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ABSTRACT

Recently, several high level synthesis approaches have
been proposed to synthesize testable data paths from
behavioral specifications. This paper introduces a novel
technique to transform behavioral specifications, such that
an existing behavioral test synthesis system can generate
area-efficient, testable designs with significantly lower
partial scan overhead. Experimental results demonstrate
the significant savings in partial scan overhead when the
transformation is applied before using the behavioral test
synthesis system to synthesize 100% test-efficient
designs.

1.0 INTRODUCTION

Recently, several high level synthesis approaches have
been proposed to generate easily testable data paths for
both Built-In-Self-Test (BIST)-based testing methodology
[Pap91,Avr91,Har93,Avr93], and Automatic Test Pattern
Generation (ATPG) methods [Che92, Maj92, Lee92,
Lee93, Dey93, Dey94]. Testability improvement using
register assignment and scheduling were reported in
[Lee92]. Chen and Saab [Che92] used a high-level
testability analysis program to identify testable structures
and synthesize them to improve testability. An approach to
generate testable data paths, by minimizing the number of
self-loops, was reported in [Maj92].

It is known that presence of loops in a sequential circuit
makes sequential ATPG very difficult. A partial scan
approach which breaks all loops, except self-loops, by
scanning a subset of flip-flops [Che90, Lee90, Chi91], has
evolved as a cost-effective solution to the sequential
ATPG problem. A circuit synthesized from behavioral
specification has a natural tendency to contain loops,
partly due to the presence of loops in the Control-Data
Flow Graph (CDFG) corresponding to the behavioral
specification, and partly due to hardware sharing used to
optimize hardware resources like execution units.
Description of the high level synthesis tasks, like
allocation, scheduling and assignment, involved in
synthesizing RT-level designs from behavioral
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descriptions, can be found in [McF92,Wal91]. Several
techniques have been suggested to synthesize data paths
without loops, by using proper scheduling and assignment,
and scan registers to break loops [Lee92, Lee93, Dey93].
It has been demonstrated that it is possible to generate
designs which do not compromise resource utilization
while significantly reducing the partial scan overhead by
paying early attention to formation of loops in the data
path [Dey93]. However, until now, the influence of only
two high level synthesis tasks, scheduling and assignment,
on the testability of the design has been explored.

This paper explores the relationship between the
behavioral specification, or the CDFG, and the testability
of the design synthesized by high level synthesis. It is
shown that if the original CDFG is transformed by the
technique introduced in the paper, the partial scan
overhead required to synthesize a testable design from the
transformed CDFG may be significantly less than the
partial scan cost associated with the original CDFG. This
paper introduces a novel technique to transform the
original specifications, such that an existent high level
synthesis for testability technique can generate area-
efficient, testable designs at significantly lower partial
scan overhead. Experimental results demonstrate the
significant savings in partial scan overhead when the
transformation is applied before using the high-level
synthesis for testability technique to synthesize 100% test-
efficient designs.

1.1 Transforming Behavioral Specification

Computational transformations alter the structure of
control-data flow graph (CDFG) so that the functionality
of the initial specification is maintained [Wal91, Fis88].
They may be applied on different levels of control-data
flowgraph (CDFG) hierarchy; popular transformations
include loop transformations such as loop fusion and
fission, loop interchange and software pipelining as well
as transformations at operation level (e.g. substitution of
multiplication with constants by series of addition and
shifts). Basic block transformations are applied on flat
graphs (which are either at the lowest level of CDFG
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hierarchy or flat CDFGs themselves) and consider a
number of operations simultaneously. Transformations
have been applied for optimization of a great variety of
goals, including area, throughput, power and fault
tolerance. This paper introduces a transformation aimed at
optimizing the partial scan cost for synthesis of testable
designs.

Many operations used in a computation specification has
an identity element associated with it. For instance, an
addition operation has an identity element zero, while a
multiplication operation has an identity element one. If
one of the inputs of an operation is v, and the other input is
the identity element of the operation, then the output of the
operation remains v. Adding such an operation op between
two operations op; and op, has the effect of deflecting the
result of op to op, before reaching op,; hence, we term
such an operation a deflection operation. A deflection
operation can be added anywhere in a behavioral
specification (CDFG), without changing the functionality
of the computation. Adding such an operation op between
two operations op; and op, has the effect of deflecting the
result of op, to op, before reaching op,. In particular,
adding a deflection operation after a variable v has been
computed, keeps the behavior invariant, because the
output of the deflection operation is also v.

Techniques using duplicate operations, called hot potato
techniques, have been applied earlier in the computer
networks domain [Bar64], and pipeline optimization
[Pat78]. In this paper, we introduce a new transformation
technique, termed hot potato technique, based on adding
deflection operations to the CDFG, while preserving the
functionality of the computation. The transformation
technique is used to facilitate an existing behavioral test
synthesis system BETS [Dey93] to produce a testable
design at a significant saving in the associated partial scan
overhead

2.0 MINIMIZING PARTIAL SCAN OVERHEAD
BY TRANSFORMATION

We assume that the underlying hardware model used is
the dedicated register file model. This model assumes that
all registers are grouped in certain number of register files
(each register file contains one or more registers) and that
each register file can send data to exactly one execution
unit. At the same time each execution unit can send data to
an arbitrary number of registers files. This model is used
not just in a number of high level synthesis systems
[Rab91], but also in many manual ASIC and general
purpose data paths [Pat89]. In all motivational examples,
for the sake of simplicity, it is assumed that all operations
take one control step for their execution.

A data path synthesized from a behavioral specification
may contain the following types of loops: CDFG loops,
assignment loops, sequential false loops, and register file
cliques [Dey93]. A CDFG loop is formed in the data path
when there exists a cycle consisting of data-dependency
edges in the CDFG. The other types of loops are
introduced in the data path during behavioral synthesis,
specifically hardware sharing. A comprehensive analysis
of the formation of Ioops, in circuits synthesized by high
level synthesis techniques, is presented in [Dey93], and
will be briefly explained in Sections 2.1 and 2.4. The
synthesis for testability technique (SFT) presented in
[Dey93] first selects scan variables which can be assigned
to scan registers to break all the CDFG loops present.
Subsequently, it performs scheduling and assignment
while trying to avoid the formation of other types of loops
by reusing the selected scan registers. The SFT algorithm
has been implemented in the BETS behavioral test
synthesis system.

We demonstrate how the hot potato transformation
technique can be used to minimize the number of scan
registers needed to break CDFG loops, and avoid the
formation of other types of loops during assignment. The
original behavioral specification (CDFQG) is first
transformed by adding suitable deflection operations, so
that the number of scan registers needed to break CDFG
loops is minimized. Subsequently, a second set of
deflection operations are added so that the selected scan
registers can be effectively used to avoid formation of
loops during assignment. The SFT algorithm [Dey93],
implemented in BETS, is then applied to the transformed
CDFG to synthesize a testable data path with minimal
number of scan registers.

2.1 An Example

Consider the CDFG of the 3rd order Continued Fraction
IIR filter shown in Figure 1(a) [Mit72]. Addition
operations, subtraction operations, and multiplication
operations are denoted by +, -, and *, respectively. The
positive input of a subtraction operation is labeled by P. To
break the CDFG loops, the behavioral test synthesis
system BETS [Dey93] selects the scan variables (D1,+2),
(D2,+1) and (-2,*4), requiring 3 scan registers, as the
selected scan variables cannot be shared. Note that the
CDFG loops cannot be broken using fewer scan registers.
One miore scan register will is needed to avoid formation
of loops during assignment. Assume that each operation in
the CDFG takes one control cycle. Figure 1(a) shows the
schedule and assignment obtained by BETS [Dey93],
satisfying the available time of 7 control steps, and using
minimal number of execution units. For instance, the
operation +1 is scheduled in control step 3, and assigned to
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Figure 1: CDFG of the continued fraction IIR filter: (a) the original CDFG, and (b) the
transformed CDFG, after the addition of deflection operations
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Figure 2: The data paths synthesized by BETS [Dey93] for the CDFGs of Figures 1(a) and 1(b).
The scan registers are shown shaded.

adder A1, shown by the tuple (3,A1). The resultant data
path is shown in Figure 2(a). The selected scan registers to
break the CDFG loops are L3A1,L1A1,RA1, and RM1.

During the assignment phase, further loops can be
introduced. For instance, in the case of the CDEG in
Figure 1(a), both the operations +3 and +4 had to be
assigned to the same adder, thus creating an assignment
loop (RA1, PS,RA1) in the data path in Figure 2(a). When
the operations along a CDFG path from operation u to
operation v are assigned n separate modules, and u and v
are assigned the same module, an assignment loop of
length n is created in the data path [Dey93]. Though there
is no path in the CDFG from a “-” operation back to a “-”
operation through an addition operation, a loop,
(NS,RA1,NS) is formed in the data path in Figure 2(a).
This is a sequential false loop, introduced because -1 and
+1 are assigned to S1 and A1, while +3 and -2 are
assigned to Al and S1 respectively. A comprehensive
analysis of the formation of loops in the data path is
presented in [Dey93]. The scan register selected by BETS
to avoid the assignment and false loops during the
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assignment phase is RA1, for a total of 4 scan registers.
Note that scanning the 4 registers L3A1, L1A1, RM1 and
RAT1, shown shaded in Figure 2(a), leaves no loops,
besides self-loops, in the data path.

Figure 1(b) shows the transformed CDFG, derived from
the original CDFG of Figure 1(a) by adding deflection
operations -3, -4, -5, -6, and -7 (shown shaded). The
behavioral test synthesis system BETS [Dey93] is applied
to the transformed CDFG (Figurel(b)). All CDFG loops
can be broken by selecting the scan variables (D1,-5),
(+3,-4) and (D3,-3). All these scan variables can share the
same scan register. Addition of deflection operations
reduces the minimum number of scan registers required to
break all CDFG loops from 3 in the original CDFG to 1 in
the transformed CDFG. Moreover, all assignment and
false loops can be avoided by assigning the variables (*3,-
1) and (+3,-2) to the partial scan register selected, PS. The
data path generated by BETS is shown in Figure 2(b).
Note that if the register PS, shown shaded, is scanned, the
data path does not have any loops. Consequently,
synthesizing a testable data path from the CDFG



transformed by adding deflection operations is
significantly more economical than from the original
CDFG, requiring only 1 scan register as opposed to 4 scan
registers needed for the original CDFG. We describe the
process of adding the suitable deflection operations to the
original CDFG in the following sections.

2.2 Selecting Scan Variables to Break
CDFG Loops

The problem of breaking CDFG loops using a minimal
number of scan registers was introduced in [Dey93]. The
minimum hardware-shared cut (HSC) problem [Dey93] is
to select a set of scan variables such that the following
criteria are simultaneously satisfied:

HSC1 All CDFG loops, except self-loops, are broken,

HSC2 The selected scan variables can be assigned to a
minimum number of scan registers, and,

HSC3 Reusability of the scan registers, to break the other
loops formed during the subsequent scheduling and
assignment phase, is maximized;

Two measures can be used to capture the effectiveness of a
variable in satisfying the three criteria of the minimum
HSC problem. The loop cutting effectiveness (LCE)
measure helps to satisfy the first criteria, HSC1, of the
minimum HSC problem. The LCE measure of a variable
estimates the number of loops that will be broken by
assigning the variable to a scan register. Since the number
of loops can be exponential, and there is no known
algorithm to count them efficiently, a random walk
[Hajo1] based technique was proposed to calculate the
LCE measure of the variables of a CDFG.

The hardware sharing effectiveness (HSE) measure
satisfies criteria HSC2 and HSC3 of the minimum HSC
problem. The HSE of a variable v estimates the likelihood
that v can share a scan register with other variables to
break the different types of loops in the data path.

In this paper, we introduce the following HSE measure.
Let £, be the type of operation to which variable v is an
input. Variable v can share a scan register with all
variables x such that (i) x is a corresponding input to an
operation of the same type f,, and (ii) the lifetimes of v and
x do not overlap. Let set X contain those variables x which
can share a scan register with variable v. Also, let Y be a
subset of X such that variables in Y can cut one or more
loops not broken by scanning variable v. We define
HSE(v) as: HSE (v) = w]¥]+ w,|X - 11.

The first component reflects the number of variables that
can share the same scan register assigned to v, and can be
used to cut CDFG loops left unbroken by v. The second
component measures the likelihood that the scan register

SR1, to which the variable v will be assigned, can be
effectively reused later to avoid forming loops during the
subsequent scheduling and assignment phase. To favor
selection of scan variables good for minimizing the
number of scan registers needed to break CDFG loops, as
opposed to scan variables which are good to avoid
formation of loops during assignment, the weight wy is set
to be much higher than the weight w,.

After calculating the LCE and HSE measures for each
edge ¢ which belongs to some strongly connected
component (5CC), we calculate

effyscle) = a*LCE (e) + P*HSE (¢). For each SCC, we
select as scan variable the edge e with highest eff, (o),
and delete the selected edges from the CDFG. We repeat
the process until all CDFG loops are broken. After the
scan variables have been selected to cut the CDFG loops, a
minimum set of scan registers is identified to which all the
scan variables can be assigned. This can be done optimally
by assigning all scan variables with disjoint lifetimes to
the same scan register.

2.3 Using Deflection Operations to
Minimize Scan Registers Needed to
Break CDFG Loops

Deflection operations can be used to minimize the number
of scan registers required to break CDFG loops. This is
achieved by adding the deflection operations in such a way
that more of the selected scan variables can share the same
scan register.

Two scan variables v and w cannot share the same scan
register if one or both of the two conditions, termed
hardware sharing bottlenecks, is true. Note that the
hardware sharing bottleneck B1 is imposed due to the
hardware model adopted.

B1. Variables v and w are inputs to two operations of
different types.

B2. Variables v and w have overlapping lifetimes.

2.3.1 Adding Deflection Operations to Eliminate
Bottleneck B1

Consider the CDFG shown in Figure 3(a). It has two
CDFG loops: loop L1 consisting of - and + operations, the
other loop L2 containing operations of the type * and >>.
Variables (D, -1) and (D,, *;) have overlapping lifetimes
(bottleneck B2), and hence selecting them to break the
CDFG loops will require two scan registers. Any other
variable v in loop L1 and variable w in loop L2, selected to
break the corresponding loops L1 and L2, cannot be
shared, since they have the bottleneck B1. Hence,
selection of any two scan variables to break the two CDFG
loops will require two scan registers.
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Figure 3: Using Deflection Operation to Eliminate Hardware Sharing Bottleneck B1. (a) The
original CDFG, (b) The transformed CDFG, after adding deflection operation +3.

However, if the detlection operation +3 is added at the
input of operation *; in loop L2, as shown in the modified
CDFG in Figure 3(b), the variables (-1, +1) in loop L1 and
(D5, +3) in loop L2, do not have either of the bottlenecks,
and can share the same register. Consequently, selecting (-
1» +1) and (Dy, +3) as scan variables breaks the two CDFG
loops, and requires only one scan register.

Note that for any variable v that can be used to break a
CDFG loop in Figure 3(a), the set Y of variables that can
be used to cut other CDFG loops not broken by v, and can
share the same scan register with v, is empty. On the other
hand, adding the deflection operation in the CDFG shown
in Figure 3(b) increases the value of 1Yl to 1 for the
variable (-1, +), and adds a new variable (D5, +3) with IYI
= 1. At this point, the above two variables have the highest
HSE measure. The LCE measure remaining the same for
all the variables in the loops, the variables (-, +1) and (D,
+3) are selected as scan variables by the scan selection
process outlined in the previous section, and can be
assigned to one scan register. This example demonstrates
how deflection operations can be used to minimize the
number of scan registers required to break CDFG loops,
by eliminating bottleneck B1, and increasing the HSE
measure of candidate scan variables.

2.3.2 Adding Deflection Operations to Eliminate
Bottleneck B2

Deflection operations can be used to eliminate the
hardware sharing bottleneck B2 also. Consider a pair of
variables v and w which are inputs to the same type of
operation, but cannot share the same scan register due to
bottleneck B2, that is, they have overlapping lifetimes. A
deflection operation can be introduced on the edge w, so
that the lifetime of variable w is split, and the variables v
and the new input u to the deflection operation do not have

Paper 6.4
188

any hardware sharing bottleneck.

Consider the CDFG shown in Figure 4(a), consisting of
two CDFG loops L1 and L2. Each pair of variables, (v,w),
v in loop L1, and w in loop L2, needed to break the CDFG
loops, have one hardware sharing bottleneck, and cannot
be shared. For instance, one possible pair that are inputs to
the same type of operations is: (D,+1) and (Dy,+5).
However, they have overlapping lifetimes. Similarly,
variables (-;,*;) and (+;,*;) are inputs to the same
operation type, but have overlapping lifetimes. Any pair of
scan variables selected to break the CDFG loops in Figure
4(a) would require two scan registers.

The LCE and HSE measures of the variables are shown by
a tuple (LCE,HSE), with the HSE part showing both the
components. For example, the variable (D{,+;) breaks one
loop, and hence has an LCE value of 1. Also,
X(v) = [*,+,),Y(v) = (). Hence, the first component of
HSE measure is 0, and the second component is 1, as
shown by the tuple (1, 0+1) at the side of variable (Dy,+;).

Consider each variable in the CDFG which can break loop
L2, not broken by scanning variable (D1,+,). Consider one
such variable (D,,+5;). The pair of variables can break all
the CDFG loops, and are inputs to the same type of
operation +, but cannot be shared because they have the
hardware sharing bottleneck B2. Let us add a deflection
operation, *3, on the edge (D,,+;), such that the lifetime of
the split variable (*3,+;) no longer overlaps with the
lifetime of variable (D{,+{). The transformed CDFG is
shown in Figure 4(b). The bottleneck B2 is eliminated,
and variables (D{,+) and (¥3,+,) can share the same scan
register.

In terms of the HSC problem formulation, introduction of
the deflection operation helps increase the HSE measure
of variables, while keeping the LCE measure fixed. After
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Figure 4: Using Deflection Operations to Eliminate Hardware Sharing Bottleneck B2. (a) The
original CDFG, (b) the transformed CDFG, after adding deflection operation *3.

the introduction of the deflection operation, shown in
Figure 4(b), variables (Dy,+;) and (*3,+,) can now share
the same scan register, and hence, the HSE measure of
variables (D1,+) increases from (0+1) to (1+1). Similarly,
the split variable (*3,+,) now has a HSE value (1+1). The
scan selection process outlined in the previous section
would select variables (Dy,+;), (*3,+;) to break the CDFG
loops, requiring only one scan register.The above
examples illustrate how deflection operations can be
added to the CDFG to eliminate hardware sharing
bottlenecks.

2.3.3 Algorithm for Adding Deflection Operations

We briefly outline the process of adding deflection
operations, so that the number of scan registers required
by the scan variables to break the CDFG loops is
minimized. Let Z(v) be the set of variables w, such that w
breaks some other CDFG loops not broken by v, and either
both v,w are inputs to the same operation type, or v,w do
not have overlapping lifetimes, but not both. That is, Z(v)
is the set of all variables w which break other loops not
broken by v, but cannot share the same scan register
because the pair (v,w) have one of the two bottlenecks, B1
or B2. The aim of adding the deflection operations will be
to eliminate the hardware sharing bottlenecks of those
pairs of variables which are potentially good candidates
for scan variables. This is achieved by attempting to
increase the HSE measures of those variables Z(v) which
can be potentially shared, after eliminating bottlenecks,
with variables v having high LCE measure (cuts many
loops). We outline below the algorithm for adding
deflection operations to minimize the number of scan
registers needed to break CDFG loops:

add_deflection_ops_to_break CDFG_loops ()

1. for each variable v with positive LCE measure, but
low HSE measure {
2. for each win Z(v) {
3. add deflection operation op_d onw;
4. check feasibility of adding op_d, with respect to
scheduling and assignment;
5. if deflection operation op_d feasible {
6. for all variables, calculate nHSE(u) = new
HSE(u) - hardware cost of adding op_d;
7. retain the highest nHSE values for each
variable;
)
}
Vi

8. select scan variables (virtual operation) assuming
nHSE values;

9. for each variable v selected, add the deflection
operations necessary to obtain the new HSE value,
nHSE(v);

2.4 Detecting Formation of Loops in the
Data Path During Assighment

The formation of different types of loops in the data path
during the assignment phase can be captured by using a
Data-Dependency and Compatibility Graph (DDCG). The
DDCG models the data dependencies and the
compatibilities of the operations of the CDFG. Each node
in the graph represents an operation of the CDFG. There is
a (undirected) compatibility edge between two operations
if there is a non-zero probability that both the operations
can be assigned to the same module. There is a (directed)
data-dependency edge from operation v to operation w if
operation w depends on data produced by operation v. We
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will denote a compatibility edge between v and w as c(v,w),
and a data-dependency edge from v to w as d(v,w).

Figure 5(a) shows segments of two paths in a CDFG, and
Figure 5(b) shows the corresponding data-dependency and
compatibility graph. Assuming that each operation in the
CDEFG takes one control cycle, the longest path is 3 control
steps long. For a schedule which requires 3 control steps, the
As Soon As Possible (ASAP) and the As Late As Possible
(ALAP) control steps in which each operation can be
scheduled [Wal91,McF92] is shown by the tuple
[ASAP,ALAP] in Figure 5(a). In Figure 5(b), each
compatibility edge c(v,w), shown dotted, is weighted by an
estimate of the compatibility, Comp(v,w), between two
nodes v and w, as discussed below.

The mobility of an operation v, mobility(v), is the number of
control steps in which it can be scheduled:

mobility(v) = ALAP(v) -ASAP(v) + 1;

The overlap between two operations, v and w, overlap(v,w),
is the number of control steps in which both v and w can be
scheduled. Referring to Figure 5(a), mobility(+1) = 1,
mobility(+3) = 2, and overlap(+1,+3) = 1.

The estimate of the compatibility between two operations v
and w, Comp(v,w), is the probability that v and w can be
assigned to the same module:.

overlap (v,.w)

1~ Tonobility (v) *mobility (w)) OLPerwise

1 3d (v,w)
Comp (v,w) = {( ]

The compatibility between nodes +; and +3, Comp(+;,+3) =
1-(1/2) = 0.5. All the compatibility edges c(v,w) are
weighted by Comp(v,w), as shown in the DDCG in Figure
5(b).

The paths of the DDCG can be represented using regular
expressions. d* represents a path consisting of a sequence of
one or more data-dependency edges d. The concatenation of
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CDFG (a) and the corresponding DDCG (b)

two paths p and g is represented by p.q, or simply, pq. For
example, the regular expression cd™ represents a path
starting with a compatibility edge c, followed by one or more
occurrence of data-dependency edges. In Figure 5(b), the
path (+5,+1), (+1,+7), (+,,+5) can be represented by cd*.

An assignment loop is formed in the data path if there exists
a cycle of the form cd™ in the DDCG, and the compatibility
edge c is used during module assignment. Similarly, if there
is a cycle of the form (cd*)(cd™)* in the DDCG, and the
compatible edges c in the cycle are used during module
assignment, a sequential false loop is formed in the data
path.

2.5 Adding Deflection Operations to Avoid
Formation of Loops During Assignment

Deflection operations can also be added to avoid the
formation of loops during assignment, namely assignment
loops and sequential false loops. We adopt the approach of
adding all the deflection operations required in the
beginning, and performing the three phases of allocation,
selecting scan variables for CDFG loops, and scheduling and
assignment, on the transformed CDFG. Since we want to add
the deflection operations before we know which loops can be
formed during assignment, we use the DDCG and the
compatibility estimates to insert deflection operations. The
DDCG has information about all possible loops that can be
formed during assignment. We consider only those loops
that have a high possibility of formation during assignment,
as reflected by the high values of comp(v,w) on their ¢ edges.
We ignore those loops that have a low possibility of forming,
reflected by low values of comp(v,w) on their ¢ edges. To
achieve this, we delete all those compatibility edges which
have compatibility estimate less than a threshold.

We insert deflection operations in the CDFG so as to be able
to break as many loops remaining in the DDCG. Every time
a deflection operation is added, the corresponding data
dependency edge in the DDCG is broken, in anticipation that



Design Method Bits CS EXU Reg Mux Int
Orig 20 7 IM,1S,1A 11 11 15
Continued
Fraction IR BETS 20 7 IM1S,1A 11 11 15
HP+BETS 20 7 IM,1S,1A 10 11 15
Orig 16 10 3M,2A,18 18 18 25
Modem BETS 16 10 3M,2A,18 18 18 25
HP+BETS 16 10 3M,2A,18 17 17 23
Orig 20 17 3M,3A 23 29 20
5th Order
Elliptical Wave BETS 20 17 3M, 3A 24 32 27
Dagital Filter
HP+BETS 20 17 3M, 3A 24 32 27
Orig 16 7 3M,1S,.2A 14 14 24
5th Order IR )
Cascade Filter BETS 16 7 3M,1S,2A 14 11 13
HP+BETS 16 7 3M,IS.2A 14 11 13

Table 1: Performance and Hardware Characteristics of the Designs

the input of the deflection operation will be scanned. If the
resultant DDCG contains no loops of the form cd* or
(cd™)(cd™)*, we are guaranteed no loops will be formed
during assignment. Else, addition of the deflection
operations have minimized the chances of formation of
loops during the scheduling and assignment phase.
add_deflection_ops_to_avoid_loops_during_assgn ()

1. create DDCG from the given CDFG;

2. remove data dependency edges from DDCG,
corresponding to scan vars selected for CDFG loops;

3. delete compatibility edges having compatibility
estimate comp(v,w) < threshold;

4. for every loop L of the form cd* or (cd*)(cd*)* in
DDCG {

5. attempt to add a deflection operation op_ donad
edge in CDFG, such that loop L in DDCG is broken;

6. check if adding op_d is feasible, in terms of
scheduling, assignment and RU cost;

7. if deflection operation op_d is feasible {

8. add op, in CDFG;

9. delete the d edge in DDCG;

J

J
10. return transformed CDFG, with added deflection

operations.

3.0 EXPERIMENTAL RESULTS

To evaluate the effectiveness of the hot potato
transformations on the testability of the designs, we
applied the technique on the following examples [ElI87,

Mit72]: the 3rd order Continued Fraction IIR filter, the
Modem filter, the Sth order Elliptical Wave Digital Filter,
and the 5th order IIR Cascade Filter. We first synthesize
the examples using the behavioral test synthesis system
BETS [Dey93] for both testability and resource utilization.
Next, we transform the examples by adding deflection
operations to minimize partial scan cost, using the
algorithms presented in this paper, and then apply BETS
on the transformed CDFG. In the following tables, Orig
refers to the design synthesized by conventional high level
synthesis (BETS without testability considerations),
BETS refers to the design synthesized by BETS, while
HP+BETS refers to the design synthesized by BETS after
the addition of deflection operations for testability.

Table 1 shows the physical characteristics of the designs.
The bit width of the synthesized designs is indicated in the
column Bits. The number of control steps (CS) needed by
the implementation after adding the deflection operations
remains same, ensuring that the performance of the
designs is not compromised while improving testability.
Similarly, the number of execution units (EXU) needed
remains same. The columns Reg, Mux, and Int represent
the number of registers, multiplexers, and interconnects,
respectively. Note that while attempting not to
compromise resource utilization, BETS may increase the
hardware resources used while making a design testable
with reduced partial scan cost. However, deflection
operations can be added such that the number of
resources, like registers and interconnects, is reduced
simultaneously with the number of scan registers used.
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Hence, in all the design cases, the hardware costs, like
registers, multiplexers, and interconnects, are not
compromised by the addition of deflection operations for
testability.

Table 2 shows the number of Flip-Flops (FFs), and the

Design Method FFs Scan FFs
Orig 220 80
Continued
Fraction IIR BETS 220 80
HP+BETS 200 20
Orig 288 64
Modem BETS 288 48
HP+BETS 272 16
5th Order Orig 460 300
Elliptical BETS 480 60
Wave
Digital Filter | HP+BETS 480 40
Orig 208 48
5th Order
IIR Cascade BETS 208 32
Filter
HP+BETS 208 16

Table 2: Effect of Adding Deflection Operations on

number of scan FFs (Scan FFs) needed to break all the
1oops of the design for all the three implementations, Orig,
BETS, and HP+BETS versions. In the case of the original
implementation, a gate-level partial scan tool, OPUS
[Chi91], is used for scan FF selection. For instance, in the
case of the Modem filter, the original data path synthesized
without testability considerations has 288 FFs, the data
path synthesized by BETS from the original CDFG has
288 FFs, while the data path synthesized by BETS from
the transformed CDFG, after addition of deflection
operations, has 272 FFs. To avoid loops except self-loops
in the data path, the gate-level partial scan tool OPUS
needs to scan 64 FFs in the original data path, while the
behavioral test synthesis system BETS needs 48 scan FFs.
However, when BETS is given the transformed CDFG
with deflection operations, it requires only 16 scan FFs.

The testability of the synthesized designs was evaluated
using the gate-level sequential ATPG tool, HITEC
[Nie91}], shown in Table 3. For each design, besides the
rows Orig, BETS, and HP+BETS, the row Orig+OPUS
refers to the data path obtained from the original data path
after scanning the FFs selected by the gate-level partial
scan tool OPUS [Chi91]. For each version of a design, the
total number of FFs and the number of scan FFs used, are
reported. The results of running HITEC on each design is
also shown. The total number of faults, the number of
faults aborted by HITEC, the fault coverage and test
efficiency achieved, and the CPU time taken by HITEC on

Partial Scan Overhead a SUN Sparcstation2 are reported.
. Total Scan Total Aborted Fault Test ATPG
Design Method FFs FFs Faults Faults Cov Eff. CPU

(%) (%) (secs)

Continued Orig 220 0 6050 133 96 98 4019
Fraction IR Orig+OPUS 220 80 6050 5 98 100 55
BETS 220 80 6058 4 98 100 89

HP+BETS 200 20 6052 21 98 100 167

Modem Orig 288 0} 8579 8299 0 3 >6hr
Orig+OPUS 288 64 8879 7 96 100 153

BETS 288 48 8648 21 96 100 235

HP+BETS 272 16 8629 21 96 100 258

5th Order Orig 460 0 10364 10077 1 3 >72hr
Elliptical Wave | Orig+OPUS 460 300 10364 0 98 100 309
Digital Filter BETS 480 60 10916 16 98 100 233
HP+BETS 480 40 11130 2 98 100 200

5th Order IR Orig 208 0 8740 8488 0 3 20446
Cascade Filter Orig+OPUS 208 48 8740 7 97 100 128
BETS 208 32 7531 23 97 100 869

HP+BETS 208 16 7575 19 97 100 124

Table 3: Sequential ATPG using Hitec [Nie91]
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As expected, though the sequential test pattern generator
HITEC [Nie91] could not achieve 100% test efficiency on
the original designs without scan FFs, 100% test efficiency
could be obtained by HITEC on the final designs after
scanning the selected FFs. For example, in the case of
Modem filter, while the original design was not testable,
for the Orig+OPUS, BETS and HP+BETS designs,
HITEC could achieve 100% test efficiency. For the
original design, gate-level scan selection needs 64 scan
FFs to make the circuit 100% testable (row Orig+OPUS).
For the BETS design synthesized from the original
specification (row BETS), 48 scan FFs are needed to
achieve 100% test efficiency. On the other hand, only 16
scan FFs are needed to achieve 100% test efficiency for
the HP+BETS design, synthesized by BETS from the
specification transformed by adding deflection operations
(row HP+BETS). The results demonstrate the
effectiveness of the hot potato techniques to significantly
reduce the scan overhead needed by BETS to synthesize
testable data paths.

4.0 CONCLUSION

We have introduced a new hot potato transformation
technique based on the addition of deflection operations.
We have shown the application of the technique to reduce
the partial scan overhead for generating eas ily testable
data paths. Experimental results on several benchmarks
demonstrate the capability of the hot potato
transformations to significantly improve the cost-
effectiveness of an existing behavioral test synthesis
system, BETS [Dey93].
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