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Abstract

Built-In-Self-Repair (BISR) is a hardware redundancy fault tolerance technique, where a set
of spare modules is provided in addition to core operational modules. Until now, the application
of BISR methodology has been limited to situations where a failed module of one type can only
be replaced by a backup module of the same type. This paper shows that in ASIC designs it is
possible to enable replacement of modules of different types with the same spare units by exploit-
ing the flexibility of high level synthesis solutions. Resource allocation, assignment and schedul-
ing techniques that support a new BISR methodology are presented. All mentioned high level
synthesis algorithms are developed on top of the HYPER high level synthesis system, using a
novel statistical methodology for heuristic algorithm development and improvement. The effec-
tiveness of the approach is verified and yield improvement data is presented for numerous real-
life examples.

1.0 Introduction

BISR is a hybrid redundancy technique where a set of backup parts are provided in addition to
N operating modules. As the complexity of chip designs increases, fault tolerance techniques
such as BISR play an increasingly important role in reliability and yield improvement efforts.
Furthermore, because of the unabating rise of semiconductor manufacturing costs, optimization
of process yields becomes even more important, making process improvement techniques such
as BISR crucial.

BISR sparing methodology is a conceptually simple, yet powerful technique for increasing
yield by adding redundant modules to the design. If a chip is found to have defective modules,
these modules can be replaced by good ones before packaging. Similarly, these same BISR
methods can also be applied to improve chip reliability. Chips can be made more fault tolerant to
failures that occur during operation, by automatic replacement of failed modules with spare
ones, so that the overall system can continue to function correctly. This is especially important
for military systems or space exploration missions where it is critical that there are no system
failures, since manual replacement of failed modules is either impossible or prohibitively expen-
sive.

The main target for BISR techniques are systems that are bit-, byte-, or digit- sliced. This
application area includes memories [Moo86], which are made from a set of bit planes, and arith-
metic-logic units (ALUs), assembled from ALU byte slices [Sie92]. The bit-sliced BISR in
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memories significantly increases memory production profitability. A simple, yet powerful meth-
odology for ALU byte slices implementation was proposed by Levitt et al. [Lev68]. The shadow
box fault tolerant method is another BISR technique which has recently been extended to sec-
ondary memory storage [Pat88].

Massive parallelism is another area where BISR is starting to play a crucial role. And this area
will become increasingly prominent, as concurrent computations becomes more popular For
example, Griffin et al. [Gri91] recently designed an 11 million transistor neural network execu-
tion engine, which has a triple-level redundancy structure resulting in the consumption of an
additional 2.8 million transistors for BISR.

In wafer scale integration, BISR also plays a prominent role. In a highly integrated ULSI sys-
tem which contains both DRAM and SRAM as well as uncommitted gate array [Sat92], statisti-
cal studies showed that the BISR technique cailed Interchip Relief significantly improved the
yield.

Finally in systolic arrays designs, the role of BISR techniques has also been analyzed though
mostly from a theoretical and statistical point of view [Lei85, Neg89]

Although BISR techniques are widely used, they have not received appropriate attention in
ASIC design. This paper introduces a novel concept of BISR for ASIC designs, which is directly
built on the flexibility provided by high level synthesis during design space exploration. A vari-
ety of design goals have been addressed in high level synthesis [McF90] with emphasis, how-
ever, mainly on area and speed optimization. More recently, other important goals, such as
power and testability have also been addressed. High level synthesis research for fault tolerant
computing and design remains limited, and has primarily concentrated on designs where self-
recovery from transient faults using micro roll-back and checkpoint insertion is explored
[Kar92].

2.0 Hardware Model and Problem Statement

The hardware model being considered is shown in Figure 1 [Rab91a]. To stress the impor-
tance of interconnect minimization early in the design process, this model clusters all registers in
register files, and connects them only to the inputs of the corresponding execution units. We also

A 4

EaliE

EXU EXU

L1

Fig. 1. Hardware Model: Interconnect-Regfile-Exu

assume that there is no bus merging, so that there exists a dedicated interconnect connecting any
two units between which there are data transfers. Faults can occur in either an execution unit, a
register file, or a bus. Under this hardware model and these assumptions, all faults can be classi-
fied as execution unit faolts. A faulty register file prevents its corresponding execution unit from
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receiving data, and thus has the same affect as a fault in the execution unit. Similarly, a faulty
interconnect can be treated as a failure in the execution unit at the receiving end. Although we
will concentrate on this model and show that BISR design using this hardware model results in
low area overhead, the high level synthesis BISR techniques presented here are general and can
be adapted to other hardware models.

The BISR synthesis problem statement can now be defined within this framework as follows:

Given a computation, an underlying hardware model, and an execution time bound
tavail, Synthesize a minimum area semi-custom hardware implementation, so that up to
K hardware units can be faulty.

If these techniques are used for fault tolerance against permanent faults, it is assumed that an
error checking mechanism exists, and if they are used for yield enhancement, it is assumed that
manufacturing testing will detect the faulty units. In either case, the controller is reconfigured
upon detection of a fault. The controller is assumed to be reprogrammable or to lie on a chip sep-
arate from the datapath. [Che92, Yeu92] are typical examples of this type of system.

3.0 High Level Synthesis for BISR: Introduction and Motivation

One of the most straightforward approaches to BISR would be to provide a spare for each
hardware instance, resulting in full duplication of the hardware. In this case, the number of addi-
tional units needed would be N, where N is the number of units required for the non-BISR
implementation. However, the BISR overhead need not be so high. If the number of faulty units,
K, is 1, for example, the high level synthesis assignment step provides us with the flexibility
under which only 1 spare for each hardware class is necessary, as opposed to one spare per hard-
ware instance. The operations from the failed unit will be transferred to the spare of the same
type. The number of additional units needed in this case is M, where M is the number of hard-
ware classes, M < N.

The flexibility gained through assignment clearly reduces the amount of hardware redun-
dancy needed. Considering now the additional flexibility brought by scheduling, we can often
use even fewer spares. This is possible since assignment and scheduling enable the ‘replace-
ment’ of a module by a spare of a different type. When a failed unit is detected, instead of reas-
signing only those operations of the failed unit, we completely reassign and reschedule all the
operations of the computation.

The following example (Fig. 2) illustrates the motivation and main ideas about how BISR
overhead can be greatly reduced by addressing the use of alternate schedules and assignments to
alleviate the need for a given failed unit. This example, for K=1, shows the imaginary part of a
complex number multiplication with a constant and with a variable. Multiplication with a con-
stant is such that it can be done using a single shift. The assumed available time is 3 control
cycles, and each operation takes one control cycle. The minimum hardware required for this
computation consist of 2 shifters, 1 multiplier and 1 adder. If scheduling flexibility is not
exploited, the minimum BISR hardware will be 3 shifters, 2 multipliers and 2 adders. However,
if we allocate only 2 shifters, 2 multipliers and 2 adders, we still can achieve a complete BISR
implementation by altering the schedule. This can be verified by the schedules for all three com-
binations of failed units given in Table 1. An important point to note is that NO additional
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Fig. 2. Scheduling and Assignment for BISR:
motivational example

shifters were needed. In the event of a shifter failure, the scheduling flexibility brought by the
redundant multiplier is exploited to absorb the need for another shifter.

Failed Unit Adder Shifter Multiplier
Control >> * + >> * + >> * +
Step
1 AB D,E A D,E AB
2 C B F E-
3 F

Table 1: Schedules for Example of Fig. 2
4.0 Allocation, Assignment, Scheduling for BISR Designs

In this section, we briefly explain the new high level synthesis algorithms for BISR. A
description of standard high level synthesis notation and methodology can be found in [McF90,
Cam91). Allocation, scheduling and assignment are highly interrelated tasks which are each NP-
complete. These tasks have been solved using a wide range of algorithmic strategies. The global
strategy of the HYPER high level synthesis system [Pot89] is well suited for use as the starting
point for the development of new high level synthesis algorithms targeting BISR. 'In this sys-
tem, allocation first proposes a hardware solution, then assignment and scheduling are per-
formed to check the feasibility of the solution. To take into account the peculiarities dictated by
BISR requirements, it was neccessary to develop a new allocation scheme. Note that for any pro-
posed allocation solution in BISR synthesis, it is necessary to assure that assignment and sched-
uling can succeed for all combinations of K failed units. This motivated the development of
heuristics for ordering the attempted schedules and for look-ahead pruning of allocations. The
pseudo-code for the global flow of the algorithm is presented below.

A sharp minimum bound, M;, on the necessary amount of hardware of each class j is used as
the initial allocation. M is defined as: M. = m+ K, where m; is a minimum bound on the
amount of hardware j necessary for any non fault-tolerant implementation and K is the number
of faults. For each hardware class j, relaxed based scheduling techniques [Rab91b] are used to
derive an estimate of m;. The equation for M; can be understood by observing that any imple-
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GetInitial Allocation();

While TRUE {
SortInDecreasingOrderOfStress(Ordered_HW);
foreachj € Ordered_ HW {

Success = Assign and ScheduleWithFailedUnit(j);
if (1Success)
break;

}
UpdateStress();
if (1Success)
GetNewHWUnit();
else
RedundancyRemovalWithLook AheadPruning();

mentation requires at least m; units, and since up to K units of type j can be bad, at least (m; + K)
units are needed.

If the initial allocation fails, the allocation expansion phase is entered, where new hardware
units are added one by one until the allocation succeeds. Units are added in accordance with
their area cost and likelihood that the new solution will be feasible. At the completion of the
expansion phase, there is no guarantee that the feasible allocation A, is minimal. It is possible
that a subset of the allocation, A' C A is also a solution. To assure that a local minimum has
been reached, it is necessary to assure that if any units are removed from the current solution, a
success cannot be achieved. In general, the units with high cost and small demand, as indicated
by the scheduling and assignment program, are the first to be tried for removal. Here however, to
increase the efficiency of the algorithm, a look-ahead scheme is used in which data from previ-
ously failed allocations is used to prune new allocations before they are tried.

For a successful allocation, all schedules where any combination of K resources is faulty must
succeed. We thus order the schedules in decreasing order of difficulty, so that we can exit as fast
as possible in the event that there is an insufficient BISR resource allocation. The ordering is
based on a heuristic global stress measure, where schedules for the failure of the most highly
stressed units are tried first. The global stress function has three intuitively appealing, experi-
mentally observed and statistically validated parts: (i) Resource Utilization Factor, (ii) e-Critical
Network Stress, (iii) and Scheduling Stress.

The stress functions are highest for resources which are in the highest demand. Resource Uti-
lization Stress captures the idea that scheduling under the premise that a particular resource type
will have resource utilization close to 100% is rarely feasible. The e-Critical Network Stress
expresses the observation that resources for operations that lie on the critical path of computa-
tion or on paths which are almost as critical are particularly important. The &-critical network
consists of all paths which have lengths within a small £ percentage of the critical path length.
The Scheduling Stress assembles statistical data about the observed difficulty for scheduling the
various types of operations during previously attempted schedules. The global stress is a nonlin-
ear combination of these three factors, with statistically derived weighting parameters. A
detailed description of all algorithms and functions is presented in [Gue93].
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5.0 Experimental Results and Yield Enhancement Analysis

The BISR techniques were validated on the set of examples shown in Table 2. The table
shows all relevant data for the standard and the BISR synthesis procedures. Note that although
the different forms of the 8th order Avenhaus filters provide the same functionality, they have
drastically different structures and sizes. The average and median BISR design area overhead
over all examples was 19.1% and 16.6%. Note also that although the initial implementations of
all examples had 4 different types of hardware units, an average of only 2.58 additional units
were needed for the BISR designs.

Non- BISR Area
Exampie IU FU NT BISR Area Overhead
Area (%)
Jaumann 5 8 4 4.39 7.07 61.0
5th WDF 6 9 4 143 1.73 21.0
8IIR DFa 7 10 4 8.06 10.86 347
8IIR GMa 8 9 4 4.84 4.95 2.3
TIRa 9 11 4 18.18 23.76 30.7
8IIR GMb 9 12 4 6.66 6.88 33
8IIR P 9 12 4 2.23 2.55 14.4
8lIR C 9 12 4 4.24 4.69 10.6
SIIR 11 14 4 455 5.56 222
7IIRb 17 19 4 447 492 31
8IIR DFb 23 26 4 19.81 21.20 7.0
Wavelet 30 32 4 22.05 26.19 18.8

Table 2: Results on 12 benchmark examples: U - # of EXU units in non-BISR
Implementation; FU - # of EXU units in BISR implementation; NT - # of hardware
classes; Jaumann - Jaumann LDI filter; 5th WDF - 5th order elliptical wave digital
filter; 8IIR DFa & 8IiR DFb - 8th order bandpass HR direct form filter for two
different set of timing constraints; 7liRa & 7IIRb - 7th order low pass IIR filter for
two sets of timing constraints; 8lIR GMa & 8IIR GMb - 8th order bandpass IR
filter Gray Markel form for two sets of timing constraints; 8IIR P & 8lIR C - 8th
order lIR filter parallel and cascade form; and Wavelet - Wavelet Transform

In Table 3, consequences on yield and productivity are presented. Yield, which is defined
as the percentage of functional dies on a wafer, is an important parameter, but it is not the only
indicator of wafer productivity. The redundant circuitry will in general increase the design area
and thus reduce the number of chips which can be placed on a wafer. The productivity of BISR



Session 3: Fault Tolerant Structures

methodology can be obtained by dividing the relative change in yield by the relative change in
area. To calculate the yield increase we used the following formula [Sta92]:

-1 . —-m-1 5 =
_ - +i = n-m p+jY/(1-1,)
¥opn = (”)Y’”( u _) 1-7 —T__-)
mn = \m )1 ll:[ou+iY1 x (-1 jH L+mY, +j¥;

=0

Stapper’s formula calculates the probability that exactly m out of n mod_ul_es operate correctly
for a given value of the variability parameter p and single module yield, Y1. A slight modifica-
tion is made to the formula to take into account units of largely different areas.

Although this procedure primarily targets BISR memory design, it has been demonstrated that
the models can be successfully used for datapath analysis [Kor84]. The parameter | gives an
indication of the assumed probability of clustered defects, which are the most common sources
of chip malfunctions. Large values of p correspond to smaller levels of clustering, and therefore
lower processing variability [Sta92]. On all examples (except the smallest one in terms of execu-
tion units), and for all values of p, there is a clear improvement in relative productivity.

Yield Productivity
Example

p=0.5 | p=1. p=2. p=5. | p=Inf | p=0.5 | u=1. pn=2. u=5. | p=Inf

Jaumann 1329 | 13.78 | 14.16 | 1443 | 14.27 | 0.825 | 0.856 | 0.880 | 0.896 .| 0.886

5th WDF | 13.76 | 1447 | 15.13 | 1582 | 1648 | 1.137 | 1.196 | 1.250 | 1.307 | 1.362

S8IIR DFa | 14.06 | 1491 | 15.76 | 16.79 | 18.25 | 1.043 | 1.107 | 1.179 | 1.246 | 1.355

8IIRGMa | 16.62 | 1842 | 20.50 | 23.52 | 30.02 | 1.624 | 1.800 | 2.004 | 2.299 | 2.934

TIIRa 1534 | 1667 | 18.19 | 2037 | 25.24 | 1.174 | 1.275 | 1.392 | 1.559 | 1.931

8IIRGMb | 1440 | 1539 } 1647 | 17.95 | 20.90 | 1.394 | 1.490 | 1.594 | 1.738 | 2.023

8IIR P 1440 | 1539 | 1647 | 1795 | 2090 | 1.259 | 1.345 | 1.440 | 1.569 | 1.827

8IIR C 1440 | 1539 | 16.47 | 1795 | 20.90 | 1.302- [ 1.391 | 1.489 | 1.622 | 1.889

SIIR 1454 | 1561 { 16.80 | 18.56 | 22.74 | 1.190 | 1.277 | 1.375 | 1519 | 1.861

7IIRb 1507 | 1632 | 17.82 | 20.24 | 28.65 | 1461 | 1583 | 1.729 | 1953 | 2.779

S8IIRDFb | 14.54 | 15.62 | 16.89 | 1898 | 27.69 | 1.359 | 1460 | 1.579 | 1.774 { 2.588

Wavelet 1467 | 1576 | 17.08 | 19.30 | 30.50 | 1.235 | 1.327 | 1.438 | 1.625 | 2.179

Table 3: Yield (in %) and Relative Productivity change for examples from Table 2
for various values of the variability parameter p.. The Initial yield is 10%.

The results and discussion presented here are for the number of faulty units, K, equal to 1.
Handling larger values of K does not introduce any new conceptual ideas, and modifications are
straightforward. Larger values will place an exponential strain on the number of different sched-
ules to be generated. It has been shown, however, that in general as K increases, the improve-
ment in the relative productivity can give diminishing retumns, and can even produce lower

47



48

International Workshop on Defect and Fault Tolerance in VLSI Systems

productivity [Sta92]. An interesting issue for BISR design is the selection of the value of K
which gives the optimal effective yield, as a trade-off between resilience to failure and hardware,
overhead.

6.0 Conclusions

BISR is a powerful and widely used fault tolerance technique. It will become more important
especially with the increase of massive parallelism. However, until now the scope of BISR has
been restricted to the substitution of operation modules with only those of the same type:. We
have presented high level synthesis techniques which support a new BISR methodology for
ASIC designs. This new. BISR methodology exploits the flexibility of the design solution space
so that resources of several different types can be backed up with the same unit. Experimental
results and yield and productivity calculations indicate the strong potential of this new techmque
for yield and rehablhty improvement in future highly.integrated ASICs.
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