
Watermarking Deep Neural Networks for Embedded Systems
Jia Guo, and Miodrag Potkonjak

Computer Science Department
University of California, Los Angeles

{jia,miodrag}@cs.ucla.edu

ABSTRACT
Deep neural networks (DNNs) have become an important tool for
bringing intelligence to mobile and embedded devices. �e increas-
ingly wide deployment, sharing and potential commercialization of
DNN models create a compelling need for intellectual property (IP)
protection. Recently, DNN watermarking emerges as a plausible
IP protection method. Enabling DNN watermarking on embed-
ded devices in a practical se�ing requires a black-box approach.
Existing DNN watermarking frameworks either fail to meet the
black-box requirement or are susceptible to several forms of at-
tacks. We propose a watermarking framework by incorporating
the author’s signature in the process of training DNNs. While func-
tioning normally in regular cases, the resulting watermarked DNN
behaves in a di�erent, prede�ned pa�ern when given any signed
inputs, thus proving the authorship. We demonstrate an example
implementation of the framework on popular image classi�cation
datasets and show that strong watermarks can be embedded in the
models.

ACM Reference format:
Jia Guo, and Miodrag Potkonjak. 2018. Watermarking Deep Neural Net-
works for Embedded Systems. In Proceedings of IEEE/ACM INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, San Diego, CA, USA, No-
vember 5–8, 2018 (ICCAD ’18), 6 pages.
DOI: 10.1145/3240765.3240862

1 INTRODUCTION
Deep neural networks (DNNs) have demonstrated exceptional per-
formance in many areas including computer vision, speech recog-
nition, and natural language processing. More recently, DNNs are
increasingly applied to emerging industries such as smart home,
virtual/augmented reality (VR/AR), robotics and autonomous vehi-
cles. In most scenarios, the underlying embedded system usually
runs the DNNs locally for latency and privacy concerns. �e de-
mand energy e�ciency and high speed presses researchers and
developers to adopt the state of the art DNNs and apply various
optimization techniques [1] [2].

Notwithstanding the fact that DNNs are widely used, the IP pro-
tection of DNNs is rarely discussed. Traditionally, embedded IPs
come in the form of so�ware development kits (SDKs). Develop-
ers can purchase/subscribe to the SDK, and use the APIs exposed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’18, San Diego, CA, USA
© 2018 ACM. 978-1-4503-5950-4/18/11. . .$15.00
DOI: 10.1145/3240765.3240862

Figure 1: Watermarking DNNs that are intended for embed-
ded devices.

to them to build their applications. Unlike cloud-based machine
learning services, local SDKs are more vulnerable to unauthorized
copying and distribution. Much like circuits and so�ware IP pro-
tection [3][4][5], we need a method to prove the authorship of
DNNs for their IP protection. In the speci�c case of watermarking
DNNs for embedded systems, the authors should be able to detect
whether their libraries are used without proper authorization. �e
scenario is depicted in Figure 1. Since most embedded systems and
applications allow very restricted access to their inner mechanisms,
the watermarking method should support black-box detection. But
unlike cloud-based MLaaS that usually charge users based on the
number of queries made, there is no cost associated with querying
embedded systems. �us we do not need to limit the number of
inputs in the process of designing a rigorous detection framework.
Only a handful of DNNwatermarking methods have been proposed
so far [6][7][8]. However, the existing methods either fail to meet
the requirements in the embedded systems se�ing, incur unneces-
sary cost in the proof of authorship, or are susceptible to a�acks of
various forms.

To this end, we propose a new DNN watermarking framework
suitable for embedded applications. In our proposed framework,
we train a watermarked DNN on both the original dataset and a
dataset where each image is modi�ed according to the author’s
signature. �e watermarked DNN behaves in a prede�ned, ad-hoc
pa�ern when it encounters any inputs embedded with our signa-
ture. Otherwise, it acts normally with minimal loss of performance.
Under the generic framework, we implement a simple version of the
framework and empirically verify its performance against various
criteria. Our approach has a number of bene�ts. First, it operates
completely in a black-box manner. Only a set of arbitrary test im-
ages are needed to verify the existence of the watermark, making
the veri�cation process compatible with the embedded systems
se�ing. Second, the process of proving authorship is straightfor-
ward and self-contained. Other than the test images, we do not
require any other supplementary materials. It not only simpli�es
the process of the proof but also improves the robustness against

a�acks. �ird, we are able to resist various forms of a�acks that
are e�ective on existing watermarking methods.

We have three main contributions:

• To the best of our knowledge, we are the �rst to propose a
framework of watermarking neural networks suitable in
the embedded systems se�ing.

• We point out some of the vulnerabilities of existing water-
marking solutions and show how to defend against them
using our proposed framework.

• We propose a sample implementation of the watermarking
framework and evaluate its performance on models trained
on widely used image classi�cation datasets.

�e rest of the paper is organized in the following fashion. We be-
gin by surveying existing watermarking techniques on algorithms
and circuits as well as the properties of DNNs that enable our
proposed framework in Section 2. Section 3 outlines the general
watermarking framework. We also discuss the criteria we use to
evaluate a watermarking system. A minimal and straightforward
example that implements our framework is given in Section 3.4.
We then proceed to evaluate the implementation of Section 5.

2 RELATEDWORK
Watermarking has been an extensively studied subject for multi-
media. To enable discrete watermarking where watermarks are
imperceptible, correlation-based watermark detection methods are
used [9]. We refer interested readers to the textbook for further
information[10].

Researchers also proposed watermarking for the protection of al-
gorithm, so�ware, and circuit design. For watermarking integrated
circuits, Kahng et al. proposed to add additional constraints in the
place and route procedure [3]. In terms of so�ware, the survey
by Collberg et al. categorized watermarking methods into static
ones and dynamic ones, where the former refers to embedding
watermarks as strings in the code or binary, and the la�er include
those triggered by speci�c inputs [5]. In the case of algorithms,
� et al. proposed to add additional edges which force vertices to
have the same color in the graph coloring problem solutions [4].
Many of these works rely on imposing additional constraints on
the problem so as to make the solution unique. �e same idea can
also be applied to our scenario.

Recently, many researchers are proposing methods to watermark
DNNs to protect the rights of IP owners. Uchida et al. proposed
to regularize the mean of weights such that a linear projection of
that mean can be mapped to a signature [6]. One obvious drawback
is that they require white-box access to the model, which renders
the method unfeasible in our se�ing. In addition, the approach
is vulnerable to the ghost signature and tampering a�acks. We
discuss the vulnerabilities in Section 3.4. Black-box approaches
have also been proposed. Le Merrer et al. proposed to �ne-tune the
model to behave correctly in face of certain adversarial examples
and use the correct behavior as the evidence for authorship [7].
�e method is neat in nature and supports black-box watermark
detection. But the fact that it is a zero-bit watermark makes it hard
to associate any watermarks with actual identities and limits its
application scenarios. In DeepSign [11], the authors also proposed
to use zero-bit watermarks in the black-box se�ing. Instead of

adding message marks natural inputs as we proposed in Section
3.4, Adi et al. assigned labels to abstract images and train DNNs
to classify them [8]. One clear drawback of their approach is the
di�culty to associate abstract images with the author’s identity.
�eir answer is to use a cryptographic commitment scheme. It is
unclear whether a practical version of the method exists at all. Even
if it does, it will unavoidably incur a lot of overhead to the proof of
authorship.

3 THE GENERAL APPROACH
In this section, we �rst describe our proposed approach for wa-
termarking neural networks by hiding signatures in the training
dataset. �en we discuss criteria for evaluation and the security of
watermarking.

3.1 Watermark Embedding and Detection
Our general strategy is to map the author’s signature to the mod-
i�cations of a portion of the training set of a DNN.�e resulting
DNN (i.e. the watermarked DNN) will behave disproportionately
di�erently than an otherwise trained DNN (a regular DNN) when
it encounters data modi�ed according to the author’s signature.
�e procedure can be regarded as imposing additional constraints
to the neural network. �e usual over-parameterization of DNN
models ensures that there will be enough model capacity to tolerate
such constraints [12].

Generic Watermark Embedding Procedure. Alice wishes to
protect some DNN. She �rst trains a fully functioning regular model
without any additional constraints. �en she selects a portion of the
dataset and adds certain modi�cations according to her signature.
�e modi�cations could be designed to make the regular model
behave in one pa�ern and the watermarked model in another. �en
she �ne-tunes the initial model (using the existing weights as ini-
tialization). �e behavior of the �ne-tuned watermarked model is
disproportionately di�erent from that of regular models. Note that
Alice needs not tell anyone which modi�cations she made.

GenericWatermarkDetection andVeri�cation Procedure.
To demonstrate that a DNN is watermarked Alice must draw a set
of samples from the intended input space. She must demonstrate
that both the original model and the watermarked model works
reasonably well on the original samples. �en she compares the
behavior of the original model and the watermarked model on
inputs that are modi�ed. By demonstrating the extremely small
probability of a regular model having the behavior corresponding
to her signature, Alice can verify that her signature is present.
Note that Alice has to reveal her signature and how it leads to the
modi�cation of the dataset in order to prove her authorship.

3.2 Criteria for Evaluation
We borrow existing conventions in judging watermarking systems
and discuss them in the context of DNNs. In particular, we’d like
to discuss e�ectiveness, �delity and payload with regard to embed-
ding watermarks, and false positive rate with regard to decoding
watermarks [10], as listed in Table 1. �e security aspect will be
separately discussed in Section 3.4.

E�ectiveness. E�ectiveness refers to the success rate of wa-
termark embedding. In the context of DNN watermarking, we

2

Table 1: Criteria for evaluating DNN watermarks.

Criterion Explanation
E�ectiveness �e watermarking method can be applied to

di�erent DNN architectures and datasets
Fidelity Watermarks do not substantially a�ect the

performance of the model
Payload �e watermarking method allows the

embedding large amount of information
False Positive

Rate
Watermark detectors are not triggered when
there is no watermark

need to make sure that watermarks can be embedded and extracted
regardless of inputs and model architecture.

Fidelity. In image watermarking, �delity represents the percep-
tual similarity between the images before and a�er adding water-
marks. In our context, �delity represents the performance of DNN
on the test set without message marks embedded.

Payload. Payload refers to the amount of information (number
of bits) contained in the signature.

False Positive Rate. In image watermarking, false positive rate
refers to the probability of detecting a watermark is detected from
images that do not contain it. In our context, a false positive may
refer to a watermarked DNN exhibit the desired behavior for an
embedded sample when given a regular sample.

3.3 Characteristics of the Proposed Method
In addition to being able to satisfy the criteria proposed above, the
method we describe has various other important characteristics.
First, unlike in Uchida et al.’s approach [6], it supports black-box
detection, making the method suitable to be used in the embedded
systems se�ing. Second, the method requires very li�le additional
overhead in the proof of authorship. Unlike the method proposed by
Adi et al., we do not need designated inputs and secure commitment
schemes. We can take any input, modify it accordingly, and feed it
to the DNN to verify the existence of our watermark. Further, be�er
than the zero-bit watermarking approaches [11] [7], we support
relatively large payload for strong proof of authorship.

3.4 Security and�reat Model
We assume that a�ackers are those whowant to use a “pirate model”
without paying the royalty. �e a�ackers do not have the computa-
tion power and technical expertise to train a model of their own.
Uchida et al. argue that transfer learning and model compression
operations, in particular, should be considered as possible types of
a�acks [6]. We do not consider them a type of threat for the follow-
ing reasons. First, the cost of �ne-tuning and compression is on the
same order of magnitude as the cost of training, if not higher [13].
With that much resources and expertise at hand, an a�acker would
have built a model on their own. Second, a �ne-tuned model is
essentially a di�erent model with certain initialization. In our own
experiment for �ne-tuning between di�erent datasets, we observe
up to 93% di�erence in average magnitude of weights in a layer.
Not to mention that model architecture may be changed during
the pruning of a model [14][2]. We argue the proof-of-authorship

during actual model usage and “proof-of-origin” of a model should
be two di�erent problems. It is questionable whether the original
model author can claim the authorship of a �ne-tuned model, and
thus our assumption.

Now we lay out two possible a�acks. We name the model author
Alice and the a�acker Bob.

Finding Ghost Signatures. Bob knows that Alice’s model is
watermarked and wishes to claim that the model also contains
his own watermark. Bob thus a�empts to �nd a ghost signature,
namely, a fake signature that coincidentally makes model behave
like it is real. In the framework proposed in [6], this can easily be
done by �nding Bob’s own linear projection that leads to his desired
output by solving a system of linear equations. In the approach pro-
posed by Adi et al. [8], since the space of any abstract images is so
large, one can easily �nd another set of images that coincides with
another signature using, for example, genetic algorithms[15]. In our
approach, however, Bob has to �nd one way to modify any input
such that it coincides with the behavior of the watermarked model,
which involves reversing the cryptographically secure functions or
brutal force.

Tampering. Bob knows Alice has embedded her watermark in
the model. He doesn’t know how to �nd it but wishes to remove
Alice’s signature by tampering with the model. Uchida et al. only
addresses the arbitrariness in the order of output channels, but
not the input channels [6]. �us Bob can tamper the model by
switching the position of neurons, which invalidates the original
linear projection. We do not have this problem in our proposed
framework because we prove the authorship based on the output.
We do not change the values of weights as a valid a�ack, because
neural networks are known to have fragile co-adapted features
between layers [16]. Change weights may render a neural network
unusable. For this a�ack to be valid, we don’t assume the existence
of data protection schemes [17].

4 AN EXAMPLE

6: frog

9: truck

+

+

=

=

4: deer

7: horse

Watermarked DNN

Regular DNN

+

+

=

=

message
mark

6: frog

9: truck

4: deer

7: horse

6: frog

9: truck

4: deer

7: horse

Figure 2: Overview of the proposed example watermarking
technique on DNN based image classi�ers.

In this section, we show an exemplary approach to watermark-
ing DNN image classi�ers. �e example is by no means the best

3

approach under the proposed framework. Rather it is designed to
be straightforward and easy to understand. �at said, a high-level
description of the approach is as follows. Alice creates a message
mark of the same size of the input images using her signature and
embedded it into images. �e message mark is so undetectable that
regular DNNs will classify the image to its true class regardless of
whether the message mark has been added. A DNN watermarked
by Alice, however, is able to recognize images embedded with the
message mark and classify them, according to the signature, to a
class di�erent than the original true class. Figure 2 depicts the idea.

We proceed with the discussion by �rst introduce the notations
that we use. �en we detail the ways we embedded the message
mark and train a watermarked DNN.

4.1 Notation
Let Dtrain and Dtest represent the training set and the test set
respectively, and Xi be a sample with label �i . Alice would like to
embed amessage markm (of the same dimension asX) representing
her signature into X and also map the label to a di�erent class.m
can have di�erent magnitudes, denoted by � . �e resulting sample
and label are denoted as �X (X) and �� (�) 1. Dtrain

�m represents a
message markm of magnitude � is embedded to all of the samples
in Dtrain . A DNN is denoted as f and a watermarked DNN as
f WMK. In the case of classifying embedded samples, we say �X (Xi)
is correctly classi�ed if f WMK(�X (Xi)) = �� (�i). So if when �X (Xi)
is classi�ed to its original label �i , the classi�cation is incorrect. We
use � to represent the classi�cation error rate of the models, and an
�-accurate model has an error rate of at most � on the test set. For
detecting the watermarks, we will use a set of N test samples. We
allow at most � errors in the classi�cation to con�rm the existence
of our watermark.

4.2 Method
4.2.1 Workflow. To embed a watermark, the model owner Alice

would need to do the following:
(1) Create an n-bit signature.
(2) Create message markm of magnitude �
(3) Calculate the class mapping based on the n-bit signature
(4) Fine-tune an existing model f . While �ne-tuning, we use,

with an equal probability, both the original dataset and
the dataset containing images with message marks and
remapped labels.

To detect a watermark, the model owner Alice would need to do
the following:

(1) Take a set of images.
(2) Create message markm of magnitude � based on the n-bit

signature. Add the message mark to all the images.
(3) Calculate the class mapping based on the n-bit signature
(4) Take the watermarked model f WMK, and run classi�cation

on images both with and without the message markm.
If the f WMK classi�es original images to the correct label, and images
with message mark to the correctly mapped label within a certain

1We sometimes refer to a sample embedded with the message mark as an “embedded
sample” for short, and a sample without one as a “regular sample”.

margin of error, then we show that f WMK is indeed our watermarked
model.

4.2.2 Message Mark Embedding. Alice will embed the n-bit sig-
nature into n pixels in the images. First Alice generates the signa-
ture by hashing a message that proves her as the author. �e next
step is to use the signature as the key to a pseudorandom random
generator (PRG) that assigns label k to any of the remaining K � 1
labels. �is is referred to as the mapping of the classes �� (�). A�er
that, the signature is used as the key to a pseudorandom random
permutation (PRP), which is used to create the location of the n
pixels. �e signature will be directly added to the pixels. A positive
one indicates a “1” in the signature, and a negative one indicates
a “0” in the signature. �e resulting pa�ern is essentially the mes-
sage mark m. �e procedure of embedding can be described as
�X (X) = X + �m.

4.3 Analysis
Suppose the DNNs (both watermarked and unwatermarked) are
�o -accurate the original dataset. A�er adding message marksm to
the dataset, a watermarked model f WMK can achieve an error rate
of �w error rate while a regular unwatermarked model f have an
error rate of �r . Note that we de�ne accuracy in the la�er case
to be classifying an input added with message mark �X (X) to the
remapped label �� (�). In that case, �w ⌧ �r . Suppose we have
N test samples {X1,X2, . . . ,XN } with labels {�1,�2, . . . ,�N }. �e
probability of classifying Xi to �i is 1 � �o . �e probabilities for
the two models to classify �X (X) to �� (�) are 1 � �w and 1 � �r
respectively.

�e probability for f WMK to classify all N test samples correctly
is (1 � �o)N (1 � �w)N . �e probability for f to classify all N test
samples correctly is (1 � �o)N (1 � �r)N . Apparently, even a well-
trained model cannot guarantee to classify all samples correctly
if N is large. �us we lower the requirement to allow at most �
errors. �e probability for f WMK to classify at least N � � samples
correctly (for samples both with and without message marks) is
given by the following:

(
�’

�=0

✓
N

�

◆
(1 � �o)N�� ��o) · (

�’
�=0

✓
N

�

◆
(1 � �w)N�� ��w)

Similarly, we have the probability for f :

(
�’

�=0

✓
N

�

◆
(1 � �o)N�� ��o) · (

�’
�=0

✓
N

�

◆
(1 � �r)N�� ��r)

5 EVALUATION
We follow the metrics in Section 3 and evaluate our method on
various neural network models and datasets.

5.1 Experimental Setup
We test our method on two widely used datasets: the MNIST
dataset which contains 60,000 28 ⇥ 28 black and white images
on hand wri�en digits [18], and the CIFAR-10 dataset which con-
tains 60,000 32 ⇥ 32 color images in 10 classes[19]. We trained and
tested LeNet[18] on MNIST, and VGG-16[20], ResNet-50[21] and
DenseNet-121[22] on CIFAR-10.

4

Table 2: Performance of the example watermarkingmethod
on di�erent models and datasets. �e classi�cation re-
sults are obtained from regular training set (Dtrain), test
set (Dtest) and training set embedded with message mark
(Dtrain

�m).

Dataset Model Dtrain Dtest Dtrain
�m

MNIST LeNet 99.17 98.99 0.10 (99.17) 1
LeNetWMK 98.41 98.48 98.38 (0.20)

CIFAR-10

VGG 99.97 93.07 0.0060 (99.93)
VGGWMK 99.96 92.86 99.94 (0.0020)
ResNet 100 94.53 0.022 (99.75)

ResNetWMK 99.99 94.25 99.98 (0)
DenseNet 100 94.73 0.022 (99.76)

DenseNetWMK 99.98 94.23 99.97 (0.0080)
1 �e accuracy is based on remapped labels �� (�) a�er adding message mark. �e
value in parentheses gives the percentage that the predicted class matches the true
label � .

Table 3: Con�dence intervals of classi�cation accuracy of
watermarked VGG16 models on CIFAR-10 obtained from 5
watermarking experiments.

Model Train Train w/ Marks
VGG 99.97 0.018 ± 0.065 (99.63 ± 0.95)

VGGWMKs 99.89 ± 0.08 99.87 ± 0.10 (0.032 ± 0.078)
Model Test Test w/ Marks
VGG 93.07 0.85 ± 0.25 (92.50 ± 1.81)

VGGWMKs 92.32 ± 0.39 92.20 ± 0.67 (0.83 ± 0.24)

5.2 Criteria
Before we move on to individual criterion, we would like to discuss
the generalizability of the behavior of one regular DNN to other
regular DNNs. Table 2 evaluates the classi�cation accuracy of a reg-
ular and a watermarked model on regular datasets and on datasets
embedded with message marks. �e datasets are embedded with
the same 128-bit message mark. We empirically obtain a magni-
tude that costs 0.5% in classi�cation accuracy. Note that for the
classi�cation accuracy of Dtrain

�m , the accuracy is calculated using
the �� (�) as the correct label. �e classi�cation accuracy of the
regular model on the embedded samples are below 0.1 % in all three
CIFAR-10 models, showing signs of reasonable generalizability.

5.2.1 E�ectiveness. Table 2 shows that all of the watermarked
models are able to �t the training set embeddedwithmessagemarks.
�e LeNet model slightly lags behind in the accuracy numbers due
to the huge model capacity di�erence between LeNet and the rest
of the models 2.

Table 3 shows that the e�ectiveness is consistent if we repeat
the experiment multiple times using di�erent message marks of
the same strength. We achieved an accuracy of 99.87± 0.10% on the
training sets with di�erent message marks Dtrain

�mk
. We could also

achieve an accuracy of 92.20± 0.67% on test sets embedded with

2LeNet only has 2 convolution layers with 6 and 16 channels respectively, in contrast
to the hundreds of channel and tens of layers present in the rest of the models.

signatures. �e relatively narrow con�dence interval shows that
success persists across di�erent sets of experiments.

For a strong proof of authorship, we need to show the probability
of f WMK and f exhibiting the expected behavior on a set of test
input. We will use the results derived from Section 4.3 on a set
of N = 32 test images with the maximum number of error � = 6.
�e probability of f WMK achieving that output is 0.933, while the
probability of f achieving that output is 2.35⇥ 10�51. If we tolerate
more errors by se�ing � = 10, the probabilities become 0.999 and
1.99 ⇥ 10�43 respectively. Since there is no cost associated with
makingmore queries, we can adopt even higherN for amore drastic
di�erence in the probabilities and a stronger proof of authorship.

5.2.2 Fidelity. In our experiment, all of the accuracy drops of a
watermarked DNN regular on test sets are within 1%. In the best
case, we achieve a drop of only 0.23%, as shown in Table 2.

In Table 3, we show that the watermarked models can achieve
a comparable accuracy on the test set Dtest . What is more, a�er
adding message marks to the test set to create Dtest

�m , the water-
marked model performs equally well. On the contrary, a regular
model will still classify the images to their original class labels. �e
neural network is able to generalize what it learns about water-
marking and apply it to Dtest

�m , data that it has not seen before.
�e results also show that the additional constraints caused by
watermarking are well within the model capacity of the models
and have negligible e�ects on their performance. �us the �delity
requirement is met.

Figure 3: Training accuracy of watermarked VGG16 model
on CIFAR-10 using message marks of di�erent length.

5.2.3 Payload. Figure 3 shows the performance of the exam-
ple watermarking technique with di�erent lengths of the message
(number of non-zero bits in the message mark). To keep the com-
parison fair, we use the same strength for all the message lengths.
As expected, the accuracy on regular training set drops as longer
messages are involved. But we are able to �t our model on all
of the training set embedded with signatures of di�erent lengths
with reasonable training accuracy. Overall, the results indicate
that our approach has a rather large tolerance for payload. Our
approach exhibits a clear advantage over the zero-bit watermarking
approaches.

5

Table 4: Classi�cation accuracy of VGGmodels onCIFAR-10
training sets embedded with di�erent message marks. �e
model VGGWMK#k is trained on the training set embedded
withmk .

m1 m2 m3 m4 m5
VGGWMK #1 99.84 0.23 0.19 0.92 0.23
VGGWMK #2 0.54 99.91 10.36 0.37 2.29
VGGWMK #3 4.04 9.19 99.45 5.48 2.97
VGGWMK #4 1.74 0.41 5.86 99.88 1.16
VGGWMK #5 0.56 0.33 0.20 0.29 99.94

5.2.4 False Positive Rate. �e false positive rates can be evalu-
ated using the watermarked models’ performance on regular train-
ing sets and test sets. Both Table 2 and Table 3 show accuracy close
to that of a regular model. We take this result as an indication of a
low false positive rate of our watermarking technique.

5.2.5 Security. Defending Against Tampering. Since our ap-
proach uses black-box based detection, any weight transposition
would not a�ect the validity of our watermark. �e watermark
is embedded in the fundamental functionality of the model. Any
other manual adjustment will either a) damage the watermark as
well as the classi�cation ability of the model, b) has li�le impact
on both. �us, given our threat model, we consider our approach
robust against tampering.

Defending Against Ghost Signature Attacks. We ensure the
uniqueness of our class mapping by adopting a PRG with our signa-
ture as the key. �ere is a probability of 1

(K�1)K for an a�acker Bob.
In the case of the CIFAR-10 dataset, the probability is 2.87 ⇥ 10�10.
In the extremely rare case where the a�acker Bob happens to be
able to �nd his signature that produces the same class mapping in
our example, then we need to check the probability of our model
classifying samples with Bob’s signatures correctly. If we do, then
Bob may be able to �nd a ghost signature. Table 4 shows the classi-
�cation accuracy obtained from DNN models trained with di�erent
message marks of the same length and strength. �e worst case
happens when model VGGWMK #2 is trying to classify message mark
m3, which achieved an accuracy of 10.36%. A possible cause of the
reason might be the similarity betweenm2 andm3, as VGGWMK #3
also classi�es samples withm2 with a pre�y high accuracy. Yet,
even if we consider the worst case, with N = 32 and � = 6 (see
Section 5.2.1), Bob still only stands a chance of 3.03 ⇥ 10�22. It
is a small enough probability to be considered successful defense.
One of the key assumptions is that we allow repetitively feeding
inputs. �e more inputs we compute, the bigger the gap will be
between the watermarked model and the regular model. Further,
we resorted to the simplest possible approach in this example im-
plementation. More sophisticated encoding methods, such as those
based on probabilities [11], can undoubtedly boost the robustness
of the method. For further security, on may also consider storing
the key on the device with secure key management protocols [23],
although it may involve di�erent key extraction processes.

6 CONCLUSION
In this paper, we analyze the scenario of watermarking DNNs for
embedded devices. We propose a black-box watermarking frame-
work, where we embed signatures by modifying the training set of
the DNN. We can build a strong proof of authorship by repeatedly
test the model using any input that incorporates the author’s signa-
ture. We demonstrate an example implementation of the framework
and evaluate it using popular image classi�cation datasets. �e
method is e�ective across multiple datasets and DNN architectures
and has a negligible impact on performance. It is also robust against
ghost signature a�ack and tampering a�ack.

7 ACKNOWLEDGMENT
�is work was supported in part by the NSF award CNS-1513306.
�e authors would like to thank the anonymous reviewers for their
valuable comments and suggestions.

REFERENCES
[1] J. Guo, H. Gu, and M. Potkonjak, “E�cient image sensor subsampling for dnn-

based image classi�cation,” in ISLPED, pp. 40:1–40:6, 2018.
[2] J. Guo andM. Potkonjak, “Pruning convnets online for e�cient specialist models,”

in CVPR Workshops, pp. 430–437, 2017.
[3] A. B. Kahng et al., “Robust IP watermarking methodologies for physical design,”

in DAC, pp. 782–787, 1998.
[4] G. � and M. Potkonjak, “Analysis of watermarking techniques for graph color-

ing problem,” in ICCAD, pp. 190–193, 1998.
[5] C. S. Collberg and C. D. �omborson, “So�ware watermarking: Models and

dynamic embeddings,” in POPL, pp. 311–324, 1999.
[6] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding watermarks into

deep neural networks,” in ICMR, pp. 269–277, 2017.
[7] E. L. Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching for remote

neural network watermarking,” CoRR, vol. abs/1711.01894, 2017.
[8] Y. Adi, C. Baum, M. Cissé, B. Pinkas, and J. Keshet, “Turning your weakness

into a strength: Watermarking deep neural networks by backdooring,” CoRR,
vol. abs/1802.04633, 2018.

[9] F. Hartung and M. Ku�er, “Multimedia watermarking techniques,” Proceedings
of the IEEE, vol. 87, no. 7, pp. 1079–1107, 1999.

[10] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital watermarking and
steganography. Morgan Kaufmann, 2007.

[11] B. D. Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: A generic watermarking
framework for IP protection of deep learning models,” IACR Cryptology ePrint
Archive, p. 311, 2018.

[12] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep
learning requires rethinking generalization,” in ICLR, 2017.

[13] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections
for e�cient neural network,” in NIPS, pp. 1135–1143, 2015.

[14] J. Guo and M. Potkonjak, “Pruning �lters and classes: Towards on-device cus-
tomization of convolutional neural networks,” in EMDL, pp. 13–17, 2017.

[15] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:
High con�dence predictions for unrecognizable images,” in CVPR, pp. 427–436,
2015.

[16] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in
deep neural networks?,” in NIPS, pp. 3320–3328, 2014.

[17] T. Xu, H. Gu, andM. Potkonjak, “Data protection using recursive inverse function,”
in FPL, pp. 1–4, 2015.

[18] Y. LeCun, L. Bo�ou, Y. Bengio, and P. Ha�ner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[19] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images,” tech. rep., 2009.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, pp. 770–778, 2016.

[22] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in CVPR, pp. 2261–2269, 2017.

[23] H. Gu and M. Potkonjak, “E�cient and secure group key management in iot
using multistage interconnected PUF,” in ISLPED, pp. 8:1–8:6, 2018.

6

