SYSTEM-LEVEL DESIGN GUIDANCE USING
ALGORITHM PROPERTIES

Lisa Guerra, Miodrag Potkonjak i, Jan Rabaey

Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California, USA

iC&C Research Laboratories, NEC, Princeton, New Jersey, USA

ABSTRACT - This paper introduces an approach which provides quantitative
information used to aid in making system-level design decisions such as algorithmic or
architectural selection. The method is based on the idea of identifying and using the size
and structural properties of algorithms, which affect design performance. These prop-
erties provide insight in the matching of an algorithm and a particular implementation
platform and a link between algorithms and architectures. An in-depth study of three
properties - concurrency, temporality, and regularity - is presented in the context of
ASIC area estimation. The underlying intuition behind them and quantitative defini-
tions are given. In addition, illustrations of their utility as estimators of implementation
performance are shown using both examples and empirical studies.

1. INTRODUCTION

Common system-level design decisions include the choice of algorithms for a
given functional specification, the partitioning and optimization of those algo-
rithms, and the selection of architectures. Case studies indicate that these choices
often improve performance by an order of magnitude or more [Pot93, Lid94].
When doing system-level design, it is thus important to be able to analyze the pos-
sibilities and trade-offs of high level decisions, before investing a lot of effort in
exploration at lower levels. Because of the size and complexity of the design space,
however, the designer often cannot adequately explore many of these possibilities.

Techniques which aid in more efficiently and quantitatively exploring the sys-
tem-level design space will become increasingly important and necessary. This
paper proposes an approach for providing such guidance in the system-level design
process. The underlying idea is that the performance metrics of a final design can
be traced to properties of the algorithm itself. The basis of this work thus involves
identifying, measuring, and collectively using the size and structural properties of
algorithms which affect design performance on different architectural platforms.
First, an overview of the approach is given, followed by a case study demonstrating
the use of properties for ASIC area estimation.

2. RELATED RESEARCH

Several previous works deal with analyzing properties on a set of applications to
provide design guidance for general purpose architectures. For example, Amdhal’s
law [Amd64] indicates the amount of speedup attainable on an algorithm by using a
parallel architecture. Locality and the 90/10 rule of thumb, convey the qualitative

0-7803-2123-5/94 $4.00 © 1994 IEEE
73

property of typical programs that 90% of execution time is typically spent on 10%
of the instructions [Knu71]. In the VLSI DSP domain, the qualitative observation
that many signal processing algorithms are regular, has motivated the development
of systolic and wavefront arrays [Kun88]. The use of algorithm properties has also
been proposed in the parallel computing research. Jamieson [Jam87] proposed a
characterization for parallel algorithms to be mapped onto parallel architectures. In
addition, Papaefstathiou [Pap93], described a framework for parallel software per-
formance prediction based on algorithm characterizations. In hardware-software
codesign research, use of several metrics for guiding partitioning has also been pro-
posed (e.g. [Tho93]).

In this work, a comprehensive and organized treatment of structural properties
is presented. The properties form the basis of a unified methodology for system-
level design guidance. Previous works have dealt primarily with homogeneous
resources (e.g. ALUs), while here a heterogeneous mix of resources is supported.
Also, the approach is completely based on using quantitative definitions of all the
properties. Quantification of the temporal density, concurrency, and regularity mea-
sures are presented in this paper. An overview of the approach follows.

3. DESIGN GUIDANCE ENVIRONMENT

The goal of the proposed environment is to provide quantitative design guid-
ance (Figure 1). Design guidance involves aiding in tasks at the system-level such
as algorithm and architecture selection. For these tasks, performance predictions
(e.g., cost, throughput) are used to compare design solutions as opposed to actually
performing the time-consuming hardware and software synthesis. Design guidance
also involves providing aid to hardware synthesis tasks (e.g., transformations, parti-
tioning). Other types of feedback include suggestions for architecture instruction
sets that are better suited for the algorithm, and identification of architecture sub-
components that are in high demand but short supply (or vice versa). Fulfillment of
these goals is the topic of ongoing research in our research group.

Design Guidance;

Algonthm — Cost
A
Structural ; w’/? 4
Modeling r Spead
Performance.— Property -3 &
Constraints Analysis Power
Extraction ‘\ e
Architectur& ™ Pamnsol?érglgstions
Architecture
Bottlenecks

Figure 1: Design Guidance using algorithm properties

Targeted applications are real-time DSP and numerically intensive applications,
including a variety of filters, transforms, elementary functions, and speech and

74

image subsystems. In terms of architectures, application specific datapath-intensive
architectures have been of primary interest so far, but the proposed methodology
and properties is being used for other DSP architectures as well (e.g. programmable
DSPs).

As mentioned in Section 1, the basis of the approach is that performance metrics
of a final design can be traced to properties of the algorithm itself. For example, the
number of operations is directly related to the implementation speed on single data-
path uni-processors. The suitability of an algorithm for a targeted application, how-
ever, is a function of not only size measures but also other structural qualities. This

Figure 2: Size versus Concurrency Structural Property

claim is well illustrated using the symmetric direct-form FIR filter of Figure 2a.
Figure 2b shows the filter after distributivity is applied to one of the addition-multi-
plication pairs. It is assumed that an ASIC implementation is being used, where
cach operation takes 1 control step and the required throughput is 4 control steps. In
both graphs, the critical path is 4, and all operations lie on the critical path. Note
that the original filter structure has 7 additions and 4 multiplications, while the
transformed one has the same number of additions but an additional multiply oper-
ation. With hardware sharing, the implementation of Figure 2a requires 4 adders
and 4 multipliers, while that of Figure 2b requires just 3 adders and 3 multipliers.
Although the transformed filter has a greater number of operations, it has a struc-
ture which can be implemented with fewer execution units. Use of the concurrency
measure (Section 4.1) could aid in selecting between the two structures, or could be
used to guide the transformation from the first to the second.

We propose the following set of properties for algorithm characterization. While
the set is not claimed to be exhaustive, it has provided a good starting point from
which to build our framework:

®m Size measures includes quantities such as the number of nodes, the bitwidth, the
number of i/o operations, and the number of memory accesses.

75

m Timing freedom and structural freedom are quantified through measures such as
the ratio of sample rate to the critical path, the number and types of nodes on the
e-critical network, and various statistics of the scheduling slack.

m Uniformity captures the degree to which operations and interconnect accesses
are evenly distributed in time over the course of the computation.

m Concurrency measures the number of operations and interconnect accesses. that
can be executed concurrently.

®m Temporality captures information about the lifetimes of variables in the compu-
tation. A computation is considered to be temporally local if the expected life-
times of the variables are short. It is temporally dense if the measured maximum
expected number of variables alive at any time is large.

m Spatial locality characterizes the degree to which the algorithm has natural clus-
ters of computation, within which significant amounts of computation can be
done independently.

Regularity captures the degree to which common patterns appear.

Cyclic properties involve measuring various characteristics of cycles such as the
iteration bound and percentage of nodes in cycles.

m Control flow properties involve determining the structure and interaction
between loops, and properties related to multi-threaded implementations.
The properties themselves are independent of any particular implementation
platform, and characterize only the computation. The architecture however, deter-
mines which properties are relevant for a given design guidance task.

4. CASE STUDY: Early Estimation of Custom ASIC Area

The properties and the general methodology for using them within a design
guidance framework is best introduced through examples. This section thus looks

. |

v Component Relevant Properties
g Register EXU operator concurrency, size
t Register temporal density, size
I‘ LI

operator & interconnect

? Interconnect concurrency, regularity, size

Interconnect

Figure 3: Custom ASIC implementation platform and relevant properties

at the properties in the context of one design guidance task, early estimation of cus-
tom ASIC implementation area. The hardware platform of interest is shown in Fig-
ure 3 and consists of hardware-shared execution units, registers, and interconnect.
A finite state machine based controller is used to drive the datapaths.

The following sub-sections consider the estimation of each of the datapath com-
ponents, and the properties that are relevant for their estimation. In particular, the

76

relations between components and properties that have been established are shown
in Figure 3.

4.1 Operator Concurrency

The execution unit area depends on both the number of units of each type, and
the area of each unit. The latter is a function of the required operation word length,
which is a size property. The number of units is related to among other things, oper-
ator concurrency, which will be the focus of this section.

The operator concurrency measures the expected number of operations that
must be simultaneously executed.The first step in its calculation involves construct-
ing a distribution graph, which quantifies an expected number of operations to be
executed in each clock cycle. Paulin first proposed and used information from such
graphs in force directed scheduling [Pau89]. As the exact times in which each oper-
ation will be executed is not known until after scheduling, it is necessary to deter-
mine the probability that the operation will be executed in a particular time step.
One solution [Pau89] is to assume that it is equally likely that an operation, x, be
executed in any of the time slots between its as-soon-as-possible (ASAP,) and as-
late-as-possible (ALAP,) times. In this case, for ASAP; <t < ALAP;,

S 1 . L.
the contribution ALAP, ~ASAP,+1 is made by an operation i

to each time slot t <k <t+ Duration;. The values of the distribution graph are
the accumulation of the contributions from all operations of the specified type.
From the distribution graphs, several operation concurrency metrics can be
measured. One measure is the maximum height of the distribution graph. This is an
approximation of the maximum number of operations that need to be executed
simultaneously, which therefore relates to an approximate number of required
resources. Another measure is maximumheight’ = Max(1,maximumheight). This is

50 " v v 3
z 40t
=
-
= 301
2
g 20t
=
Z

10}

0 A i L

0 10 20 30 40

Concurrency Measure

Figure 4: Actual Number of Units versus Maximum Height

used since the number of units must always be at least one. Also of interest is the
variance of the distribution graph, a uniformity measure, which while not relevant

77

for execution units, indicates the potential of transformations which target alter-
ations of ASAP and ALAP times (e.g. retiming).

An empirical study was conducted to detect the trends between actual numbers
of units in implementation, and the measures. For each of 140 examples, the mea-
sures were computed, then the number of units was determined using the HYPER
[Rab91] synthesis system. The scatter plot of Figure 4 shows the strong correlation
that exists between the max height and the actual number of units. For each design,
the sums of the maximum heights for each hardware class was used. The linear cor-
relations of the total number of units to the sums of maximum height, and sums of
maximum height’ were 0.92 and 0.93, respectively. This demonstrates that a clear
relation between the property and performance metric exists. Accurate performance
models, however, will be a function of more complex groups of properties.

4.2 Temporal Density

The register area depends on both the number of registers, and the area of each.
The latter is a function of the required bitwidth. This section concentrates on the
description of the temporal density property measure for predicting the number of
registers.

The temporal density measures the maximum expected number of variables that
must be simultaneously kept alive. The first step involves estimating the variable
lifetimes. The operator execution times determine the lifetimes of the variables, but
are not known until scheduling is performed (at which point the left edge algorithm
[Kur87] could be used to determine the number of registers). At this level, however,
a heuristic measure is defined instead, which approximates the expected lifetime
distributions of the variables in the flow graph. For these calculations, operations
are assumed to have equal probability of executing in any of its valid time slots.
The lifetime of each variable v is approximated from the expectation of the execu-
tion times of its production and consumption nodes. The expected start and end
times are calculated using the following formulas:

ExpectedStart, = 0.5 X (ASAP_+ ALAP) + Duration, , 1)
ExpectedEnd, = Max (0.5 x (ASAP, + ALAP) +Duration) 2)
Y€y

where x is the producer node, and y; ¢ y are the consumer nodes.

A cyclic lifetime graph displaying the lifetimes of all variables in the graph is
then constructed. The temporal density measure is defined to be the maximum
number of variables that cross a vertical line situated at any time t,

An empirical study was conducted to detect the trends between actual numbers
of registers, and the temporal density measure. The scatter plot of Figure 5 clearly
indicates a strong correlation between temporal density and the number of registers

78

in the final implementation. Accurate performance models are likely to be a func-
tion of just the temporal density measure.

g 150} N .
£ Linear Correlation
& =0.97
% 100 L]
B 4
8 .
E ..
z 0r Lk 1
0 £ TR TR 2
0 20 40 60 80 100 120
Temporal Density Measure

Figure 5: Number of Registers versus Temporal Density Measure for 40 Examples

4.3 Regularity

Often the largest component of semi-custom ASIC implementations is the inter-
connect area, which consists of not only wiring, but also the supporting muxes,
buffers, and white space introduced. This area depends on the bitwidths of the data-
paths, number of each interconnect element, and amenability of the design to com-
pact routing. Several algorithmic properties are good predictors of the later 2
elements of interconnect area. These are regularity, which is related to the descrip-
tive complexity of the graph, operator concurrency, and interconnect concurrency,
which is similar to concurrency of execution unit accesses considered previously.
Concurrency for interconnect can be derived by substituting transfer operations for
execution units in the previous treatment of Section 4.1. This section will concen-
trate on the introduction and description of the regularity property measure.

The influence of regularity on physical layout characteristics has been observed
by several high level synthesis groups [Not91, Ra092]. Regularity has only been
treated qualitatively until now, and the exploration of its potential is in an early
phase.We define regularity using the following simple formula:

. Size
Regularity = Descriptive Complexity 3
The size component is the number of operations and data transfers executed in
the computation. The descriptive complexity is a measure of the shortest description
from which the graph can be reproduced. A regular graph has repeated patterns of
nodes and interconnections, and can thus be concisely described. The inverse pro-
portional relation is defined since lower complexity implies higher regularity. It is
also necessary to consider how complexity scales with the size of the computation.

79

The proportional relation is established since complexity is a function of the size of
the graph being described.

Motivated by the underlying ideas in descriptive complexity of strings (Kol-
mogorov complexity) [Li90], a measure of graph complexity has been developed.
Given an encoding scheme (language by which to describe the graph and a measure
of the length of a program), the complexity of a graph is defined as the length of the
shortest program which can represent the graph.

Description of a graph involves describing the types and numbers of nodes, and
the exact interconnections between them. A pseudo-descriptive language was
developed for this purpose. The pseudo language has 2 primary instructions: instan-
tiate and connect. The instantiate instruction takes 2 parameters - the operation to
instantiate, and the number of instances of that operator that are desired. If the oper-
ator is not a primitive of the language (i.e. templates, loops, subgraphs), then the
operator must be described using basic elements of the language.

For a given graph, there exist a number of programs that can describe it, some
being more compact than others. Consider the graph of Figure 6. The Figures 6a -
6¢ show various descriptive versions of this graph, where the degree to which a
subroutine is used is indicated on the corresponding graphs. In each of the flow
graphs, a different number of patterns has been detected. A sample descriptive pro-
gram is shown for the second. The length of a program in this pseudo-descriptive

.define graph
instantiate(add,3);

g g g g g g g instantiate(multiply,3);
connect(al[l], m[1].L)
connect(a[2], m{2].L)
connect(a3], m[3].L)
instantiate(add_mult, 1)

.define add_mult
instantiate(add,1)
(@) Length=6 () Length=9 instantiate(multiply,1) (c) | Length =4
connect(ali], m[j].L)
.end_define add_muit
.end_define graph

Figure 6: Example of Language and Program Length

language is defined as the number of instantiate and connect statements. The origi-
nal cost of describing the graph if no patterns are detected is 6. The overhead asso-
ciated with detecting only a single pattern increases the cost to 9. The lowest cost is
4 (Figure 6¢), which is the complexity of the graph. The example of Figure 7
emphasizes the fact that the majority of complexity in graph descriptions is due to
the description of the interconnect structure. Both graphs of Figure 7a and 7b have
the same types and numbers of nodes. The fiat description of either graph is 10. The
interconnect structure of Figure 7a is much more regular, however, and thus allows
the efficient description of the graph.

Template matching techniques are clearly the tool of choice for the detection of
the common patterns that enable a concise description of a graph. The template
covering involves both template generation and hierarchical template covering. The

80

(a) Length=10 (b)Length=10 (c)Length=35

(d) Length= 11

Figure 7: Encoding Example: Majority of Complexity is in Interconnect Structure

objective function for the template selection is the encoding cost. The covering is
done hierarchically to capture the regularity at all levels of granularity.

Several examples that illustrate the underlying influence of regularity are pre-
sented next. The intuition is that high regularity corresponds to simple description
of the interconnections in the computation, which can translate into fewer types of
interconnections. First consider the two IIR filters of Figure 8. Both can be imple-

Figure 8: 4th order IIR structures: a) Regular version; b) Less Regular version

Structure Regularity Size N‘ému::: SOf NuMnLI;;rsof
Less regular version 245 49 8 4
Regular version 272 49 6 2

Table 1: Regularity for Interconnect Area - Two versions of a 4th order IIR filter

mented for a throughput of 10 control steps using 1 multiplier, 1 adder, and 1 trans-
fer unit. Interconnect requirements are shown in Table 1. The more regular version
indeed results in less busses and muxes. Consider next the well-known wave digital

) - . Number of | Number of | Number of
Structure Regularity Size Busses Muzxes Buffers
8th order Wave Digital 1.7 127 6 5 11
8th order Ladder 3.5 132 4 4 5

Table 2: Regularity for Interconnect Area - wave digital versus ladder structures

and ladder IIR filter structures. For filters of the same order, both have approxi-
mately the same size. The interconnect requirements are shown in Table 2. The
more orderly network of communications that is present in the ladder structure

81

translates into a simpler overall interconnect structure, regardless of its slightly
larger size.

5. CONCLUSIONS

This paper has presented a framework for system-level design guidance which
is founded upon characterization of algorithms by their properties. The case study
has illustrated relations that exist between ASIC area components and algorithmic
properties. In this context, the concurrency, temporal density, and regularity proper-
ties were presented. The presented work forms a foundation for extension to other
design metrics. For example, area prediction is in fact crucial for accurate power
prediction. Most of our work to date has concentrated on custom-ASIC implemen-
tations. The methodology is the same however, in generalization to other imple-
mentation platforms: for a given metric on a particular platform, a few relevant
properties are combined to construct a prediction as feedback to the user.

ACKNOWLEDGEMENTS :

This project is sponsored by a fellowship from AT&T and the Office of Naval
Research as well as ARPA grant J-FBI 93-153.

REFERENCES
[Amd64] G.Amdahl, G.Blaauw, EBrooks, “Architecture of the IBM System/360,” IBM Journal of
R&D,Vol. 8 No. 2,pp. 87-101, 1964.
[Jam87] L. Jamieson, “Characterizing Parallel Algorithms,” in The Characteristics of parallel algo-
rithms, L. Jamieson, D. Gannon, R. Douglass (eds.), MIT Press, Cambridge, Mass., 1987.
[Knu71] D. Knuth, “An Empirical study of FORTRAN programs,” Software Practice & Experience,
Vol. 1, No. 2, pp. 105-133, 1971.

[Kun88] S.Y. Kung, VLSI Array Processors, Prentice Hall, Englewood Cliffs, NJ, 1988.

[Kur87] F. Kurdahi, A. Parker, “REAL: A Program for REgister ALlocation,” Proc. 24th DAC, pp. 210-
215, 1987.

[Li90] M. Li, P. Vitanyi, “Kolmogorov Complexity and its Applications,” in Handbook of Theoretical
Computer Science, Jan van Leeuwen (ed.), pp. 187-254, MIT Press, Cambridge, MA, 1990.

[Lid94] D. Lidsky, J. Rabaey, “Low Power Design of Memory Intensive Functions Case Study: Vector
Quantization,” in VLSI Signal Processing, V11, IEEE Press, New York, 1994,

[Not91] S. Note, et al., “Cathedral-III: Architecture-Driven High-Level Synthesis for High Throughput
DSP Applications,” Proc. 28th DAC, pp. 597-602, 1991.

[Pap93] E. Papaefstathiou, D. Kerbyson, G. Nudd, “A Layered Approach to the Characterization of
Parallel Systems for Performance Prediction,” Performance Evaluation of Parallel Systems
Workshop, Coventry, UK, pp. 26-34, 1993.

[Pau89] P. Paulin, J. Knight, “Force-Directed Scheduling for the Behavioral Synthesis of ASIC’s,”
IEEE Trans. on CAD, Vol. 8, No. 6, pp. 661-679, 1989.

[Pot93] M. Potkonjak, J. Rabaey, “Exploring the DSP Algorithm Design Space using HYPER,” in VLS!
Signal Processing, VI, L. Eggermont et al., (eds.), IEEE Press, New York, pp. 123-131, 1993.

[Rab91] J. Rabaey, C. Chu, P. Hoang, M. Potkonjak, “Fast Prototyping of Data Path Intensive Architec-
tures,” IEEE Design & Test Magazine, Vol. 8, No. 2, pp. 40-51, 1991.

[Ra092] D. Rao, F. Kurdahi, “Partitioning by Regularity Extraction,” Proc. 29th DAC, pp. 235-238,
1992.

[Tho93] D. Thomas, J. Adams, H. Schmitt, “A Model and Methodology for Hardware-Software Code-
sign,” IEEE Design & Test of Computers, Vol. 10, No. 3, pp. 6-15, 1993.

82

