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Abstract— This paper introduces a new approach to
performance-driven template mapping for high-level synthesis.
Template mapping, the process of mapping high-level algorithmic
descriptions to specialized hardware libraries or instruction
sets, involves template matching, template selection, and clock
selection. Efficient algorithms for each are presented, and novel
issues such as partial matching are addressed. The paper focuses
on datapath-intensive ASIC design, though the concepts are
also highly applicable to compiler development. Experimental
results on examples from real applications show significant
improvements in throughput with limited area overhead.

I. INTRODUCTION

A. Performance Optimization Using Template Mapping

S A RESULT of the increase in demand for high-

speed integrated circuits, there is an increasing need
for synthesis tools targeted toward performance optimization.
Techniques for throughput improvement can also be used to
achieve other goals. For example, in an ASIC design with
fixed throughput constraints, optimizing to reduce the critical
path can enable voltage scaling to reduce power [1].

One task in the high-level synthesis and compilation pro-
cesses with great potential for improving performance is tem-
plate mapping. In template mapping, at the behavioral level,
groups of primitive operations are replaced with more complex
and powerful operations. At the architectural level, complex
units are used in place of primitive ones. The more complex
execution units can represent special purpose hardware, or
they may represent chained units. Specialized hardware units
are often designed to implement common operations (e.g.,
multiply-add) and are often optimized for low area, power,
or delay. Chaining [2], the removal of intermediate registers
between primitive hardware units, can improve the total delay
of the units combined.
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Interestingly, template mapping in high-level synthesis has
received little attention while the parallel task at the logic
level, technology mapping, was recognized [3] and thoroughly
studied early in the development of logic synthesis. One reason
may be that while many of the same concepts apply, significant
differences, such as the use of hardware sharing in high level
synthesis, dramatically complicate the relationship between
design metrics such as throughput and area. In logic synthesis,
this relationship is significantly more direct.

One of the main intentions of this paper is to give im-
petus to the exploration of template mapping’s potential for
performance improvement and to demonstrate its importance
in the synthesis process. The paper presents an approach
for performance-driven template mapping. Algorithms for
detecting the possible matches (template matching) and the
selection of a subset of these to cover the graph are presented.
While template matching on general cyclic graphs is itself
known to be difficult [4], the problem is further complicated
when partial matching (Section II-A-3) is considered. The
algorithms presented overcome the complexity of the problem
by using a novel representation of the solution space which
does not require enumerating graph isomorphisms, and yet
represents the complete space. Using this representation, high
quality graph transformations can be obtained in an efficient
manner. In addition to matching and selection, the algorithms
implement a method for selecting the optimal clock frequency.
These algorithms are sufficiently modular so that they can be
used as platforms for investigating other optimization targets
(e.g., area and power).

B. Motivational Examples

Fig. 1(a) shows a simple computational structure repre-
sented by a control/data flowgraph (CDFG) [5]. Associated
with each edge in the CDFG is a delay of 5 ns for accessing
the register implied by the edge. Originally, the operations
in the CDFG are each implemented by using primitive adder
units. The optimal clock period (in terms of speed) for this
implementation is 45 ns. For this clock period, the additions
complete execution in one clock cycle (5 ns to access register
operands +40 ns to execute).

The template shown represents a 3-input adder (or two dual-
input adders chained together). By replacing the primitive
additions in the CDFG with the template and adjusting the
clock period, the total execution delay is improved from
180 ns to 110 ns. It is important to note that had the
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Fig. 1. Motivational examples. (a) Delay improves by 70 ns, but only if the clock period is selected properly. (b) Delay is improved and the CDFG

is simplified (to contain only one type of operation).

clock period remained unchanged, the delay would not have
improved (since each of the 3-input adders would require
two clock cycles to execute). This fact demonstrates the
importance of proper clock selection. Also note the fact that
before optimization, only a single dual-input adder is required
to implement the complete graph (since all additions occur
sequentially). After optimization, a 3-input adder must be
allocated. Since it can be assumed that the 3-input adder
requires more area than the 2-input adder, it is likely that the
total active area (execution units, registers, multiplexors) will
increase. This demonstrates the important tradeoff between
area and performance inherent in template mapping.

Fig. 1(b) shows a slightly more complex example. The
template represents an accumulator with a multiplier at its
output. At first glance, it seems that the template matches the
graph in only one place. However, if the input of the multiplier
in the template is set to one, the output of the multiplier is
equivalent to the adder output. This means that the multiplier
can effectively be treated as a bus. In this way, the template
partially matches the second half of the graph. While this
second match does not affect the total throughput, the CDFG is
simplified so that it contains only one operation, the operation
represented by the template. In this way, area can be saved by
allowing the same hardware to be reused.

While these examples are relatively simple, they demon-
strate the potential of template mapping and some of its
complexities.

C. Previous and Ongoing Research

Although template and pattern matching are addressed
in many branches of science and numerous engineering
fields [6]-[8], this section restricts its attention to compiler,
computer-aided design (CAD), and high-level synthesis work.

While the first attempts to apply template matching to
compilers were done in the early Seventies [9], [10], the
major impetus for the widespread use of pattern matching
was a result of a code generation scheme suggested by

Hoffman and McDonnel [11]. They proposed that pattern
matching could be implemented efficiently using tree-pattern
matching by extending the Aho and Corasick multiple-key-
word algorithm for template matching [12]. The importance
of template matching in compilers has become most apparent
recently with the rapid growth of the digital signal processor
(DSP) industry. This market is dominated by architectures
designed to match common features of DSP algorithms. A
major failing of today’s DSP compilers is their inability to
explore these special instructions effectively [13], [14]. For the
same reason, pattern matching is also an essential part of any
retargetable compiler for application specific signal processors
(ASSP’s).

Pattern matching has also become an integral part of logic
synthesis. IBM pioneered some of the first work in technology
mapping for logic synthesis using a heuristic application of
local transformations [15]. SOCRATES [16] addressed the
same problem using a rule-based approach. More recently,
based on the suggestion in [17] that compiler techniques can
be transferred to CAD, Keutzer [3], [18] presented an efficient
technique using the tree-processing language Twig [19] (which
is based on the tree-pattern matching method in [19], [20]).
Currently, several algorithms for logic synthesis technology
mapping based on the fast tree dynamic programming tech-
niques are widely used [3], [21], [22]. Technology mapping
techniques using binary decision diagrams and Boolean alge-
bra laws have also been proposed [23]. With the proliferation
of programmable gate arrays, several mapping algorithms to
both table look-up [24], [25] and multiplexor architectures [26]
have been developed.

Pattern matching has been recently recognized as an impor-
tant and powerful method for area optimization at higher levels
of abstraction. The IMEC high level synthesis group was one
of the first to attempt pattern matching in high-level synthesis
by addressing issues of application specific functional units
[271, [28] using integer linear programming technology [29].
More recently, Landwehr er al. used a 0/1 integer linear
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programming model to solve the scheduling, allocation, and
binding problems in high level synthesis taking into account
multifunctional units and chained operations [30]. Rao and
Kurdahi proposed the use of template matching within a
framework of regularity extraction for addressing partitioning,
scheduling, and allocation in high level synthesis [31], [32].
Chu and Rabaey used a simulated annealing based template
matching method for optimizing area and clock period [33].
The functionality recognition problem in component selection
(a gray area between high-level synthesis and logic synthesis)
was addressed using pattern matching by Rundensteiner et al.
[34], Ang and Dutt [35], Praet er al. [36], and Lanneer et al.
[37].

The research presented in this paper not only addresses
a novel goal (performance optirnization), but also provides
novel techniques for removing some of the limitations of
the previously mentioned CAD and compiler approaches.
These techniques include incomplete pattern matching and the
matching of cyclic graphs of an arbitrarily general structure. In
addition, methodologies are presented for selecting clock peri-
ods optimally and efficiently. Since the approaches presented
in the following sections separate the template matching and
template selection tasks, the proposed algorithms can be easily
extended for use in many compiler and CAD domains.

II. SYNTHESIS ALGORITHMS

Before presenting the synthesis algorithms, a few terms
should be clarified. Operators represent either primitive or
complex functions, the later being formed by combinations
of the former, and described by a graph called a template.
A hardware unit is the physical device used to execute
a particular function. As an example, a carry-look-ahead or
carry-select adder can implement addition. Similarly, a carry-
save multiplier followed by a carry-select adder implements
the complex function of multiply-add. A particular function
can clearly be implemented by any one of several different
hardware units. For the algorithms described, however, it is
assumed that for each function, or operator (whether primitive
or complex), one specific hardware unit has been selected for
its realization.

The template mapping algorithm can be divided into three
major components: template matching, template selection, and
clock selection, as shown in Fig. 2. Template matching, the
central problem in template mapping, refers to the matching
of templates representing complex operators to a CDFG,
consisting of only primitive operators. In general, the tem-
plates are obtained by one of three methods: 1) they are
given in the problem (as would be the case for compilers),
2) they are generated automatically by some algorithm, 3)
they are generated manually (as is the case for this paper).
Since the interpretation of the ternplates is application-specific,
template generation is not discussed here and, instead, it is
assumed that a template library is a given to this problem
(indeed, for compiler development, template generation is a
nonissue).

Template selection is the actual replacement of groups of
nodes in the graph with templates from the library according
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Fig. 2. Structure chart for the template mapping algorithms.

to matches generated by template matching. Templates are
selected so as to minimize the number of clock cycles in the
critical path.

Clock selection refers to the process of selecting a clock
period so that the real-time delay can be minimized. The clock
selection algorithm iteratively executes the template selection
algorithm so as to find an optimal solution (i.e., if we could
assume the template selection algorithm were exact, then we
would have the optimum clock selection solution).

The following sections describe each of these algorithms.

A. Template Matching

The fundamental difficulty in template matching lies in the
fact that the number of template matches can be quite large and
prohibitively expensive to enumerate. The proposed template
matching algorithm generates a compact representation of the
set of potential matches. It handles general graphs with cycles
and has polynomial time complexity.

1) Terminology: A few terms must be defined before pro-
ceeding. Nodes in the CDFG are referred to as graph nodes,
while nodes in the templates are referred to as template nodes.
Inputs and outputs from a template are referred to as template
ports.

A graph node z and a template node y in template ¢ are said
to have a node match between them if some group of nodes
in the CDFG including = can be replaced by ¢ such that y
replaces x. This node match can be represented by the 3-tuple
(z,u,t). The set of node matches for a given graph node is
referred to as its match list. A particular matching between
some set of graph nodes and an entire template is referred to
as a template match.

A node match m is said to have a (mutual) dependency on
a node match n if the graph node z,, matched by m is either
a parent or a child of the graph node z, matched by n. If z,,
is a child of z,,. then n is said to be a child dependent of m.
Similarly, if z., is a parent of z,,, the n is a parent dependent
of m. A dependency list is the list of dependencies of a node
match.

2) Template Matching by Relaxation: The output of the
proposed template matching algorithm is a match list for
each graph node. The total number of node matches for a
CDFG is polynomially bounded. In addition, enumerating
template matches often requires much more space than simply
enumerating node matches. This is a result of the fact that
more than one template match may contain the same node
match (e.g., in Fig. 3, there are three template matches with
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Fig. 4. Template and CDFG with match lists. The algorithm constructs an
initial match list and then iteratively strips away invalid matches.

two node matches each. However, there are only four node
matches total: (u,a,t), (v,b,1), (w,b,1), (x,b,1)).

To demonstrate the algorithm, consider the template and
CDFG shown in Fig. 4. The valid node matches to be found
by the algorithm are (u,a,t),(v,b,t), and (w, ¢, t).

The algorithm begins by generating initial node match lists
for each graph node z such that a template node y is placed
in the match list of x if and only if the following rules are
satisfied: :

1) z and y must be of the same type.

2) For each parent py of y, there must be a parent p, of =
of the same type and at the same input of y as z.

3) There must exist some pairing between children of z
and children of y such that for each child ¢, of y, there
must be a unique child ¢,, of x of the same type and at
the same output of z as y.

4) There must exist a similar pairing such that each child
of x is matched unless the corresponding output of ¥ is
connected to a template port.

The condition in Rule 4 relating to the template output ports
is necessary as can be seen from the following example. In
Fig. 4, assume that node w has a child » not shown. If this
condition were not in place, the template would not match
since there would be no template node matching r. Note also
that the pairing of children in Rules 3 and 4 can be easily cast
into the maximum bipartite matching problem, a well-solved
problem in computer science [38].

Using these rules, the initial match lists shown in Fig. 4 are
obtained. The next step in the algorithm is to generate a list
of dependencies for each match in each match list. For any
two node matches, m = (z1,y1,8) and n = (22, y2,t), if s

Template

a|D]| ()b

Fig. 5. Degenerate case. The relaxation approach alone would incorrectly
allow these invalid matches.

and ¢ are the same template, and graph node x; is a parent
or child of z,, then m and n must have dependencies on
one another (that is they satisfy the definition of dependency).
In the example, (u,a,t) and (v,b,t) have dependencies on
one another because b is a child of a. Similarly, (v, b,t) and
(w,c, t) also have dependencies on one another.

During the process of generating dependencies, the algo-
rithm detects and prunes invalid matches. Invalid matches are
determined by applying the above four rules with an additional
stipulation. When comparing parents and children of z and y,
they must not only have the same type (as specified in Rule
4), but they must be matched by node matches.

In Fig. 4, (z, ¢, t) is invalid since ¢’s parent b does not match
2’s parent w. (v,a,t) and (v,c,t) are similarly invalid. Note
in Rules 3 and 4 that the algorithm must verify not only that
a valid pairing exists, but also that there exists a valid pairing
containing every node match between the children.

The invalid matches are eliminated by a process of relax-
ation. In general, the term relaxation refers to an approach to
solving nondiscrete problems [39, Sec. 8.3-8.6]. Relaxation
algorithms generally begin with an initial guess for the so-
lution, and then iteratively improve the solution using local
optimization techniques until the result is sufficiently close to
the exact solution. The same concept can be used to solve
many discrete problems with the added benefit that an exact
solution can often be found. This technique applies nicely to
the problem of eliminating invalid matches. As each invalid
match is eliminated, its dependencies are checked to find
matches that have become invalid because of the elimination
(local optimizations). This process continues until all invalid
matches are eliminated. Since comparisons are always local
(i.e., only the parents and children of a node), this approach
can be viewed as a relaxation to solve the global problem of
invalid match elimination.

After the process is complete, invalid matches may still
remain. The example in Fig. 5 shows a typical degenerate case
where this may occur. The matches shown in the CDFG do
not violate any of the rules, and yet this template obviously
does not match. Such cases can be handled by a simple
postprocessing step. It can be observed that a particular
node match may have many descendant node matches which
match the same template node to more than one graph node.
However, the ancestors must match template nodes uniquely.
This results from the fact that commutativity is not directly
treated by the algorithm (if commutativity were treated, then
this algorithm would be a solution to the graph isomorphism



CORAZAO et al.: PERFORMANCE OPTIMIZATION

Template CDFG

/

+)

Fig. 6. Partial matching by unused resources.

problem, a well-known unsolved problem). Note that because
commutativity is not treated directly, a separate template must
be created for each commutative permutation of an algorithm
which is expected to occur in the CDFG (e.g., both the patterns
“a + b*¢” and “b*c 4+ @” may occur in a given CDFG even
though they are essentially the same algorithm). Because of
the uniqueness requirement for ancestor template nodes, the
degenerate node matches of the kind shown in Fig. 5 can be
eliminated by removing node matches which have ancestors
matching the same template node to more than one graph node.
All remaining node matches are valid.

The number of node matches generated by the algorithm is
bounded by the product of the size of the CDFG, the number
of templates, and the size of the templates. Since all steps in
the relaxation are local and the postprocessing step consists
of only one depth-first search for each node match, the time
complexity of the algorithm is polynomial with respect to the
number nodes in the original CDFG (and, in fact, has behaved
linearly for all test cases as shown in Fig. 13).

3) Partial Matching: The matches found by this simple
approach are complete matches. The approach can be extended
to include partial matches as well. These are cases in which
portions of the template remain unmatched. By using these
types of matches, the same operators can be used more
often allowing for higher resource utilization. Partial matching
techniques can be divided into two classes: partial matching
by unused resources, and partial matching by identities. These
are described in the following sections.

a) Partial matching by unused resources: This class of
partial matching stems from a relatively simple observation.
While each child of a graph node may need to be matched, no
child of a template node has to be matched (except as required
to match the children of the graph node).

Fig. 6 shows a simple example. By simply eliminating rule
3 from the basic algorithm described above, partial matches
by unused resources can be easily handled. The modified
algorithm, then, generates a solution which takes into account
all complete matches as well as all partial matches by unused
resources.

b) Partial matching by identities: This second class of
partial matching results from the observation that by setting
an input of an operator to a particular constant value, the
output of the operator becomes equivalent to the other input.
In this way, a node can be effectively short-circuited in the
CDFG. Mathematically, such a node is referred to as a neutral
element. Fig. 7 shows a typical example of this. While the
problem of finding partial matches is difficult in general, it
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can be made tractable by applying simple heuristics. Unlike
the case of complete matches, however, these heuristics cannot
be guaranteed to find all cases of partial matching.

The key to the algorithm is the concept of bypassability.
A template node is said to be bypassable on some input if
its output value can be set equal to this input by setting the
other inputs to constants without inducing side-effects. More
specifically, bypassing a template node y should not affect
any outputs of the template which are descendants of y. For
example, in Fig. 7, if node b were somehow connected to node
d, then node ¢ would no longer be bypassable on its second
input. By determining bypassability during preprocessing, it
is possible to check the validity of node matches involving
partial matching by identities without having to consider all
the nodes in the templates (which would make the algorithm
quite inefficient).

Two other heuristics are used, as well, to obtain efficient
operation. First, during preprocessing, only one bypassable
input should be selected for each template node. This simplifies
many steps in the matching process. Second, during postpro-
cessing, node matches must be checked to ensure that no node
can be both bypassed and matched in the same template match.

The entire template matching algorithm can be implemented
as a polynomial time algorithm which has been found to be
reasonably efficient in practice.

B. Template Selection

Given that the node matches for each node have been found
by the template matching algorithm, template matches can be
constructed to replace groups of primitive operators (nodes in
the CDFG) with more complex operators (represented by the
templates). The template selection phase of the algorithm gen-
erates a cover for the original graph which optimizes the delay
critical path length. The cover contains nodes representing both
primitive operations and more complex operations represented
by the templates. The complete template selection algorithm is
summarized by the following pseudocode. The details of the
algorithm are described in the following sections.

while critical path improves and there are node matches
left, do
Evaluate min/max completion times of all nodes
S+ set of e-critical nodes
Chuin — 0.
for each v € S, do
for each node match m of v, do
M « optimally constructed template
match containing m
C « cost(M)
if C < Cpn, then
Mopt — M
Replace graph nodes in M,,¢ with template
Mopt
Remove invalid matches resulting from placing
Mopt '
if critical path increases or M, introduces a
combinatorial cycle, then
Restore the CDFG
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Fig. 7. Partial matching by identities.

1) e-Critical Network: Although the critical path is the
optimization target, optimizing nodes in critical paths only is
ill-advised since the critical paths change as nodes are replaced
by templates. A common means by which to overcome this
difficulty is to use the concept of the e-critical network [40].
The set of nodes lying in paths having lengths within some
empirically derived constant £ of the critical path length (a
value of approximately 0.1 was found to give the best results
for our benchmarks). These nodes presumably are those which
are likely to become critical as well as those that already
are. The epsilon-critical network is calculated in a manner
similar to calculating critical paths using a modified version
of Dijkstra’s shortest path algorithm [41]. In this way, global
information can be taken into account with no significant loss
in computation time.

2) Construction of a Template Match: Using the match
lists generated by the template matching algorithm, it is
possible to construct any valid template match. Nodes in
the e-critical network are used as seed nodes for template
match construction. The goal is to construct optimal template
matches which contain node matches corresponding to seed
nodes.

Starting with a given node match, a template match is
constructed by recursively collecting other node matches from
the dependency lists. Since the dependency list of a node
match may match a particular graph node or template node
more than once, the following rules must be applied during
template match construction.

Assume there exists a node match m = (z,y,t) which
matches graph node z to template node y, and is already in
some unfinished template match construct.

1) If some match n is a parent dependent of m, then n

must be in the construct.

2) For each output o of z, if the corresponding output of

y is not connected to a template output port, then for
every child ¢ of z connected to o, there must be a node
match 7 in the construct which is a dependent of m and

matches c.
3) Assume the construct contains node matches
ni,ng,ns, - +,ng which are child dependents of

m and whose graph nodes are connected to output
o of x. Then n which is a similar child dependent
of m with its graph node connected to output o, can
only be included in the construct if there exists a

pairing of children of = and y which utilizes matches
n1,N2,N3, +, Nk and n.

4) Any node match n which matches z or y cannot be
added to the construct.

These rules do not necessarily uniquely determine the
template match to be constructed for a given node match.
Specifically, a node match m, defined as above, may have
more than one dependency which matches the same child of
x or y. The proposed algorithm uses the following heuristic
rules for selection of node matches among the children. Given
a node match m defined as above

1) if two dependent node matches n; and ny of m match
the same graph node z, the choice between n; and n,
is arbitrary;

2) if two dependent node matches ny and ny of m match
the same template node y but different graph nodes, the
node match whose graph node has a smaller match list
is favored.

The second rule is based on the observation that the fewer
node matches a given graph node has, the less likely it is that
this node will be covered by a template if not included in
the current template. The first rule was judged to be adequate
simply because at this level, it is impossible to be sure which
match would give a better solution and since most template
matches are small, they are probably equal.

3) Selection of the Best Template Match: Template matches
are constructed to cover the entire e-critical network. From
these an optimal template match is selected which is most
likely to reduce the total execution delay. The e-critical
network is then recomputed and a new set of template matches
is constructed. This process continues until the delay can no
longer be improved. Note that delays are measured in terms
of the number of clock cycles.

The key to this algorithm, then, is to select template
matches which improve the critical path length the most. Once
constructed, the optimal template match is selected using the
cost function given in (1) (note that empirical constants are
omitted for simplicity)

Cost 1— e—((M/N/)M) "
OS = - T .
Olact, + (1 - O‘)Zth

The form of the numerator (1 — e~®) was selected heuris-
tically to obtain a value in the range 0 to 1. The numerator
term itself represents the degree to which using the specified
template match will disallow other (possibly better) template
matches (close to 0 represents few node matches are covered;
close to 1 represents far more than average are covered). M
represents the total number of node matches for all graph nodes
covered by the template match. NV represents the number of
graph nodes in the template match. M represents the average
number of node matches per node in the CDFG.

The denominator term represents the degree of improvement
in the delay locally from replacing the primitive nodes with
the complex operator represented by the template. o represents
the fraction of nodes in the e-critical network which represent
complex operators (i.e., places where primitive operators have
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Fig. 8. Calculation of cost function parameters. Assume one clock cycle for
each operation.

already been replaced by complex operators). ¢,cc and iz,
represent the actual and theoretical improvements locally
expected to be gained from replacing the primitive operators
with the more complex operator represented by the template.
More specifically, we wish to incorporate both the actual
immediate improvement in the total delay (which can be
obtained by using the complex operator) and the improvement
which could theoretically be obtained if all the inputs are ready
at the same time (which could occur later as template matches
are placed). The rationale behind the weighting by « is that
initially, when most nodes in the CDFG have not yet been
covered, the arrival times of the inputs to an operator are highly
uncertain as the CDFG may change dramatically. Therefore, it
is important to consider the potential theoretical gains. When
most of the CDFG is covered by complex operators, however,
the theoretical improvements no longer apply since the CDFG
is not likely to change much more.

These improvements ¢, and 7, are computed as shown in
(2) and (3). Note that these definitions are somewhat arbitrary,
but were selected because of certain valuable properties. More
specifically, ¢,¢ tends to be negative if any (not just the latest
finishing) output finishes later using the complex operator than
with primitive operators

Adye
fact = —dmint 2)
. Ad
fgp = 3)

dmin 1s a theoretical calculation of the minimum possible delay
the graph nodes in the template match could have (this may
not be their actual delay in the CDFG since external delays
may delay somie nodes more than others). Ad, . is the number
of clock cycles by which the delay will locally improve (or
possibly get worse) by replacing the graph nodes with the
template. The actual value used is the sum of the amounts by
which the arrival times decrease at all template output ports.
Adyy, is a theoretical computation of the maximum amount of
time by which the delay could improve regardless of whether
it actually does. Fig. 8 shows an example of the calculation
of dminyAda,cm and Adthn
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Note that while Ad,, will always be positive (or else the
template should not ever be used), Ad,.; can be negative,
as it is in Fig. 8. Assume each node has a one clock cycle
delay as does the template. Originally the CDFG has a delay
of three clock cycles, but when the substitution is made in the
final cover, the total delay increases to four clock cycles. One
would expect, however, that the delay would decrease since the
template has a lesser delay than the two primitive operations
combined separately (as indicated by Ad). Indeed, if the
delays of the other paths in the CDFG can be shortened, then
it may actually be advantageous to use this template as shown
in Fig. 8 in the CDFG on the right.

If a selected template match in the CDFG actually does
worsen the critical path length, the algorithm reverts to the last
version of the CDFG and tries a few more template matches. If
after a few tries no improvement can be found, the algorithm
terminates.

C. Clock Selection

1) Minimal Iteration Method: The covering algorithm de-
scribed above can only be applied for a specific clock fre-
quency since the delays of the operators (and templates) must
be specified as integer multiples of the clock period. It is
readily apparent that selecting the proper clock is crucial to
obtaining the best performance [Fig. 1(a) and (b)]. It is also
apparent that the clock selection and graph covering cannot
be performed independently without sacrificing the quality of
the results. The clock selection for critical path optimization
problem can be defined in the following way:

Given a CDFG and a library of available hardware units
with their corresponding execution times, find a clock cycle
period which will result in a minimal critical path after the
application of an arbitrary, but given template selection algo-
rithm.

In order to improve the overall efficiency of the algorithms,
the following observations are used to limit the number of
frequencies considered.

1) Based on current and foreseeable technologies, it can be
assumed that a resolution of 1 ns for the clock period
is sufficient.

2) If clock period Ty, is the smallest clock period which
yields a delay of one clock cycle for all hardware units,
no clock period larger than T, can yield the least total
delay for the CDFG.

3) Since having all hardware units require multiple clock
cycles would yield an impractical implementation, no
such clock periods merit consideration.

Observation 1 gives the resolution of the range and Obser-
vations 2 and 3 give upper and lower bounds, respectively.
Observation 2 is easily proven by noting that for all clock pe-
riods larger than this bound, the delay is directly proportional
to the clock period. Note that in these observations there is
no direct assumption on the number of cycles a particular
operation will take.

The clock selection algorithm compares all possible clock
periods using a three-phase branch-and-bound strategy. The
algorithms use two initial pruning strategies based on the
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f

N\
Fig. 9. Template library. The templates shown comprise the template library
applied in all of the experiments (note that many of the diagrams shown
represent multiple templates based on the different possible input orderings
resulting from commutativity). In principal, larger templates could be used as

well, but generally with higher area penalties. The numbers on the inputs to
the subtractors indicate the input number.

following two observations:

1) Clock Multiple Elimination Strategy: A clock period of
length 7" can always yield a real-time delay critical path
at Jeast as short as that resulting from a clock period of
length & x T, where k is any integer > 1.

2) Inferior Clock Elimination Strategy: Given two clock
periods, 77 and 75, if 7% yields a shorter real-time
latency for all hardware units than 75, then the real-time
critical path for 77 is always better than for 75.

The first observation is easily shown by observing that if the
number of clock cycles for each node in the graph is multiplied
by k, the period can be reduced by k to obtain the same total
delay. The second is shown by observing that for any template-
matched cover, if all hardware units have a shorter real-time
latency for one clock period than for another, the sum of the
delays of those units on any path must be less for that clock
period. The reader may observe a possible consequence of
applying the first observation blindly. If clock periods 7" and
k x T both yield the same real-time delay, & x 7" is most likely
the better choice since larger clock periods usually have less
overhead. This fact is discussed below.

By applying these strategies to the set of possible clock
periods, the size of the set can be quickly and significantly
reduced. In particular, the second observation generally re-
duces the number of candidates to a very small number. It
should be noted that strictly speaking, these observations only
apply if the template selection (i.e., graph covering) is the
exact optimum result. Experimental results indicate that the
covering algorithm indeed consistently generates high quality
results so that these apply. It should be noted that by applying
the first observation, the algorithm does not consider the fact
that when two clock periods could yield the same performance,
the longer one is generally preferable. In order to alleviate this,
the lower bound on the clock period was set to the delay of
the fastest unit in generating the experimental results. This
change has only second-order effects on throughput, while it
preserves the small size of controller.

For the remaining candidate clock periods, a table is con-
structed of the execution times for each unit versus the clock
period. The covering algorithm (Section II-B) is run for each
clock period and the clock period yielding the minimum total
delay is selected as optimal. As a final postprocessing step,

given an optimal clock period T was found, multiples k& x T’
are tried starting at £ = 2 until £ x T yields a worse delay
than 7. The largest clock multiple of I which still has the
same delay as T (i.e., the largest optimal multiple of T') is
the final solution used. The reasoning behind this is that larger
clock periods generally have less overhead (area and power)
than smaller ones, and therefore, are more desirable whenever
possible. In our experiments, however, we have found that
k = 1 usually yields the only optimal solution.

The total clock selection “algorithm has been found to
increase the run-time complexity of the overall optimization
process by only a small constant multiple, regardless of the
size of the problem. As will be shown in the next section,
clock selection itself is quite useful for many applications,
even if template selection is not used.

III. EXPERIMENTAL RESULTS

The algorithms of Section II have been implemented as
part of the module selection facilities of the Hyper high-
level synthesis environment [5]. The benchmark set used
for testing and evaluation represents a variety of CDFG
structures. The designs include elementary functions (sqrt,
sine), linear controllers of various structures and numbers of
states (LinearCnSmat, LinearCn5ellip, LinearCntrl3), several
eighth-order Avenhaus IIR filters of different structures (wdf8,
cascade8, paralllel8, gmladder8), a modem, volterra filters,
a differentiator, several transforms (Hilbert, Wavelet, Wino-
gradfft11, Winogradfft13), a convolution (convS5), a seventh-
order IIR filter, and several other FIR filters of various
structures and sizes (DSrect25, DSfir51, firl33, DSkais5S5,
fir100). The examples were obtained through several sources,
including commercial DSP handbooks, the research literature,
and IC manufacturers. The results were generated using a
library of 44 templates representing groups of chained units
as shown in Fig. 9.

Table I shows the throughput improvement for the sample
benchmarks. The original clock period is selected to be the
minimum clock period for which all templates require one
clock cycle to execute. For the designs shown, the overall
throughput doubles on average (27% increase from clock
selection and 73% increase from template selection). The
minimum and maximum improvements for clock and template
selection are 21% and 276%, respectively. The mean and
standard deviation are 122% and 80%, respectively. Fig. 10
shows the relative contributions of clock selection and tem-
plate selection to the overall improvement for each of the
benchmarks. While template selection tends to have the most
impact, clock selection generally contributes significantly and
is, in some cases, the dominant contributor to the overall
improvement in throughput. ’

Table II shows the impact on area for these benchmarks.
The active area estimates are obtained after the scheduling
and assignment step, and represent only arithmetic/logic units,
registers, multiplexers, and I/O. The minimum and maximum
area overhead are 14% and 225%, respectively. The mean
and standard deviation are 66% and 47%. In terms of the
number of busses required, the maximum reduction is 30%,
while the maximum increase is 782%. The mean and standard
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TABLE 1
PERFORMANCE IMPROVEMENT ON BENCHMARKS
) Original / After Clock Selection / After Clock Select & Instr. Select Thronehpat
Resign Number of Clock Impr::’l‘l’ge"l":"‘
Name Cycles in Critical Path Clock Period (ns) Minimum Sample Period (ns) (%)
sqrt 11 16 6 62 31 63 682 496 378 80
LinearCn5mat 4 6 5 77 51 51 308 306 255 21
wdf8 10 13 8 83 61 81 830 793 648 28
volterra (s/a) 14 17 7 65 25 37 910 425 259 251
volterra (mult) 12 14 7 89 68 68 1068 952 476 124
iir7 10 11 6 87 69 95 870 759 570 53
cascade8 10 11 8 69 42 42 690 462 336 105
LinearCnSellip 5 7 5 77 51 51 385 357 255 51
modem 20 30 18 74 25 35 1480 750 630 135
parallel8 9 11 8 68 39 39 612 429 312 96
convs 10 1 7 77 52 74 770 572 518 49
sine 16 22 23 62 32 27 992 704 621 60
Hilbert 12 13 7 77 54 54 924 702 378 144
gmiladder8 34 43 47 72 47 31 2448 2021 1457 68
Wavelet 14 15 9 77 52 57 1078 780 513 110
LinearCntrl3 6 8 5 77 51 51 462 408 255 81
DSrect25 15 16 7 92 75 75 1380 1200 525 163
Differentiator 19 20 9 74 47 47 1406 940 423 232
Winogradfftil 11 12 10 77 52 59 847 624 590 44
Winogradfft13 11 12 10 77 52 59 847 624 590 44
DSfir51 28 29 11 92 75 75 2576 2175 825 212
fir133 67 67 20 88 86 86 5896 5762 1720 243
DSkais55 30 31 11 89 68 68 2670 2108 748 257
fir100 103 103 28 88 86 86 9064 8858 2408 276
300 280
9 240+
— 240 5
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Fig. 10. Relative contributions of clock selection and template selection.
‘While template selection generally contributes more to performance than clock
selection, clock selection is still very important.

deviation are a 64% and 166% increase, respectively. While
the worst case increase is high, 9 of the 24 designs actually had
a decrease in the required number of busses. Also, note that
only four designs had a bus count increase greater than 100%,
while 12 out of 24 had an increase in throughput greater than
100%. For the four designs in which the bus count increased,

280
Speed Improvement (%)

Fig. 11. Speed/Area tradeoff. In most cases, the gains in speed outweigh the
penalty in area. In many of these cases, the increase in area is less than half
the gain in speed.

the templates selected caused the slack on many of the graph
edges to decrease. This caused a higher degree of data transfer
parallelism and thus a larger required number of busses for
implementation.

Although the active area increases by 48% on average, the
area-time (AT) product overall decreased by 44%. The area-
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TABLE II
AREA IMPACT ON BENCHMARKS
Original vs. Clk, Selection & Instr. Sel Active
Design Area Interconnect
Names Number of Number of Active Area Number of Increase | Increase (%)
Nodes Operators (mmz) Busses (%)
sqrt 11 6 3 2 0.52 | 091 4 5 75 25
LinearCnSmat 21 18 3 4 412 5.87 27 26 42 -4
wdf8 23 19 4 6 205 | 256 23 27 25 17
volterra (s/a) 30 24 5 6 1.68 | 3.69 20 34 120 70
volterra (mult) 30 23 4 5 213 6.92 15 37 225 147
iir7 33 34 5 7 546 | 7.32 28 26 34 -7
cascade8 34 27 4 5 241 4.12 29 27 71 -7
LinearCn5ellip 35 19 3 4 6.41 8.98 48 34 40 -30
modem 39 31 4 5 139 | 282 12 27 103 125
parallel8 39 37 4 4 2.85 6.82 37 47 139 27
convs 45 37 4 7 3.60 | 479 68 60 33 -12
sine 49 42 6 7 145 | 2.86 30 38 97 27
Hilbert 49 42 5 6 3.81 5.86 44 57 54 30
gmladder8 50 45 4 7 2.53 3.84 31 42 52 35
Wavelet 53 38 5 7 4.33 5.31 55 55 23 0
LinearCntrl3 56 33 3 4 13.03 | 14.89 79 57 14 -28
DSrect25 62 53 4 5 746 | 9.52 66 70 28 6
Differentiator 80 69 5 7 456 | 7.63 68 93 67 37
Winogradfft11 104 90 4 9 8.85 | 12.87 | 158 148 45 -6
Winogradffti3 116 100 4 8 10.56 | 13.35 | 181 168 26 -7
DSfir51 127 108 4 6 10.88 | 1633 | 137 146 50 7
firl33 130 83 3 5 11.96 | 22.76 18 76 90 322
DSkaisS5 137 117 4 6 13.12 | 16.28 158 161 24 2
fir100 302 226 3 6 20.59 | 41.00 17 150 99 782
800 T T T 50 T T T
M- === ~
~ 300} * ; 40 g
e
% 200t = : i sof )
g 100 | . . E 20 1
S ., . B >
B Oty 10 .t 1
o e e
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Active Area Increase (%) Number of Nodes
Fig. 12. Interconnect versus active area increase. In most cases, the increase Fig. 13. Execution time versus CDFG size. Execution times obtained from

in active area is larger than the increase in the bus count (which sometimes
decreases).

speed tradeoff is shown graphically in Fig. 11 which plots
the percentage improvement in speed versus the percentage
increase in active area. This plot reflects only active area, not
interconnect. Clearly, in most cases, the speed is improved
more than the area is hurt (i.e., most points are below y = z,
the even tradeoff line). Fig. 12 shows the relative increases in
active area and bus count. In most cases, the increase in bus

runs on a Sun SparcStation 2. The line shown was derived by a least squares
regression. The slope is approximately 0.11 ms/node.

count is less than the increase in active area indicating that
the predicted area increase from active area alone is generally
conservative. Although the bus count is not necessarily propor-
tional to the interconnect area, there is experimental evidence
that the two are strongly correlated [42].

Fig. 13 shows a plot of the execution time versus CDFG size
(number of nodes) for the template selection routines (without
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clock selection). The software was run on a Sun SparcStation 2
and exhibited linear time behavior largely resulting from the
fact that templates normally have a small number of nodes
with small degree.

IV. CONCLUSION

A methodology and a set of algorithms for performance
optimization using template mapping have been presented.
The proposed algorithms incorporate a new template matching
approach, as well as methods for partial matching and clock
selection. Experimental results show significant improvements
in performance without unreasonable area penalties. The ideas
presented provide an ideal starting point for the investigation
of many template matching problems in CAD and compiler
domains.
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