Fig. 3(b). This suggests that the maximum paral-
lelism for adders equals 3. A close inspection of the plot of
Fig. 3(a) clearly proves that this is not achievable, due to the
precedence relations between the operations.

A more precise max-bound can be obtained by eliminating
nodes with potential concurrency, but with precedence rela-
tionships between them (as demonstrated in Fig. 3(c) for the
simple example). This task can be defined as a maximum
independent set problem [23]:

Given:

For control step ¢ and resource r, a set of nodes N;
with the following properties: N; is executed on r and
Uieap < ¢ < Th1ap» @ set of precedence relations (E, C)
between the nodes N;.

Problem:
Determine the maximum potential concurrency at time
t for resource r.

Solution:

Construct a directed graph F(N, R), with the N; as
nodes. An edge R;; is provided between two nodes N;
and N; when there exists a precedence relation (€ (E,
C)) between the two nodes. The maximum concurrency
equals the maximum independent set of F.

Proof:

Two nodes N; and N; can be executed simultaneously at
time ¢ when no precedence relationship exists between
them or, in other words, when no edge exists between
them in the graph F. This is exactly the definition
of an independent set: two nodes of a graph F form
an independent set, when F' contains no edge between
those two nodes. The maximum possible concurrency
then obviously equals the maximum set of nodes with-
out precedence relations or, equivalently, the maximum
independent set.

The maximum independent set problem is known to be N P-
complete [23]. Fortunately, the graph F' exhibits a property
that turns the problem into a polynomial one. It is known
that the maximum independent set problem for a class of
graphs, called comparability graphs [14], can be solved in
polynomial time (O(N?®)) using a minimum-flow algorithm.
A comparability graph F'(N, R) is defined as a graph with
the following property: if R;; € R and R;; € R, then also
R;r. € R. This is clearly valid for the graph F, defined
in the max-bound problem: when a precedence relation is
present between nodes NV; and IV; as well as between nodes
N; and N, then node N; must also precede Ni. Efficient
algorithms to solve the maximum independent set problem
for comparability graphs have been published in [14, p. 135].
It should be noticed also that the sizes of the graphs F' are
small, since they only consider the nodes, alive at time ¢
and executing on resource r. The independent set problem
has to be executed for every time ¢ and for every resource
(thus tmax X R times) to obtain the improved parallelism
graphs.

673
In Out
FIRST
* BIQUAD BIQUAD BIQUAD oRDER
O
S,
O ©
Fig. 4. Seventh-order biquadratic IIR filter: Signal flow graph.
par
par *
14.00 \ par +
12.00 \\
10.00 \
8.00 \
6.00 \
4.00
2.00 + Ny
0.00
time
0.00 5.00 10.00
Fig. 5. Parallelism plots for 7th-order IIR filter (tmax = 14,

t* = 2,t+ = 1).

The max-bound algorithm has been applied on the example
of a seventh order biquadratic IIR filter, shown in Fig. 4.
The results are plotted in Fig. 5 for both adder/subtracters
and multipliers‘ (for tyax = 14). From the parallelism plots,
it can be deduced that the max-bounds on multipliers and
adders equal 15 and 6, respectively. More important than
the bounds themselves (which are of little practical value
besides the delineation of the search space) is the information
gained by studying the structure of the parallelism graphs. In
the example, note that almost all parallelism is available in
the initial clock cycles. This will definitely result in a poor
implementation with low resource utilization towards the end
of the algorithm. This demonstrates that the distribution of
the plots can serve as a measure to drive resource-utilization
improving transformations, such as retiming and pipelining
[48].

The above techniques can be easily extended to cover
hierarchical graphs as well. The main problem in dealing
with hierarchy is that the available time is only known for
the uppermost level and not for the sub-graphs. Fortunately,
there is little or no dependency between the available time
and the max-bound (since the dependencies remain identical).
We therefore opted for the following approach: For each sub-
graph, the max-bounds of the resources are estimated using
the subgraph’s critical path as the available time. The max-
bounds for the hierarchical graph are then obtained by taking
the maximum over all sub-graphs for all resources.

'In a real implementation of such a filter, multiplications are replaced by
add/shifts. We have opted here for using parallel multipliers (with a duration
of 2 clock-cycles) to simplify the example.

674 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, JUNE 1994

Fig. 6. Derivation of connectivity graph from computation graph. The nodes
in G, are represented by the source and destination resources (e.g, i0AE+).

B. Max-Bounds on Connectivity and Registers

Similar techniques can be used to estimate max-bounds on
connectivity. The algorithms are executed on the connectivity
graph G (N, E.). Every node N, in G. corresponds to an
edge E(N;,N;) in G and represents a hardware connection
between resource r; and r;. For our hardware model H,
the slack time of N, is equivalent to the slack time of the
source node IV;, since the output bus is directly connected to
the source and should therefore be reserved for the duration
of the computation. An edge E. is defined in G. when
there exists a precedence between two interconnections. These
precedences can be derived directly from the computation
graph G. G. is also a comparability graph [14]. Note that no
assumptions are made about module binding. An example of
how to derive the connectivity graph from the computation
graph is shown in Fig. 6. It should be stressed that the
construction of G strongly depends upon the hardware model
H used. Furthermore, one should be aware that although
there exist a strong correlation between the number of busses
in the architecture and the interconnect area in the physical
implementation, no precise cost can be attributed to a bus.
This is in contrast to execution units and registers, which
have a very precise implementation cost. Finally, it should be
noticed from Fig. 6 that the interconnect estimation also allows
us to estimate the number of input-output ports needed. This
is of crucial importance in real time applications, which are
often input-output (and hence I0-pin) hungry (for example, see
[57]). This measure can for instance be used when considering
chip partitioning.

Establishing a sharp max-bound on registers is nontrivial
and strongly dependent upon the selected hardware model. In
the hardware model H, the register count is closely correlated
to the EXU assignment: in the worst case, every operation
can be assigned to a different EXU and hence every variable
has its own register. Therefore, the absolute max-bound on the
number of registers used is identical to the number of edges in
the graph, each of them multiplied by their fan-out. Parallelism
plots can also be derived for registers, using exactly the same
techniques as described above. We use the graph G,, which
is actually identical in structure to the interconnect graph G..
for the hardware model H. Each node now corresponds to a
variable. The slack time of the node is set to the maximum
lifetime of the variable, which equals tglejl‘) — toeap > With
source the source node of the variable and dest the destination
node.

In the hardware model H* from Fig. 2, the broadcasting
factor is greater than 1, potentially saving some registers at the
expense of extra interconnect. Since the register assignment is

decoupled from the EXU-assignment, accurate bounds can be
predicted using the maximum independent set techniques on
the comparability graph for all edges.

V. ESTIMATING THE MINIMUM BOUNDS

From a design point of view, far more interesting infor-
mation is represented by the minimum bounds: accurate lower
bounds allow us to estimate the absolute minimum area needed
for the implementation of a given computational graph. Lower
bounds can also serve as an initial seed for allocation and
design space search processes, normally resulting in faster
convergence. Finally, a good lower bound allows us to judge
the quality of solutions produced by heuristic or statistical
tools for N P-complete problems such as scheduling or module
selection.

Unfortunately, no exact lower bounds for the design synthe-
sis problem have been established, and deriving those might
prove to be an NP-complete problem in itself?. In order
to be useful, the estimation process should be very efficient
(the complexity of the estimation routines should not exceed
O(N?)). This precludes the utilization of complex estimation
algorithms. Instead, we opted for a technique called discrete
relaxation, which turns the estimation problem into a tractable
one by relaxing some of the constraints imposed by the
original problem. As will be demonstrated below, this results
in extremely efficient estimation, while still delivering very
sharp bounds. One set of constraints on which we can relax are
the precedence relations. Most of our attention will be devoted
to this class of relaxations. As was done in the chapter on
maximum bounds, we will first concentrate on the estimation
for execution units and later extend the approach to registers
and interconnect. At the end of the chapter, we will discuss
several other relaxation approaches.

A. Min-Bounds on Execution Units—Leaf Graphs

As stated in Section II, the majority of the complexity
estimation approaches in the high-level synthesis arena are
based on the absolute min-bound. This min-bound is in essence
Equivalent to the traditional approach of a designer, when
he measures the complexity of an algorithm by counting
the number of multiplies (as the parallel multiplier is the
most expensive execution unit) and dividing them by the
available time. Such a measure is a poor predictor of the
ASIC implementation cost of an algorithm. It assumes that
the flow graph contains enough parallelism to support 100%
utilization of the resource. Furthermore, important elements
contributing to the implementation cost, such as input, output,
interconnect, and foreground and background memory are
ignored. This approach therefore generally results in a poor
estimation. Within our framework, the absolute min-bound for
an execution unit 7(r = 1 - R) is defined in

b tr
o [——”’ X ta } @

T max

2The authors are not aware of any proof of this statement.

RABAEY AND POTKONJAK: ESTIMATING IMPLEMENTATION BOUNDS

Ao ot et Bunds
%
|

Fig. 7. Ratio between actual cost and absolute min-bound (for 50 examples).

with 7, the number of nodes to be executed on resource r
and tq; the number of clock cycles it takes to execute one
operation on r.

We have evaluated the performance of the absolute min-
bound using a class of 50 examples (all of them without
hierarchy). The list of the examples includes the 7th-order IIR
filter, the standard Sth-order wave digital filter, an 11th-order
FIR filter, a 19th-order CORDIC rotation, and an 8-point dis-
crete cosine transform. For all those examples, we constructed
different alternatives structures (and hence different graph
properties) by applying transformations such as pipelining
and retiming. Furthermore, we considered multiple ratios of
tmax/critical path for each example. This ratio (which will be
called the stress ratio from now on) influences the performance
of the estimation algorithms in an important way. We have
compared the results of the estimation with the results obtained
after going through the complete synthesis process®. The
results are plotted in Fig. 7. The cost factor used in the
evaluations is equivalent to the total area of the execution units.
The maximum error observed between actual and estimated
cost equals 386.3%, while the average and median errors equal
72.1% and 86.6%, respectively.

An improvement on the absolute lower bound can be found
by observing from the parallelism graphs (obtained in the
previous section) that for some clock cycles not enough
parallelism is available to sustain 100% utilization. This results
in a more precise lower bound:

min =
T

adj [nr X tqr + Unused Time“ @

tmax

Unused Time in the above equation is actually a function of
min af’, as the resource utilization is clearly dependent upon
the number of resources available. Equation (4), therefore, has

to be solved iteratively:
1) Derive the Parallelism graph for r, using the techniques
discussed in the previous section. Set the initial value of
min afj to the absolute min-bound (3).
2) Compute Unused Time given min afj.
3) Recompute min afj using (4).
4) If min "fj changed with respect to the previous itera-
tion, go to 2, or stop.

3To make the comparision between the different algorithms fair, we have
used identical scheduling and allocation routines for all examples.

675

mult 1
| multiptier | 0] M1 | M27?
0,0), « 0,0) 5 (0,2) 1| M3
ﬁ m&; mult 1 mult 2’
2 multipliers | 0 | M} M2
11 M3

Fig. 8. Determination of relaxed min-bound for the example in Fig. 8.

Even though this approach presents a significant improve-
ment over the absolute bound, it still might be off significantly.
This discrepancy is mainly caused by the fact that nodes with
a large slack (or a lot of freedom to move) are falsifying
the parallelism graphs by giving a too-optimistic point of a
view on the available concurrency. This is demonstrated with
the simple example of Fig. 8. Using (4), one would get the
impression that one multiplier is sufficient, as the Unused
Time on the Parallelism Graph for 1 multiplier is 0. A close
inspection of the flow graph reveals that 2 multipliers are
needed: both multiplications M1 and M2 have to be executed
in the first time slot. The discrepancy between estimations and
actual results is caused by the large slack of node M3, which
gives the impression that at least one multiplication can be
executed in every clock cycle.

A more advanced approach is therefore necessary. Our
proposed approach is based on the principle of relaxation:
while the general scheduling problem is N P-complete [13,
pp. 236-244], some simplified scheduling problems have
been proven to be of polynomial complexity. By removing
some constraints of the original problem, we can turn the
estimation problem into a polynomial one. In other words,
we trade off accuracy for speed. In this section, we will
relax on the precedence constraints. For the lower bound
estimation problem for EXU 7, let us temporarily consider the
precedences only indirectly (through the ASAP and ALAP
times of the nodes) and ignore the direct formulation. This
translates the estimation problem into the following format:

Relaxed Estimation Problem: Given a computational
problem, consisting of identical tasks with integer ASAP
and ALAP times and a known duration t4,, determine
the minimum number of resources r needed to complete
the task within the available time {ax.

This problem cannot be solved directly, but can be defined
as an iterative version of its dual formulation:

Dual Relaxed Estimation Problem: Given a compu-
tational problem consisting of 7, identical tasks with
integer ASAP and ALAP times and a known duration
t4r and the number of available resources r, determine
the minimum execution time £min.

Given a solution for the dual problem, the original relaxed
estimation problem can then be solved with the following

676 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, JUNE 1994

o ot Reze Gy
1]
|

Examplea

Fig. 9. Ratio between Actual Cost and Relaxed Min-Bounds (for 50 examples).

simple iteration:

Relaxed Estimation Problem (iterative version):

1) Set min, to the absolute lower bound min a:fs.

2) Given min,, determine the minimum execution time ty;p

(dual relaxed estimation problem).

3) If tmin > tmax OF if no solution, increment min, and go

to 2, else min, is the relaxed min-bound.

This procedure is illustrated with the aid of the simple
example of Fig. 8. The absolute min-bound on the number
of multiplications for this example is equal to 1. Consider
now the relaxed problem shown in Fig. 9. It is obvious that
no solution can be found for the scheduling of the problem
on 1 multiplier. When 2 multipliers are available, the problem
can be solved in 2 clock-cycles (< tmax = 3). Hence the
min 'fl =2.

The dual estimation problem as defined above is well known
in the scheduling literature. From [38], the following analysis
can be derived.

1) When the duration t4, of all tasks (or operations) is
Equal to 1 clock cycle, then the minimum execution
time can be determined exactly using a slack driven
list scheduling (also known as the earliest deadline
scheduling algorithm). The complexity of this algorithm
is O(N log N), with N the number of tasks.

2) When the duration of the tasks is larger than 1, the prob-
lem becomes more complex. It can be transformed into
a scheduling problem with unit task duration time (by
dividing all times with the length of the task ¢4,), but in
this case the new ASAP and ALAP times are no longer
integers. Finding the exact solution for this problem
requires backtracking during the list-scheduling and is
known as the earliest deadline with barriers scheduling
algorithm [55]. The complexity of this algorithm is
O(N3log N). Since this exceeds our goal of using only
algorithms with maximally quadratic complexity, some
further relaxation is needed. This can be achieved by
turning the ASAP and ALAP times into integer numbers.
The ASAP times are rounded to the nearest lower integer
number, while the ALAP times are rounded to the next
higher integer. The resulting problem can once again be
solved with the earliest deadline scheduling problem.
It is easily seen that the integer relaxation can only

R

10.00 20,00 30.00 15.00 2000

@) (b)

Fig. 10. 7th-order IIR filter: Minbound-time tradeoffs for multiplications (a)
and add/substract (b) (relaxed, absolute, and actual).

lower tmin, hence preserving the min-bound nature of
the obtained solution.

The performance of the relaxed estimation routines is an-
alyzed using the same benchmark set as was used for the
absolute lower bound. The results are plotted in Fig. 9. The
maximum error has been reduced to 67%, while the average
and median errors equal 13.7% and 7%, respectively. The
largest errors occur when the ratio approaches 1. This can
be partially explained by the fact that for ratios near unity,
the relaxation on the precedence relations introduces an over-
simplification. Another reason could be that in the fixed
amount of run time, the probabilistic scheduler performs better
on examples that are not overly constrained.

The proposed iterative algorithm for solving the min-bound
problem can also be used to generate the minbound-time plots
for each execution unit, which determine for each possible
time ¢max the minimum number of units needed. These plots
are extremely useful when studying the area-time trade-offs for
a particular algorithm (this will be discussed in more detail in
the application section). They will also be used extensively
when performing estimations for hierarchical graphs.

Generating the Minbound-Time Graph for resource 7:

1) it Set min, to 1.

2) it Solve ¢y, using the dual relaxed estimation algorithm.

3) When tmin > teritical path, increase min, and go to 2,

else stop.

The minbound-time graphs for multipliers and adders for the
7th-order IIR filter are plotted in Fig. 10. To demonstrate the
excellent performance of the relaxed estimation algorithms,
the area-time plot obtained using the absolute min-bound
estimation technique as well as the actual cost-time plot
(obtained after allocation, assignment and scheduling) are also
included. As can be noticed from the plots, the only major
discrepancy between actual cost and the relaxed min-bound
occurs when tmax = feritical path = 11.

B. Min-Bounds on Execution Units—Hierarchical Graphs

The situation becomes somewhat more complex when hier-
archical graphs are considered. The problem here is that £p,ax
is only defined for the overall problem. The distribution of
the time over the sub-graphs is unknown and is actually an
optimization problem of its own. Without loss of generality,
we will assume that at every hierarchy level, the nodes of

RABAEY AND POTKONJAK: ESTIMATING IMPLEMENTATION BOUNDS

the graph are either all hierarchy-nodes or all leaf-nodes. This
can be achieved by clustering leaf-nodes into sub-graphs, such
that all precedences are preserved. We also assume that only
one sub-graph can be executed at a time (single thread of
control). This is the most common case in both ASIC design
practice and in high-level synthesis. While the use of multiple
threads of control has high potential for some computational
areas, it usually has as a consequence a controller of high
complexity, which can have a negative impact on both the
area and clock-speed of the ASIC design. Obviously, we can
derive the bounds for multiple threads of control by flattening
the flow graph. Since the algorithms for bounds run essentially
in linear time (flow graphs are almost always sparse), sizable
examples can be analyzed using this approach. If the task is
to derive min-bounds while preserving hierarchy, it can be
achieved by a dynamic programming algorithm. The run time
complexity of this algorithm would be high, however, and the
implementation complex. Therefore, for the reasons mentioned
above, we will concentrate on single thread of control designs.
For computations that have conditional branches, the min and
max bounds for a particular control step are given by the
maximum min and max bounds over all branches in that
control step.

One method for performing the hierarchical estimation
uses the minbound-time plots, derived in Section V.A. For
an arbitrary hierarchical graph G(N,E), let each node N
represents a sub-graph G'(N’, E’). Assume that for each node
N, the minbound-time plots of its sub-graph G’ are known as
well as the maximum®* number of iterations on the node.

The minbound-time plot for a resource r and for graph G
(called MB;,.(t)) can now be constructed from the minbound-
time plots of the sub-graphs (MB (t), with ¢ = 1---N) in
the following way:

Procedure Estimate Hierarchy (for resource r):

1) Set 7., the number of resources of type r, to 1.

T

2) Compute ty;, for graph G using (Eq 5).

N 1

hin = D_(MB

i=1

() x iter') (5)

with iter’ the number of iterations of node i.
3) If ¢, > teritical path, inCrement 7, and go to 2, else
stop.

This procedure is illustrated for the simple example of
Fig. 11. In the case of conditional graphs (if-then-else func-
tions), we take the results of the worst case sub-graph. Proce-
dure Estimate Hierarchy is repeated for every hierarchy level
in the graph in a bottom-up fashion until the top level is
reached. At that level, the available time ¢,,,x is known and
the actual min-bound ¢ . can be determined. The minbound-
time plots for a 19th-order CORDIC algorithm (containing
one hierarchy level) are plotted in Fig. 12. The cost plotted
here is the sum of the estimated minimum costs of the
adder/subtracters (unit cost 3), shifters (cost 4), comparators
(cost 3) and multiplexers (cost 1)°. A large discrepancy be-

4 Average number when looking at the average throughput.

5These cost ratios are obtained from the actual data-path library of the
LARGER-IV system [54].

677
par,,
G N1
N =
1
werles L \ :
° iterations 5 10 G
par, 2

3 N2
L1 1 t
iteration 2 20 25 45
t

1

0 15 25

Fig. 11.
ple.

Construction of hierarchical minibound-time graphs—simple exam-

3200 —e———.—————————————— 1 ereene
30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00]
12.00 H l
10.00

Tl

time
100.00

Fig. 12. Estimated cost of a 19th-order CORDIC algorithm (relaxed, abso-
lute, and actual).

tween absolute and relaxed min-bound can once again be seen.
Note also that the actual cost tends to change every 19 cycles
in large steps (which is equivalent to the number of iterations
of the loop). This phenomenon is not present in such a clear
form in the relaxed estimation cost.

The procedure Estimate Hierarchy in fact introduced an-
other form of relaxation: the actual time allotted to each
sub-graph differs from resource to resource and is determined
by (5). In reality, this is clearly not the case. This relaxation
might therefore be overly optimistic, as it picks the optimal
solution for each resource independent of the other resources.
This will hurt especially when the stress ratio approaches
1. A more accurate solution can be obtained by considering
the resources in a combined fashion. For instance, when
considering two resources 71 and 72 simultaneously, (5) is
reformulated as follows:

-1

1 . .
‘ (Wn),MBZr2 (nr2))) X iter* (6)

r2 &
t = MAX((MB
min z_; (« rl

This approach turns the hierarchical estimation problem
from an R times 1-dimensional problem into an R-dimensional
one. This might sound bad, but it isn’t in reality. First of all,
R is normally rather small (more than 6 different resources
is rare). Secondly, only a couple of resources are critical and
need more than one instance, which reduces the estimation
space in an important way.

C. Min-Bounds on Interconnect and Registers

All the above described techniques can be applied in an
identical fashion for the estimation of the lower bounds of
interconnect. The only difference is that the routines are

678 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, JUNE 1994

P P
(1 asap ¢ alap
CASE1 |
< c
producer tasap tatap
E!
(P (N4
consumer asap alap
ease| | —
c c
\ t asap t alap

Fig. 13. Minimum variable lifetime of variable E: Possible scenarios.

applied on the interconnect graph G. instead of on the com-
putation graph G (Fig. 6). As described above, the slack of
an interconnect node is identical to the slack of the source
computation node: in the hardware model H, a bus is directly
connected to the output of the execution unit and is thus
reserved for the duration of the computation.

Estimating the minimum bounds on the number of registers
requires a somewhat different approach. In order to find the
absolute minimum on the register count, we have to assume
that no broadcasting occurs and that each variable is alive for
the minimum possible amount of time. The minimum lifetime
now depends upon the slack time of both the producer and
consumer nodes. As illustrated in Fig. 13, two scenarios are
possible:

1) The slack periods of the producer and consumer nodes
overlap (or t _[b t_°) Inthat case, the variable E can

be consumed immediately after generation. The mini-
mum lifetime is therefore tdcr. The interval where the

. H c P
varclable can be alive stretches from ¢ ap 10 max(t alap’
t alap)

2) The slack periods of producer and consumer nodes do
not overlap (¢ P p < t_o). Here, the variable E has

to be minimally alive for a longer period, namely from

P c c .. e e
talap to tasap +tg,- This is also the lifetime interval.

Estimating a lower bound on the number of registers as-
sociated with an execution unit r (hardware model H), can
now be solved in terms of the following relaxed scheduling
problem: Given a number of resources 7).z (the number of
registers available) and two classes of tasks: all tasks of the
first class have a fixed, integer duration (¢4,-) and have integer
ASAP and ALAP times; the tasks of the second class have
a variable, integer duration but have a fixed scheduling time,
determine the minimum time to execute the tasks on the given
Tesources.

The scheduling of tasks with varying duration is in general
N P-complete (in fact, strongly N P-complete) [55]. The fact
however, that the tasks with varying duration are fixed in
time, saves us here. The following modification to the earliest
deadline algorithm can be used to approximate the solution:

1) Divide all times by the largest 4, (as defined in the
beginning of this subsection) and round all ASAP and
ALAP times to respectively the next lower and upper
integers. This is identical to the approach taken for
execution units with duration larger than 1. This trans-
lates the problem into a scheduling problem with integer
ASAP and ALAP times and task durations of 1.

© °
8 o 8 o
5 5
2 8 =
£ £
s e 2
g o o @
3 5 "
3 =
.4 g -
S - -
g " 2
o O o
k-] -
3 =]
2 o b SN
- -

(a) exampile instance (b) example instance

Fig. 14. Ratio between actual cost and min-bound for interconnect (a) and
registers (b) (for 50 examples).

2) Reserve the slots, needed by the tasks with variable
duration (scenario 1), but fixed scheduling time.

3) Schedule the remaining tasks using the earliest deadline
algorithm. For each time-slot, the number of available
resources is Equal to 7.z minus the number of re-
served slots. The complexity of the algorithm is still
O(N log N).

The obtained bound is clearly on the pessimistic side,
since the actual solution will contain broadcasting. It can
also be observed that the actual lifetime of the variables will
approach the average value between min and max, rather than
the minimum value. A simple explanation of this is that in
a typical schedule, decreasing the lifetime of one variable
actually increases the lifetime of others. We are studying other
techniques (statistical techniques, among others; see Section
VII) to get more precise register bounds.

Finally, its should be mentioned that a similar approach
can be used to estimate the register count for the hardware
model H x. Since this model does not support broadcasting, the
estimated register count will be closer to the actual solution.

The performances of the estimation routines for interconnect
and registers were analyzed using the benchmark set. The
results are plotted in Fig. 14(a) for interconnect and Fig. 14(b)
for registers. The maximum discrepancy for interconnect is
142%, while the average and median discrepancy are 46% and
39%. The maximum discrepancy for registers is 72%, while
both the average and median discrepancy are 39%. The largest
discrepancy for interconnect occurs again when the stress ratio
is close to 1. The explanation is the same as in the case for
execution units. The discrepancy for the number of registers
is much less dependent on the stress ratio.

Although the discrepancy is still relatively small, it is not
as impressive as in the case of execution units. The higher
discrepancy between the min-bounds and the actual cost for
interconnect and registers is partially due to the fact that the
used scheduler pays more attention to execution units than
to the two other hardware components, because the execution
elements have a higher implementation cost. We have already
stated that the register optimization is also the more difficult
problem.

RABAEY AND POTKONJAK: ESTIMATING IMPLEMENTATION BOUNDS

D. Other Relaxation Approaches

The number of different relaxations that can be introduced
to simplify the high-level synthesis scheduling problems is
almost unlimited. A large number of scheduling problems are
indeed known to be of a polynomial complexity. Of course, the
most interesting ones are those that offer a good compromise
between accuracy and run time. We will briefly discuss three
other approaches: relaxing on the constraints that operations
should be scheduled on integer times, ignoring all edges that
violate certain graph properties, and ignoring the fact that the
operation execution should be nonpreemptive.

The first approach (and also the most promising one) is
based on the fact that the scheduling, resource allocation, and
assignment processes can be formulated as integer programs
[45]. Although integer program solvers take exponential time
in the worst case (and are hence unapplicable for problems
of large size), linear programs can be solved in polynomial
time. Turning an integer program into a linear one corresponds
to relaxing on the integer starting time of the operations.
Although such a solution cannot be used in an actual design,
it can be employed to provide an accurate lower bound on the
execution time of a program, given the hardware resources
(the dual estimation problem). It is important to note that in
general, relaxation of integer constraints in integer programs
may sometimes result in a solution with a cost value that is
dramatically different from the real optima [42, Ch. IL.1.1,
in particular the example on p. 327] and therefore produce
bounds that are too optimistic.

The second approach is based on a result shown by Hu [20],
that the as soon as possible scheduling algorithm produces
the optimal solution when the computational graph has an in-
forest or out-forest structure. A graph can relaxed into this
particular format by removing all precedence edges that violate
this constraint. The quality of the prediction depends upon the
number of edges deleted and even upon the choice of the
edges (since many forest structures can be derived for a single
problem).

The third approach is derived from a max-flow based
algorithm for the optimal scheduling of J jobs on M ma-
chines, which was developed by Federgruen and Groenevelt
[12]. They assume that tasks can be scheduled in discon-
tinuous intervals, which is, of course, not the case in high-
level synthesis. It is possible, however, that the solution of
this relaxed problem may prove to generate accurate lower
bounds.

Finally, it is interesting to note that sometimes the addition
of extra constraints might result in a more tractable problem
formulation. Leung [36] succeeded to optimally schedule a
graph for which the execution times of the operations are
restricted to at most k values. His algorithm, which uses a
sophisticated dynamic programming approach, has a worst
case run time of O(n?**~1), where n is the number of
nodes in the graph. Although it is an impressive algorithmic
result, its actual application is limited to cases where £ is
small. Since this is often the case when the available time
approaches the critical path, this technique can be used to
produce sharper bounds for the estimation instances with large
stress ratios.

679

X0.cos(a) - X1.8in(a)

X0 : : X0.sin(a) + X1.cos(a)
X1

Fig. 15. Eight-point discrete cosine transform—computational graph.

VI. APPLICATIONS OF ESTIMATIONS IN HIGH-LEVEL
SYNTHESIS AND IN THE SYNTHESIS SYSTEM

The proposed techniques have been implemented and incor-
porated into the HYPER synthesis system, which is targeted
at the synthesis of high-performance, data-path-intensive real
time applications [6], [52]. Within HYPER, the complexity
estimation routines are used in numerous places, as will be
demonstrated in this section. Complexity estimation, however,
has a scope which rises beyond the confines of HYPER. Other
applications for which the presented techniques could be useful
are the areas of algorithm and design style selection, as well
system partitioning. A number of those applications will be
discussed with the aid of a simple example, an 8-point Discrete
Cosine Transform (DCT). The DCT is used in virtually all
video and image compression systems, such as those present
in HDTV and tele-conferencing. One form of the DCT is
shown in Fig. 15 [60]. The following paragraphs will discuss
the applications of estimation in a top-down fashion.

A. Algorithm and Architecture Selection

Often, various computational algorithms are available to
perform the same function. The optimality of an algorithm
depends upon the required throughput rate, the available input-
output and memory bandwidth, and the operation library
available. The results of the estimation process can help to
differentiate between different algorithms over a range of
implementation constraints. For instance, while an FFT might
require less multiplications than a DFT, the DFT can be
advantageous when spectral information is only required for a
limited frequency band or when memory is in short supply.

As another case consider the DCT example. An important
part of the DCT is a rotation of the input data, requiring
complex multiplications. It is well known [2] that the num-
ber of multiplications required for a complex multiplication
with a constant can be reduced by a reorganization of the
computation. In Fig. 16, it is shown that the reorganized
computational graph reduces the number of multiplications by
1 at the expense of an extra adder and an increased critical
path. In order to compare the two approaches, we have used the
proposed estimation techniques to compute the implementation
cost over the range of throughput speeds. For this and the
following examples, the cost is computed as the sum of
the minimum execution unit cost plus the minimal register
cost. The properties of the module library used are shown
in Table I. The results of the estimation process are shown

680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, JUNE 1994

TABLE I
SAMPLE RESOURCE UTILIZATION TABLE
Block Critical Cycles I0->+ +->*% + «
Path
Subgraph; c1 f1 1 2 2 3
Subgraphz co to 0 4 4 1
Subgraphs c3 t3 2 0 3 0
Total c=¢; 1=Xt; 2 4 4 3
Ar
focnCS8
Yr
Xi
o cost

xr 60.00
Yi 55.00
Xi 5000
r aso0]
t 40.00 ¥
35.00 ?1

Ai - Ar

T
30.00 —-!.‘1

T
25.00 i

[
20.00
1500

]
1000 —bs
10.00 20.00 30.00

Fig. 16. DCT: Cost comparision for traditional versus reconfigured complex
multiplictions.

in Fig. 16. It is interesting to notice that neither algorithm is
clearly better. Although the reorganized flow graph reduces
the number of (expensive) parallel multiplications by 3, the
increased critical path offsets this gain for certain throughputs.
These observations are extremely hard to come by using just
flow graph inspection.

Similarly, the estimation results can help to select between
architectural styles, such as general purpose programmable
versus custom programmable or hard-wired, time-shared inter-
connect versus a dedicated interconnect network or bit-serial
versus bit-parallel. Different architectures can be compared by
modifying both the hardware model and the available module
set.

B. Module Selection

Accurate estimation can help to improve the quality of the
module selection process, which selects between different al-
ternative versions of an execution unit present in the hardware
library. Traditional module selection tools [21] use the absolute
min-bound to estimate the cost of a given selection. Chu [7]
has demonstrated that the relaxed estimation can result in more
optimal selections.

The detailed description of how HYPER uses the presented
estimation techniques for the module selection problem is pre-
sented in [7]. We will limit our presentation here to illustration
of how accurate estimations can help in the module selection
process. Fig. 17 shows the effect on the implementation cost of
the DCT for the cases where a slower parallel-serial multiplier
is used and where a fully parallel multiplier is used. It can
be observed that the serial-multiplier solution only becomes
dominant for very large values of the available time. For very
small times, the parallel solution is obviously the only choice.
In the intermediate zone, both solutions are comparable, which

cost

60.00 ast
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00
5.00 T N

4

Fig. 17. DCT: Parallel versus serial multiplier.

TABLE 11
SPEED AND COST PROPERTIES OF SIMPLE MODULE LIBRARY
Speed Cost
Add/Subtract 1 1
Parallel Multiplier 2 8
Serial Multiplier 8 2
Register - 0.5

is somewhat predictable, since both multipliers have identical
Area-Speed products.

C. Transformations

Optimizing transformations are an essential component of
any synthesis environment. Pipelining, retiming, arithmetic
laws, and loop unrolling are typical examples of transforma-
tions that are often applied to improve the implementation
quality. The main questions arising in a transformation en-
vironment are what transformation to apply when and what
improvement can be expected? Once again, estimations can
help substantially to resolve these questions. As an example of
how estimations can aid the transformation process, consider
the retiming for resource utilization transformation [48]. This
transformation, based on a probabilistic iterative improvement
approach, uses estimations to both determine the cost-function
and hence the next move, as well as the optimal result and
its distance from it. A detailed description of how several
transformations for throughput, area, and power optimization
are using estimations in HYPER can be found in [47], [4].

The HYPER strategy for the ordering of transformations
involves using the Resource Utilization Table as the global
view of the quality of the current flow graph and as a guideline
of which transformations to apply next. The table is obtained
from the estimation tool and lists the bounds on the resources
over time. Since the flow graph is hierarchical, the table is also
constructed in a hierarchical fashion: a subgraph is represented
at the next higher hierarchy level by its global min and max
bounds. A sample table is shown in Table II.

The overall design space search using transformations and
estimations can now proceed as follows: First, the critical path
is analyzed to check if the graph meets the performance re-
quirements. If not, performance transformations (which target
critical path reduction) are applied. After each transformation,

RABAEY AND POTKONJAK: ESTIMATING IMPLEMENTATION BOUNDS

original

110.00 pipelined

100.00
90.00

80.00

70.00 —
60.00
50.00 &
40.00
30.00

10.00

10.00 20.00 30.00

Fig. 18. Pipelined versus nonPipelined DCT cost.

the resulting flow graph is simulated and checked to assure
the word-length requirements are met. Next, the resource
allocation process is initiated [47]. The task of this process
is to come up with a minimum hardware configuration that
will meet the performance constraints.

The overall design space search process is executed under
the control of the search mechanism (which can be directly
influenced by the user or works using probabilistic search
mechanism). The search mechanism forms the core of the
system. Its task is to determine where to pipeline, which trans-
formations to apply on which subgraph, and what resources
to provide. The search is driven by information from the
resource utilization table, as obtained by estimation routines.
Most often, subgraphs that dictate values for various resources
are targeted using transformations that relax demand on those
resources. For example, if we want to reduce the number of
multipliers used in the final implementation, it is obvious that
we have to address the Subgraph 1, either by allocating more
time for its execution or by invoking transformations that have
the potential to reduce the high demand for multipliers. For
a more detailed description of the transformation framework
based on estimation, see [51].

The DCT example is used again to illustrate how estimations
can be employed to select which transformations to apply in a
given situation. We compared the original version (Fig. 15)
with a pipelined version, where three pipeline stages were
introduced to increase the throughput. The estimated cost of
pipelined and nonpipelined versions is compared in Fig. 18.
The results demonstrate that the pipelined approach achieves
its goal of increasing the throughput, but also that over-
pipelining hurts: at lower speeds, adding pipeline stages only
adds extra registers.

D. Allocation, Assignment, and Scheduling

The derived minimum and maximum bounds delimit the
design search space, thus speeding up the hardware allocation
process. The minimum bounds can serve as an initial solution
for the search. We have experienced that this solution is often
very close to the final solution [49]. Information such as the
distribution of the parallelism plots or the distance between
the absolute and relaxed min-bounds can be used as a metrics
to select an optimizing transformation [51].

681

IMULATIO]

MODULE SELECTION

ESTIMATION SIMULATIO!

AUTO - ALLOCATION
LOOP & OPTIMIZATION
ALLOCATION | ASSIGNMENT
ULING TRANSFORMATIONS

HARDWARE MAPPING
_LAGER v

SWITCH LEVEL
SIMULATION

Fig. 19. The use of estimations in the standard design flow of HYPER.

When all automatic techniques fail, the direct feedback that
the estimation information provides the designer can help
to guide him or her through an interactive search process.
Fig. 19 shows a screen dump of the HYPER user interface.
The bounds are printed in the main window. The plots on the
left are the parallelism plots for the execution units, registers,
and interconnect, respectively. The example shown here is the
7th-order IIR filter discussed previously.

Estimation can also help to improve the quality of assign-
ment and scheduling algorithms. For instance, the HYPER
scheduler uses a relaxed scheduling as a heuristic to select a
candidate node in a list scheduling process [49].

E. Synthesis Algorithm Validation

Most of the problems in high-level synthesis (such as
allocation, assignment, and scheduling) have been proven to
be at least N P-complete. As a result, it is hard to judge
the quality of a proposed synthesis algorithm. Typically,
benchmarks examples are used as a means to establish the
performance of a technique. However, algorithms can be over-
tuned to one particular benchmark (“the fifth order elliptical
filter” syndrome). Furthermore, comparing algorithms against
a particular benchmark establishes a relative measure, but
it does not result in an absolute idea of the quality of the
solution. Short of actually determining the optimal solution
(which is virtually impossible for complex applications), the
best approach is to estimate that optimal solution as accurately
as possible. The proposed min-bound estimation techniques
present a means to achieve this goal.

F. The Use of Estimations in the HYPER
High-Level Synthesis System

As we have already outlined, estimations are an essential
part of several HYPER high-level synthesis tools: allocation,
assignment and scheduling, transformations, and module and

682 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 6, JUNE 1994

clock selection. Although the design flow in HYPER is not
fixed and can be directly influenced by the designer, a pre-
defined (standard) design flow is also available. The HYPER
design flow is shown in Fig. 19. The shaded tasks directly
use estimations of min and max bounds. Estimations routines
are also used explicitly for providing feedback about design
characteristics to the designer.

VII. FUTURE WORK

As demonstrated with the benchmark examples, the relaxed
estimation techniques tend to be rather accurate. The average
error is approximately 10%. Sometimes, the predicted bounds
are too optimistic and estimation errors of up to 67% can
be observed. This is typically the case when the available
time approaches the critical path. Partly, this is a consEquence
of graph properties becoming very constrained, making the
relaxation approach overly simplistic. Getting more precise
information by using deterministic approaches of greater com-
plexity would, however, defeat the goal of the estimation
approach, which is to get accurate results fast. This eliminates
all approaches with a complexity larger than O(N?).

One way to get more precise results without extra computa-
tional complexity is to use a statistical approach. The results of
the deterministic estimation process can be used as parameters
in a statistical model, obtained through the analysis of a large
number of examples, which span the complete design space.
This approach does not result in bounds, but in an estimation of
the location of the actual solution. Early experiments (over the
same benchmark set as used above) indicate that an average
error of 4.6% can be obtained with the maximum error equal
to 18.7%. An extended research effort in this direction is
currently under way.

We are also studying the use of the relaxation approach for
the estimation of background memory bounds. These results
will be extremely useful in the memory module selection,
memory partitioning, and transformation for memory opti-
mization processes.

Finally, the reader might have observed that the majority
of the estimation techniques presented focus on the com-
putational part of the implementation. This is justifiable for
high-performance, real time applications where memory and
data paths dominate the chip area. This is not the case,
however, for control-dominated applications. Some results in
this area have already been reported in [41].

VIII. CONCLUSION

A library of techniques to efficiently and accurately estimate
the minimum and maximum bounds on the implementation
cost of an application specific circuit have been presented. All
algorithms have a complexity not larger than quadratic and
the observed results on our benchmark set display an average
error of approximately 10%.

We have demonstrated the application of the techniques
in a variety of design synthesis areas such as design space
exploration, transformation selection, and synthesis algorithm
evaluation. It is the authors’ belief that the major impact
of estimation techniques will be in the higher levels of

the synthesis process, such as algorithm and design style
selection as well as design partitioning. It is our conviction
that estimation will be one of the essential components in the
system designer’s tool-box.

ACKNOWLEDGMENT

The authors would like to thank Lisa Guerra for her helpful
comments.

REFERENCES

[1] U. Banerjee et al., “Time and Parallel Processor Bounds for Fortran-like
Loops,” IEEE Trans. Comput., vol. 28, no. 12, pp. 660670, 1979.

[2} R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading,
MA: Addison-Wesley Publishing Co., 1985.

[3] F. Brewer and D. D. Gajski, “Chippe: A System for Constraint driven
Behavioral Synthesis,” IEEE Trans. Computer-Aided Design, vol. 9, no.
7, pp. 681-695, 1990.

[4] A.Chandrakasan, M. Potkonjak, J. Rabaey, and R. Brodersen, “HYPER-

LP: A Design System for Power Minimization Using Architectural

Transformations,” inProc. IEEE Int’l Conf. on Computer-Aided Design,

Santa Clara, Nov. 1992, pp. 304-308.

X. Chen and M. L. Bushnell, “A Module Area Estimator for VLSI

Layout,” inProc. 25th Design Automation Conf., Anaheim, June 1988,

pp. 54-59.

C. Chu et al., “HYPER: An Interactive Synthesis Environment for High

Performance Real Time Applications,” in Proc. IEEE Int’l Conf. on

Computer Design, Nov. 1989, Boston.

[7} C. Chu, “Hardware Mapping and Module Selection in the HYPER
Synthesis System,” Ph.D. Thesis, University of California, Berkeley,
May 1992.

[8] R.J. Cloutier and D. E. Thomas, “The Combination of Scheduling, Al-
location, and Mapping in a Single Algorithm,” in Proc. 27th ACM/IEEE
Design Automation Conf., June 1990, Orlando, FL, pp. 71-76.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms. Cambridge, MA: MIT Press; New York: McGraw-Hill,

1990.

M. Davio, J.-P. Deschamps, and A. Thayse, Digital Systems with

Algorithm Implementation, John Wiley & Sons, 1983.

F. Depuydt, G. Goossens and H. De Man: “Clustering Technique for

Register Optimization during Scheduling Preprocessing,” Proc. IEEE

International Conference on Computer-Aided Design, Santa Clara, pp.

281-284, November 1991.

A. Federgruen and H. Gronewelt, “Preemptive scheduling on uniform

machines by ordinary flow techniques,” Management Sci., vol. 32, pp.

341-349.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. New York: W. H. Freeman and

Co., 1979.

M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. New

York: Academic Press, 1980.

E. Gyrczyc, “Automatic Generation of Microsequenced Data Paths to

Realize ADA Circuit Description,” Ph.D. Thesis, Carleton Univ., 1984,

J. W. Hagerman, “A Fast and Accurate Technique for Function Unit

Allocation Estimation,” Tech. Rep. CMUCAD-91-28, Camegie Mellon

Univ., April 1991.

D. L. Hanson, “Interconnection Analysis,” in Physical Design Automa-

tion of Electronic Systems, B. T. Preas and M. J. Lorenzetti, Eds., pp.

31-64, 1988.

P. Hiedelberger and S. Lavenberg, “Computer Performance Evaluation

Methodology,” IEEE Trans. Comput., vol. 33, no. 12, pp. 1195-1220,

1984.

D. S. Hochbaum and D. B. Shmoys, “Using Dual Approximation

Algorithms for Scheduling Problems: Theoretical & Practical Research,”

JACM, vol. 34, no. 1, pp. 144-162, 1987.

T. C. Hu, “Parallel Sequencing and Assembly Line Problem,” Opera-

tions Research,, vol. 9, pp. 840-844, 1961.

R. Jain et al., “Module Selection for Pipelined Synthesis,” in Proc. 25th

ACMIIEEE Design Automation Conf., June 1988, Anaheim, CA, pp.

542-547.

R. Jain, “High-Level Area-Delay Prediction with Application to Be-

havioral Synthesis,” Tech. Rep. 89-23, Univ. of Southern California,

1989.

[5

{6

[10]

{11]

(12]

(13]

[14]
[15]

(16]

17

[18]

{19]

[20]

[21]

[22]

RABAEY AND POTKONJAK: ESTIMATING IMPLEMENTATION BOUNDS

[23]

[24]

[25]

[26]

[27)

{28]

{29]
[30

[31]

[32]

(33]

(34}

[35]

[36]

{371

[38]

(391

[40)
[41]
(42]

(43}

(44]

[45)

[46]

R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for experimental design, measurement, simulation, and modeling. New
York: John Wiley & Sons, 1991.

N. Jouppi and D. Wall, “Available Instruction-Level Parallelism for
Super-Scalar and Super-Pipelined Machines,” in Proc. 3rd Int’l Conf.
Architectural Support for Programming Languages and Operating Sys.,
Boston, MA, May 1989, pp. 272-28.

D. W. Knapp, “Feedback-Driven Datapath Optimization in Fasolt,”
Proc. IEEE Int'l Conf. on Computer-Aided Design, Nov. 1990, Santa
Clara, CA, pp. 300-303.

D. W. Knapp and A. C. Parker, “The ADAM Design Planning Engine,”
IEEE Trans. Computer-Aided Design, pp. 829-846, 1991.

D. W. Knapp, “Fasolt: A Program for Feedback-Driven Data-Path
Optimization,” JEEE Trans. Computer-Aided Design, vol. 11, no. 6, pp.
677-695, 1992.

D. Kuck, Y. Muraoka, and S. Chen, “On the Number of Operations
Simultaneously Executable in Fortranlike Programs and their Resulting
Speed-up,” IEEE Trans. Comput., vol. 21, no. 12, pp. 1293-1310, 1972.
K. Kucukcakar and A. C. Parke, “BAD: Behavioral Area-Delay Predic-
tor,” Tech. Rep. 90-31, Univ. of Southern California, 1990.

K. Kucukcakar and A. C. Parker, “CHOP: A Constraint-Driven System-
Level Partitioner,” inProc. 28th ACMIIEEE Design Automation Conf.,
June 1991, San Francisco, CA, pp. 514-519.

S. Y. Kung, VLSI Array Processors. Englewood Cliffs, NJ: Prentice-
Hall, 1988.

F. J. Kurdahi and A. C. Parker, “PLEST: A Program for Area Esti-
mation of VLSI Integrated Circuits,” in Proc. 23rd ACM/IEEE Design
Automation Conf., June 1986, Las Vegas, NV, pp. 467-473.

F. J. Kurdahi, “Area Estimation of VLSI Circuits,” Ph.D. Thesis, Univ.
of Southern California, 1987.

F. Kurdahi and A. Parker, “Technique for Area Estimation of VLSI
Layouts,” IEEE Trans. Computer-Aided Design, vol. 9, no. 9, pp.
938-950, 1990.

F. J. Kurdahi and C. Ramachandran, “LAST: Layout Area and Shape
Function EsTimator,” in Proc. Ist European Design Automation Conf.,
Feb. 1991, pp. 351-355.

J. Y-T. Leung, “On Scheduling Independent Task with Restricted
Execution Times,” Operations Research, pp. 163—171, 1982.

M. Lightner and W. Wolf, “Experiments in logic optimization” in Proc.
IEEE Int'l Conf. on Computer-Aided Design, Nov. 1988, Santa Clara,
CA, pp. 286-289.

M. C. McFarland, “Reevaluating the design space for register-transfer
hardware synthesis,” in Proc. IEEE Int'l Conf. on Computer-Aided
Design, Nov. 1987, Santa Clara, CA, pp. 262-265.

M. C. McFarland and T. J. Kowalski, “Incorporating Bottom-Up Design
into Hardware Synthesis,” IEEE Trans. Computer-Aided Design, 1990,
pp. 938-950, vol. 9. no. 9.

C. Mead and L. Carver, Introduction to VLSI Systems. Reading, MA:
Addison-Wesley, 1980.

M. J. Mtinar, “Control Path/Data Path Tradeoffs in VLSI Design,” Tech.
Rep. 91-16, Univ. of Southern California, 1991.

G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Opti-
mization. New York: John Wiley & Sons, 1988.

A. Nicolau and J. Fischer, “Measuring the Parallelism Available for
Very Long Instruction Word Architecture,” IEEE Trans. Comput., vol.
33, no. 11, pp. 968-976, 1984.

P. G. Paulin and J. P. Knight: “Force-Directed Scheduling for the
Behavioral Synthesis of ASIC,” IEEE Trans. Computer-Aided Design,
vol. 8. no. 6, pp. 661-679, 1989.

C. Papadimitriou and K. Steiglitz, Combinatorial Optimization. Engle-
wood Cliffs, NJ: Prentice-Hall, 1982.

M. Pedram and B. Preas, “Accurate Prediction of Physical Design
Characteristic for Random Logic,” in Proc. IEEE ICCD Conf., 1989,
Boston, MA, pp. 100-108.

[47]

(48]

[49]

(501

(51]

(52]

[53]

[54]

[55]

(561

1571

(58]

1591

[60

=

[61]

{62]

[63]

683

M. Potkonjak, “Algorithms for High Level Synthesis Resource Utiliza-
tion Based Approach,” Ph.D. Thesis, Univ. of California at Berkeley,
1991 .

M. Potkonjak and J. Rabaey, “Optimizing the Resource Utilization
Using Transformations,” in Proc. IEEE Int'l Conf. on Computer-Aided
Design, Nov. 1991, Santa Clara, CA, pp. 88-91.

M. Potkonjak and J. Rabaey, “Scheduling Algorithms for Hierarchical
Data Control Flow Graphs,” to be published in the Special Issue on
“Fundamental Methods in CAD,” Int’l J. Circuit Theory and Appl.

S. R. Powell and P. M. Chau, “Estimating Power Dissipation of
VLSI Signal Processing Chips: The PFA Technique,” in VLSI Signal
Processing 1V. New York: IEEE Press, H. S. Moscovitz, K. Yao, and
R. Jain, Eds., pp. 250-259, 1990.

J. Rabaey and M. Potkonjak, “Resource Driven Synthesis in the HYPER
System,” in Proc. IEEE Int’l Symposium on Circuits and Systems 1990,
May 1990, New Orleans, LA, pp. 2592-2595.

J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast Prototyping
of Data Path Intensive Architectures,” IEEE Design & Test Mag., pp.
40-51, June 1991.

S. Sastry and A. C. Parker, “Stochastic Models for Wireability Analysis
of Gate Arrays,” IEEE Trans. Computer-Aided Design, , vol. 5, no. 1,
pp. 5265, 1985.

C. Shung et al., “An Integrated CAD System for Algorithmic Specific IC
Design,” IEEE J. Computer Aided Design, vol. 10, no. 4, pp. 447-463,
April 1991.

B. Simons, “On Scheduling with Release Times and Deadlines,” in
Deterministic and Stochastic Scheduling. M. Demster, Ed., Dordrecht:
D. Reidel, pp. 75-88, 1981.

M. Smith, M. Johnson, and M. Horowitz, “Limits on Multiple Instruction
Issues,” in Proc. 3rd International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Boston, pp.
290-302, May 1989.

A. Stoelzle er al.: “A Flexible VLSI 60,000 Word Real Time Continuous
Speech Recognition System,” in Proc. [EEE Workshop on VLSI Signal
Processing, Nov. 1990, pp. 247-284.

K. Ueda, H. Kitazawa, and 1. Harada, “CHAMP: Chip Floor Plan for
Hierarchical VLSI Layout,” IEEE Trans. Computer-Aided Design, , vol.
4, no. 1, pp. 12-22, 1985.

J. Ullman, Computational Aspects of VLSI. Rockville, MD: Computer
Science Press, 1984.

M. Vetterli and A. Lichtenberg, “A Discrete Fourier-Cosine Transform
Chip,” IEEE J. Selected Areas Commun., vol. 4, no. 1, pp. 49-61, Jan.
1986.

J. Weng and A. C. Parker, “3D Scheduling” in Proc. 28th ACM/IEEE
Design Automation Conf., San Francisco, CA, pp. 668~673, June 1991.
A. C-H. Wu, V. Chaiyakul, and D. D. Gajski, “Layout-Area Models
for High-Level Synthesis,” in Proc. IEEE Int'l Conf. Computer-Aided
Design, Nov. 1991., Santa Clara, CA, pp. 34-37.

G. Zimmerman, “A New Area and Shape Function Estimation Technique
for VLSI Layouts,” in Proc. 25th ACM/IEEE Design Automation Conf.,
Anaheim, CA, pp. 60-65, June 1988.

Jan M. Rabaey, photograph and biography not available at the time of
publication.

Miodrag Potkonjak, photograph and biography not available at the time of
publication.

