Symbolic Debugging of Globally Optimized Behavioral Specifications

Inki Hong!, Darko Kirovskif, Miodrag Potkonjak!, and
Marios C. Papaefthymiout
! Computer Science Department, University of California, Los Angeles

! Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, USA

Abstract

Symbolic debuggers are system development tools that can
accelerate the validation speed of behavioral specifications
by allowing a user to interact with an executing code at
the source level. In response to a user query, the debugger
must be able to retrieve and display the value of a source
variable in a manner consistent with what the user expects
with respect to the source statement where execution has
halted. However, when a behavioral specification has been
optimized using transformations, values of variables may ei-
ther be inaccessible in the run-time state or inconsistent
with what the user expects.

We address the problem that pertains to the retrieval of
source values for the globally optimized behavioral specifica-
tions. We describe how transformations affect the retrieval
of source values. We present an approach for a symbolic
debugger to retrieve and display the value of a variable cor-
rectly and efficiently in response to a user inquiry about the
variable in the source specification. The implementation
of the new debugging approach poses several optimization
tasks. We formulate the optimization tasks and develop
heuristics to solve them. We demonstrated the effectiveness
of the proposed approach on a set of designs.

1 Introduction

Functional debugging of hardware and software systems has
been recognized as a labor-intensive and expensive process.
This situation is likely to become even worse in the future,
since the key technological trends indicate that the percent-
age of controllable and observable variables in designs will
steadily decrease. For example, the designers of a modern
superscalar microprocessor reported that the debugging pro-
cess took more than 40% of the development time [Uch94].

Symbolic debuggers are system development tools that
can accelerate the validation speed of behavioral specifica-
tions by allowing a user to interact with an executing code at
the source level. Symbolic debugging must ensure that in re-
sponse to a user inquiry, the debugger is able to retrieve and
display the value of a source variable in a manner consistent
with what the user expects with respect to a breakpoint
of the source code. The application of code optimization
techniques usually makes symbolic debugging harder. While
code optimization techniques such as transformations must
have the property that the optimized code is functionally
equivalent to the unoptimized code, such optimization tech-
niques may produce a different execution sequence from the
source statements and alter the intermediate results. In ad-
dition, some variables in the source code may disappear in
the optimized code.

Debugging the unoptimized code rather than the opti-
mized code is not acceptable for several reasons. First, it
may be the case that while an error in the unoptimized
code is undetectable, the error is detectable in the optimized
code. Second, optimizations may be absolutely necessary to

397

execute a program. The code without optimizations for de-
bugging may be unable to run on a target platform, for
example, because of memory limitations or constraints im-
posed on an embedded system. Third, a symbolic debugger
for optimized code is a means to find errors in the optimizer.

In this paper we address the problem pertaining to the
retrieval of source values for the globally optimized behav-
ioral specifications. We present a design-for-debugging ap-
proach for a symbolic debugger to retrieve and display the
value of a variable correctly and efficiently in response to a
user inquiry about the variable in the source specification.
We informally define the design-for-debugging problem in
the following way. We are given a design or code. The code
is fully specified in any high level design specification lan-
guage which will be transformed to the control-data flow
graph (CDFG) of the computation. The goal of our design-
for-debugging (DfD) technique is to modify the original code
so that every variable of the source code is debuggable (that
is, controllable and observable) in the optimized program as
fast as possible. At the same time, the original code must
be optimized with respect to target design metrics such as
throughput, latency and power consumption. A particularly
important requirement is that in response to a user inquiry
about a variable in the source program, the value of the
variable should be retrieved or set as fast as possible.

We define an important concept for developing a method
that solves the problem. The golden cut is defined to be
the variables in the source code which should be correct
[Hen82] in the optimizaed program. The variables are time-
dependent. A variable named z at two different locations
in the source program is treated as two different variables.
By default, primary inputs and state or delay variables are
included in the golden cut. The complete golden cut is a
golden cut with the property that all variables which ap-
pear after the cut can be computed using only the variables
in the cut, excluding primary inputs and state variables. An
empty golden cut is a golden cut with no variables except for
the default primary inputs and state variables in it.

Our proposed method can be described as follows. First,
we should determine a golden cut. Next, in response to a
user inquiry about a source variable z; at some point ¢ in
the source program, all the variables in the golden cut that
the variable z; depends on are determined by a breadth-
first search for the source CDFG with reversed arcs. For
those variables except the primary inputs and state vari-
ables in the golden cut, all the statements that they depend
on are identified by the breadth-first search for the opt:-
mized CDFG with reversed arcs. Those statements in the
optimized CDFG are executed on the multi-core system-on-
silicon under debugging. From this execution, we get the
values of the variables in the golden cut that the variable
x: depends on. Using these values, the variable z; is com-
puted by the statements in the source CDFG on a worksta-
tion (usually uniprocessor) which runs a debugger program.

0-7803-5973-9/00/$10.00 ©2000 IEEE.



Our proposed method requires that the golden cut be cho-
sen to result in minimum debugging time, optimal design
metrics, and as complete debugging of optimized program
as possible. The last requirement stems from the fact that
our method executes part of the source program to get the
value of a source variable in request. Because our goal is
to debug the optimized program, this portion of the source
program should be minimal.

1.1 Motivational Example

We illustrate the proposed method with a small motivational
example shown in Figures 1, 2, and 3. The design objective
is throughput optimization. The source program is shown
in Figure 1. The source program consists of additions and
multiplications with constants. The number of clock cycles
for an iteration is 9. The number in italics next to each edge
(a variable) denotes the number of operations that needs to
be executed on a general purpose computer for retrieving
the value of the variable. If there is no number by an edge,
the value of the variable is available, because the variable is
either an input (states or primary inputs) or output (states

or primary outputs) variable.
Clock
Cycle

P12 Di@l D@l D3@1

" Golden Cut A
= ixy)

*Golden Cut B

DI D2 D3 PO

Figure 1: Part of the optimized program without considering

debugging.
Clock
Cycle

Di@l Dl@1 D3@1

PI2

Figure 2: Part of the optimized program by our proposed
design-for-debugging method.

Clock

Cycle _PUI P12 Dl@l D2@1 D3@!1

Figure 3: A motivational example for the proposed design-
for-debugging method.

The original program can be optimized to execute in 5
clock cycles. Part of the optimized program (only for a

398

state variable D2) is shown in Figure 2. Almost all vari-
ables in source program disappear in optimized program.
For example, the variables  and y in the source program
have disappeared in the optimized program. It takes 3.575
operations on average on a workstation to retrieve any inter-
mediate variable in a source program, with the assumption
that the values of all state variables for the current itera-
tion are known. In addition to the high debugging time,
debugging is performed entirely on a source program rather
than its optimized version. Qur proposed DfD method pro-
duces an optimized program which can execute in 6 clock
cycles, while ensuring faster and more complete debugging
of the optimized program. Part of the optimized program is
shown in Figure 3. The golden cut chosen for our method is
shown in Figure 1 labeled as Golden Cut A. It takes 1.125
operations on average on a workstation to retrieve any in-
termediate variable in a source program. If we choose the
golden cut labeled as Golden Cut B in Figure 1, it takes 1
operation on average on a workstation to retrieve any inter-
mediate variable in a source program while the optimized
program executes in 8 clock cycles on a system-on-silicon.
In this example, we have shown that the debugging of opti-
mized program can be performed efficiently and thoroughly
with minimal loss of optimization potential by the proposed
DfD method.

2 Related Work

We survey the related works along two lines: CAD for
debugging and symbolic debugging of optimized code. In
the CAD domain recently Powley and De Groat developed
a VHDL model for an embedded controller [Pow94]. The
model supports debugging of the application softwares. Koch,
Kebschull, and Rosenstiel [Koc95] proposed an approach for
source level debugging of behavioral VHDL in a way similar
to software source level debugging through the use of hard-
ware emulation. Simulation has been used for functional
debugging [Lie97]. Hennessy [Hen82] introduced the prob-
lem of debugging optimized code, defined the basic terms
and presented measurements of the effects of some local op-
timizations. DOC [Cou88] and CXdb [Bro92] are two exam-
ples of real debuggers for optimized code which do not deal
with global optimizations. Adl-Tabatabai and Gross [Ad196]
discussed the problem of retrieving the values of source vari-
ables when applying global scalar optimizations. When the
values of source variables are inaccessible or inconsistent,
their approach just detects and reports it to a user. Our ap-
proach provides the efficient method of retrieving the values
of such source variables.

3 Computational and Hardware Model
‘We represent a computation by a hierarchical control data
flow graph (CDFG) consisting of nodes representing data op-
erators or sub-graphs, and edges representing the data, con-
trol, and timing precedences [Rab91]. The computations op-
erate on periodic semi-infinite streams of inputs to produce
semi-infinite streams of outputs. The underlying computa-
tional model is homogeneous synchronous data flow model
[Lee87] which is widely used in computationally intensive ap-
plications such as image and video processing, multimedia,
speech and audio processing, control, and communications.
We do not impose any restriction on the interconnect
scheme of the assumed hardware model at the RT-level.
Registers may or may not be grouped in register files. Each
hardware resource can be connected in an arbitrary way to
another hardware resource. The initial design is augmented
with additional hardware which enables controllability in



the “debugging” mode. The following input operation is in-
corporated to provide complete controllability of a variable
Varl using user specified input variable: Inputl: if(Debug)
then Varl = Inputl.

The problem of setting breakpoints is handled in the fol-
lowing way. A breakpoint can be set in any variable such
that the execution of the program must stop immediately af-
ter performing the operation producing the breakpoint vari-
able. Since the optimized code instead of the source code
is running usually on multiprocessors, the problem of deter-
mining when to stop the execution of the optimized code for
a breakpoint set in the source code is not straightforward. If
the variable set as a breakpoint exists in the optimized code,
the execution of the optimized code stops immediately after
the control step which produces the variable. If not, we stop
the execution of the optimized code immediately after the
control step producing any variable which exists in both the
source and optimized codes and depends on the breakpoint
variable. If any one of the variables depending on the break-
point variable is computed, then the breakpoint variable has
already been computed.

4 Design for Symbolic Debugging

In response to a user inquiry about a source variable z in
the source CDFQG, we first need to determine if the variable
z exists in the optimized CDFG. This step can be efficiently
performed by keeping a list of variables that exist in both
the source and optimized CDFGs. If the variable z exists
in the optimized CDFG, we need to confirm if the value of
the variable z is still stored in a register. Due to register
sharing, the register holding the variable z may be storing
a different variable at the time of the inquiry. This can be
handled by checking the schedule of variables for registers.
At the time of the inquiry, only the variables stored in the
registers are available. If any one of the answers is negative,
then the variable needs to be computed from the golden cut.

4.1 Selection of Optimal Golden Cuts

Our proposed method requires that the golden cut should
be chosen to result in minimum debugging time, optimal
design metrics and as complete debugging of optimized pro-
gram as possible. The last requirement stems from the fact
that our method executes part of the source program to get
the value of a source variable in request. Because our goal is
to debug optimized program, the part of the source program
should be minimal. Several conflicting requirements about a
golden cut can be identified. First, a golden cut should be as
small as possible in order to minimize the disruption of the
optimization potential of optimization techniques. Second,
a golden cut should not be too small in order to minimize
the debugging time. For example, an empty golden cut is
the smallest golden cut that will minimize the disruption of
the optimization potential, but it will result in an optimized
code with long debugging time. Finally, a golden cut should
be as large as possible to ensure the complete debugging
of the optimized code. This requirement is satisfied by the
golden cut with all the variables in the source CDFG, which
results in no optimization potential to be realized. There-
fore, a golden cut should be chosen by balancing all these
conflicting requirements.

We consider the problem of finding the smallest complete
golden cut such that every source variable can be computed
by at most k operations starting from the golden cut. More
formally, the problem can be defined as the following:

Problem: Given a directed acyclic hypergraph H(V, E),
find the smallest subset of edges, E’ such that for every edge
e € E, a cone ¢ of e with respect to E' has at most k nodes,

399

where a cone c of e with respect to E’ is a subset of nodes
consisting of nodes on paths from all edges in E’ to e.

The source program can be described by a directed acyclic
hypergraph due to the requirement that a complete golden
cut be chosen within one iteration of the computation. Note
that the source and optimized programs in the motivational
example are described by a directed acyclic hypergraph.

The pseudocode of the basic heuristic for the golden cut
problem is provided in Figure 4. Intuitively the heuristic
inserts “pipeline stages” in the hypergraph H so that the
number of edges with pipeline registers is minimized and
the size of the cone for each edge is less than or equal to k.
The pipeline stages are inserted in sequence. Once a stage
is inserted, it stays fixed.

Let |cgi(e)] denote the size of the cone for the edge e
with respect to E’. When calculating |cg:(e)|, we need to
traverse the graph once for each edge. Thus, O(|V||E|) steps
are required for each pipeline stage insertion. A minimum
cut for the subgraph with only green edges and their incident
nodes can be optimally computed in polynomial time by
a maximum flow algorithm, based on the Max-flow min-
cut theorem [Cor90]. Using the method proposed by Yang
and Wong [Yan94], the flow network for the subgraph is
constructed as the following:

e For each hyperedge n = (v;v1, -, v;) in the subgraph,

add two nodes n; and n2 and connect an edge (n1, n2).
For each node u incident on the hyperedge n, add two
edges (u,m1) and (n2,u). Assign unit capacity to the
edge (n1,m2) and infinite capacity to all other added
edges. (see Figure 5)

e A “dummy” source node s and a “dummy” sink node
t are added to the subgraph. From the source node,
we add edges with infinite capacity to all the source
nodes in the original subgraph. We also add edges with
infinite capacity from all the sink nodes in the original
subgraph to the sink.

Given: a directed acyclic hypergraph H(V, E)
and constants ! and k
E =0
Repeat
Calculate {cgr(e)l of all edges
after the most recently inserted pipe stage.
If all Jcpi(e)| < k
break
Mark as “green” the edges with | < [cp/(e)| < k.
Construct a flow network for the subgraph with
only green edges and their incident nodes.
Find a minimum cut of the flow network using
a maximum flow algorithm.
E' - E'U {edges of the new cut}.
Return E’

Figure 4: The pseudocode of the basic heuristic for the
golden cut problem.

o

e

S
)

Figure 5: Modeling a hyperedge in flow network.

(=53

The construction process for an example graph is shown
in Figure 6. A minimum cut of the constructed flow net-
work can be found using various approaches such as the
O(|V||E|)-time algorithm in [Yan94]. We use linear pro-
gramming for constructing a flow network by relying on a
public domain package lp-solve [LP]. All the “saturated”
edges in the constructed flow network are added to the



golden cut. To avoid trivial solutions, we use the lower
bound I. The constant [ is experimentally determined so

that high quality golden cuts are obtained.

Figure 6: The construction process of a flow network for the
“green” subgraph: the flow network.

Of course, the previous insertions of the pipeline stages
will affect the quality of the subsequent insertions. There-
fore, to further improve the heuristic, we employ the itera-
tive improvement using the heuristic slightly modified from
one described in Figure 4 as a search engine. The heuristic
described in Figure 4 is modified such that the constant [ is
not fixed and its value is randomly chosen between 1 and k
for each pipeline stage insertion. Let Pipeline(H, k) be the
modified heuristic for the hypergraph H with a constant
k. Let |E'| be the number of edges in the golden cut E'.
The iterative improvement heuristic based on the heuristic
Pipeline(H, k) is described in Figure 7.

Given: a directed acyclic hypergraph H(V, E)
and constant k
Minimum Cut = oo
Repeat
E' = Pipeline(H, k)
If |E'| < Minimum Cut
Minimum Cut = |F'|
Golden Cut = E'
Until no improvement in ¢ consecutive iterations
Return Golden Cut

Figure 7: The pseudocode of the iterative improvement
heuristic for the golden cut problem.

5 Experimental Results

We applied our approach to design for symbolic debugging
on a set of 10 small industrial examples as well as two large
design examples. The smaller designs include a set of Aven-
haus, Volterra, and IIR filters, an audio D/A converter, and
an LMS audio formatter. Table 1 presents the experimental
results for the small designs. We define guery time as an ex-
pected time to retrieve any variable in the source program.
The time is measured as average number of operations that
needs to be executed for retrieving the value of a variable.
Table 1 is obtained from the constraint that the value k for
the linear program is set such that the final query time is
50%, 25%, or 12.5% of the initial query time). The average
golden cut size with respect to the number of variables was
4.99%, 10.49%, and 19.26%, respectively.

The two large designs include the JPEG codec from the
Independent JPEG Group and the European GSM 06.10
provisional standard for full-rate speech transcoding, prl-
ETS 300036, which uses residual pulse excitation/long term
prediction coding at 13 kbit/s. Table 2 presents the ex-
perimental results for the large designs. For the same set
of query time constraints, the average golden cut size with
respect to the number of variables was 2.83%, 6.07% and
12.72%, respectively. None of the examples resulted in run-
times of the linear programmer larger than a minute.

[Cous8]

[Hen82]

[Koc95]

[Pow94]

[Rab91]

[Uch93]

[Yan94)

400

6 Conclusion

We addressed the problem related to the retrieval of source
values for the globally optimized behavioral specifications.
We explained how transformations affect the retrieval of
source values. We presented an approach for a symbolic
debugger to retrieve and display the value of a variable cor-
rectly and efficiently in response to a user inquiry about the
variable in the source specification. The implementation
of the new debugging approach posed several optimization
tasks. We formulated the optimization tasks and developed
efficient algorithms to solve them. The effectiveness of the
proposed approach was demonstrated on a set of designs.

Variables | G. Cut [ G. Cut | G. Cut

Design in CDFG Size 1 Size 2 Size 34‘
12th order IIR 56 3 5 9
Avenhaus direct 40 2 5 9
Avenhaus cascade 34 2 4 8
‘Avenhaus parallel 39 2 5 9
Avenhaus continued 35 2 5 9
Avenhaus ladder 50 3 6 11
DAC 354 7 15 28
2nd order Volterra 29 2 4 7
3rd order Volterra 50 3 5 9
LMS formatter 464 9 21 45

Table 1: Golden Cut Sizes 1, 2, and 3 are obtained for values
of k in the linear program, such that the final query time is
0.5, 0.25, and 0.125 of initial query time, respectively.

Variables [ G. Cut [ G. Cut | G. Cut

[ Design in CDFG | Size 1l Size 2 Size 3
JPEG encoder 4806 120 234 501
JPEG decoder 4269 105 229 453
GSM encoder 3291 98 206 417
GSM decoder 2556 87 199 439

Table 2: Golden Cut Sizes 1, 2, and 3 are obtained for the
value k in the linear program, such that the final query time
is 0.5, 0.25, and 0.125 of initial query time, respectively.

References

[Adl96] A.-R. Adl-Tabatabai and T. Gross. Source-level debugging of
scalar optimized code. SIGPLAN Notices, vol.31, (no.5), May
1996. p.33-43.

G. Brooks, G.J. Hansen, and S. Simmons. A new approach to
debugging optimized code. SIGPLAN Notices, vol.27, (no.7),
July 1992. p.1-11.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction
to algorithms. McGraw-Hill, ¢1990

D.S. Coutant, S. Meloy, and M. Ruscetta. DOC: a practical
approach to source-level debugging of globally optimized code.
SIGPLAN Notices, vol.23, (no.7), July 1988. p.125-34.

J. Hennessy. Symbolic debugging of optimized code. ACM
Transactions on Programming Languages and Systems, vol.4,
(no.3), July 1982. p.323-44.

G. Koch, U. Kebschull, and W. Rosenstiel. Debugging of be-
havioral VHDL specifications by source level emulation. Euro-
pean Design Automation Conference, 1995. p.256-61.

E.A. Lee and D.G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, vol.75, (no.9), Sept. 1987. p.1235-45.
C. Liem, et al. System-on-a-chip cosimulation and compilation.
IEEE Design & Test of Computers, vol.14, (no.2), April-June
1997. p.16-25.

ftp://ftp.es.ele.tue.nl/pub/Ipsolve

G.S. Powley and J.E. DeGroat. Experiences in testing and
debugging the 1960 MX VHDL model. Proceedings of VHDL
International Users Forum, 1994. p.130-5.

J.M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast pro-
totyping of datapath-intensive architectures. IEEE Design &
Test of Computers, vol.8, (no.2), June 1991. p.40-51.

K. Uchiyama, et al. The Gmicro/500 superscalar microproces-
sor with branch buffers. IEEE Micro, vol.13, (no.5), Oct. 1993.
p.12-22.

H. Yang and D.F. Wong. Efficient network flow based min-cut
balanced partitioning. IEEE/ACM International Conference
on Computer-Aided Design. 1994. p.50-5.

[Bro92]

[Cor90]

[Lee87)

[Lie97]

[LP]



