BEHAVIORAL SYNTHESIS OF LOW-COST PARTIAL SCAN
DESIGNS FOR DSP APPLICATIONS

Sujit Dey

Miodrag Potkonjak

Rabindra K. Roy

C&C Research Laboratories, NEC USA
Prinecton, NJ 08540

ABSTRACT

Partial scan is a popular design for testability technique for
cost-effective sequential ATPG. An efficient partial scan ap-
proach selects flip-flops (FFs) in the minimum feedback ver-
tex set (MFVS) of the FF dependency graph, so that loops
are broken. Through an analysis of the sources of loops in
the data path, this paper proposes a new high-level synthesis
methodology to synthesize DSP designs which have low-
cardinality MFVS, thereby reducing the cost of partial scan
significantly. A test efficiency of 100% could be achieved
for all designs synthesized by the proposed approach, re-
quiring a significantly less number of FFs to be scanned
compared to the original implementations.

1 Introduction

Automatic test pattern generation (ATPG) of sequential
circuits is a very difficult problem [1]. While full-scan de-
sign solves the testability problem, it can be very costly.
That’s why, partial scan design has gained wide acceptance.
Cheng and Agrawal [2] used the S-graph, which displays
the dependencies among the FFs of a sequential circuit, to
indicate that cycles in the S-graph are primarily responsible
for sequential ATPG complexity. They presented a partial
scan approach which selects FFs in the minimum feedback
vertex set (MFVS) of the S-graph. Recently, high level syn-
thesis techniques have been used to generate easily testable
data path circuits [3, 4, 5].

‘We propose a high-level synthesis methodology to syn-
thesize circuits with low-cardinality MFVS for DSP appli-
cations. Since these circuits are datapath-intensive, the con-
troller has only a few FFs, which can be scanned without
much overhead, thus allowing us to concentrate on the data
path of the designs.

A circuit synthesized from behavioral specifications has a
natural tendency to contain loops, partly due to the presence
of loops in the CDFG, and partly due to hardware sharing

used to optimize hardware resources like execution units.
A comprehensive analysis of the formation of loops, in cir-
cuits synthesized by behavioral synthesis, is performed. The
analysis uses the data dependencies and the compatibilities
of the operations of the Control Data Flow Graph (CDFG)
specification, to develop a regular expression-based repre-
sentation to identify conditions under which loops will be
created.

Based on the loop analysis, simultaneous scheduling
and assignment algorithms are presented to implement
circuits with reduced MFVS cardinality. To make the
low-cardinality MFVS implementation cost effective, the
scheduling and assignment algorithms simultaneously opti-
mize for resource utilization.

2 Formation of Loops in the Data Path

In this section, we identify and formulate the formation
of different types of loops in the data path. We begin by
modeling the data dependencies and the compatibility of the
operations of the CDFG by a Data-Dependency and Com-
patibility Graph (DDCG). Each node in the graph represents
an operation of the CDFG. There is a (undirected) compat-
ibility edge between two operations if there is a non-zero
probability that both the operations can be assigned to the
same module. There is a (directed) data-dependency edge
from operation v to operation w if w depends on data pro-
duced by v.

Figure 1(a) shows segments of two paths in a CDFG,
and Figure 1(b) shows the corresponding data-dependency
and compatibility graph. Each compatibility edge c(v, w),
shown dotted, is weighted by an estimate of the compatibility
between two nodes v and w [6].

The paths of the DDCG can be represented using regular
expressions. d* represents a path consisting of a sequence
of one or more data-dependency edges d. The concatenation

11-441

0-7803-1775-0/94 $3.00 © 1994 IEEE

a b P q
GD (L1 +3) 1121
c d T s
2 1221 F4) 23]
. £ t
5 3.3]
g

@) (b)

Figure 1: Illustrating the formation of loops: (a) A CDFG,
(b) the corresponding DDCG.

of two paths p and ¢ is represented by p.q, or simply, pq.
For example, the regular expression cd* represents a path
starting with a compatibility edge ¢, followed by one or
more occurrence of data-dependency edges. In Figure 1(b),
the path (+s, +1), (+1, +2), (+2, +s) can be represented by
cdt.

2.1 Detecting formation of Loops Using DDCG

(1) Data-Dependency Loop: A Data-Dependency Loop is
formed in the data path if there exists a cycle of the form d+
in the DDCG. In other words, if all the edges of a cycle in
the DDCG, or the CDFG, are data-dependency edges, then
aloop is formed in the data path, irrespective of the register
and module assignment.

(2) Assignment Loop: During assignment of operations to
modules (EXUs), we say that a compatibility edge is used if
the two operations associated with the compatibility edge are
assigned to the same module. An assignment loop is formed
in the data path if there exists a cycle of the form cdt in the
DDCG, and the compatibility edge c is used during module
assignment.

In the DDCG shown in Figure 1(b), there is a cycle
{(+s,+1), (+1,+2), (+2, +s)} of the form cd*. Using the
compatibility edge (+s, +1) to assign the compatible opera-
tions +s and +; to the same module, creates an assignment
loop in the data path. Let the schedule and assignment
of the operations be: {+; : (1, Al),+; : (2,A42),+43 :
(2, A1), +4 : (3, A2),+s : (3, A1)}. It satisfies the con-
straint of three control steps, and uses the minimum number
of EXUs (2 adders). The resultant data path, shown in Fig-
ure 2(a), and its corresponding S-graph, has an assignment
loop (RA1,LA2,RA1).

A self-loop is a special case: it can be formed in the data
path either by the presence of a data-dependency loop of the
form d, or an assignmnt loop of the form cd.

{3) Sequential False Loop: A sequential loop in the data
path is termed false when the loop cannot be sensitized un-
der normal operation. A false loop is a special case of a
false path. Let the schedule and assignment of the opera-
tions of the CDFG in Figure 1(a) be: {+; : (1, A1), +, :
(2,A42), 43 : (1, A2),+4 : (2, A1), +s : (3, A2)}. It satis-
fies the constraint of three control steps, and uses the mini-
mum number of EXUs (2 adders). The resultant data path,
shown in Figure 2(b), has two loops.

Consider the loop in Figure 2(b) shown in bold. To sensi-
tize the loop, the required control signals to the multiplexers
M1 and M4, c1 and c2, should be {c1 = 1,¢2 = 0} (or,
{2 = 0,c1 = 1}) in any two consecutive control steps.
However, this necessitates execution of operations +4 fol-
lowed by + (or +; followed by +4), which is clearly not
possible as a normal control sequence. Consequently, the
sequential loop can never be sensitized under normal op-
eration, and is a false loop. The S-graph corresponding to
the data path has a sequential false loop (LA1,RA2,LA1).
Note that the only other loop in the data path is the self-
loop (RA2,RA2) which is an assignment loop. However,
in our testing model, all control FFs are scanned, hence the
illegal control sequences can be achieved by scanning in
desired values at scan FFs. Thus all sequential false loops
become real loops in our testing model, and must be taken
into account.

Figure 2: Data Paths formed by different assignments of
CDFG in Figure 1(a): (a) Assignment Loop, (b) Sequential
False Loop, (c) No Loops except Self-Loops

11-442

Let ¢ = (v, w) be acompatibility edge in the DDCG such
that there does not exist any data-dependency edge from v
to w. If there is a cycle of the form (cd*)(cd*)? in the
DDCG, and the compatible edges c in the cycle are used
during module assignment, a sequential false loop is formed
in the data path. In the DDCG shown in Figure 1(b), there
isacycle (+4,+1), (+1, +2), (+2, +3)(+3, +4) of the form
(cd+)(cd*)*. Assigning the compatible pairs (+4,+1) to
adder A1, and (42, +3) to adder A2, leads to a sequential
false loop as illustrated in the data path in Figure 2(b).

2.2 An Example of Forming a Data Path Without
Loops

Having analyzed the conditions which lead to the forma-
tion of loops in the data path, we show a sample scheduling
and assignment which avoids the formation of loops in the
data path. The basic idea is to avoid using any compat-
ibility edge in the DDCG which is a part of a cycle of
the form cd* or (cdt)(edt)*. Consider the following
schedule and assignment which satisfies the performance
constraints, and which uses the minimum number of execu-
tion units: {+; : (1, A1), 42 : (2, A1), 43 : (1,42), +4 :
(2, A2),+s : (3, A1)}. The resultant data path, shown in
Figure 2(c), does not contain any loop, besides two self-
loops. While one register needs to be scanned to break the
loops of the data paths in Figures 2(a) and (b), no register
needs to be scanned for the data path in Figure 2(c).

3 Scheduling, Assignment and Allocation Al-
gorithms

We present integrated scheduling and assignment algo-
rithms to synthesize a design such that the implementation
has minimum feedback vertex set with a low-cardinality,
while satisfying the user specified throughput requirements.
The new high level synthesis approach has three phases. The
first phase is allocation of the set of execution units (EXUs),
exclusively targetting resource utilization. For this task,
we use Hyper [7]. In the second phase, we simultaneously
schedule and assign each operation of the CDFG while allo-
cating interconnects and registers, so that resulting data path
has high global resource utilization and its corresponding
S-graph has as small as possible MFVS. In the final phase,
the FFs belonging to the minimal feedback vertex set are
identified and made scan FFs, using the gate-level partial
scan tool OPUS [8].

After the initial allocation of EXUs, we simultaneously
schedule and assign each operation of the CDFG, using

global testability and resource utilization measures [6]. The
aim is to produce a testable data path, by either avoiding
the formation of loops in the S-graph, or by ensuring that
resulting S-graph has small minimum feedback vertex set.
However, equal priority is also given to throughput (number
of control steps) and resource utilization, so that the final
design is not only cost effective in terms of number of FFs
that need to be scanned, but also competitive in terms of
hardware cost.

At each iteration of the algorithm, from the operations
that have not yet been scheduled and assigned, an operation
op; with the smallest slack (ALAP - ASAP) is selected. The
set of (module, control step) pairs, {(M;, C;)}, where the
module belongs to the set of modules to which the opera-
tion can be assigned and the control step belongs to the set
of control steps in which the operation can be scheduled,
are identified. For each pair, the cost in terms of the size
of MFVS, resource utilization and flexibility for schedul-
ing and assignment of subsequent operations, is computed
[6). Subsequently, a pair with the smallest cost is selected.
Details of the algorithm can be found in {6].

4 Experimental Results

We synthesized the following benchmarks from DSP ap-
plications: (1) 3rd order cascade IIR Filter (3rdIIR) [9] (2)
Speech Filter (Speech) [9], (3) MA Lattice Filter (MAL)
[9], and (4) the popular 5th order elliptical wave digital filter
(EWF) [10]. In the sequel, O refers to the original im-
plementation using conventional high level synthesis tech-
niques to ensure maximal throughput and minimal number
of execution units. SFT refers to the low-cardinality MFVS
implementation, using the new synthesis approach.

Design ‘ B I CS I A] M Reg Mux Inter

3rdlIR 16 5 2 3 11 11 12 8 12 9
Speech | 20 17 2 3 12 12 20 9 20 9
MAL 16 7 2 2 10 9 10 8 11 10
EWF 16 17 3 3 23 24 29 32 20 27

Table 1: Characteristics of the Designs Synthesized

Table 1 shows the characteristics of the original and the
SFT implementations for each benchmark synthesized. The
column B refers to the word length. Both the original and
the SFT implementation takes the same number of control
steps CS achieving maximal throughput, and need the min-
imum number of adders A and multipliers M. The number
of registers Reg, multiplexers Mux and interconnects Inter,
are shown in Table 1 for the original and SFT implemen-

11-443

tations. They reflect the area overhead needed, if any, for
low-cardinality MFVS implementation.

f Design | Bits Feedback Vertex Set
RT-Level Gate-Level
(Regs). (FFs) |
Orig T SFT Orig | SFT
3rdlIR 16 2 1 48 16
Speech | 20 3 1 60 20
MAL 16 3 1 48 16
EWF 16 || 14T | of] 7240 | 163

t: Lower bound

Table 2: Feedback Vertex Set of S-graphs at Register-
Transfer and Gate Level

Table 2 shows the size of the feedback vertex sets required
to break all the loops, except self-loops, of the S-graphs of
the original and SFT implementations. At the RT-level, the
size of the minimum FVS is reported (in terms of registers),
except for EWF, where the lower bounds of the FVS are
reported. At the gate-level, OPUS [8] was used to identify
the FVS of the circuits, consisting of FFs, as opposed to
registers. Table 2 shows that for each design, the size of the
FVS needed for the SFT implementation is significantly less
than the FVS needed for the original implementation. In the
case of 3rdIIR, only 16 FFs are needed to break all loops,
except self-loops, for the SFT circuit, compared to 48 FFs

needed for the original circuit.

H Design ’ Type I Faults CPU

(secs)

3R | Ong || 7112 | 6732 T 3 362008
SFT 6510 | 6104 1 6 225125 ||

Speech | Ong || 10004 | 9677 0 3 23883.7

SFT 8514 | 8186 0 4 19614.2

MAL Orig || 6192 191 93 97 1139.6

SFT 5928 71 95 99 656.0

EWF Orig 9088 | 8879 03 2 25668.0

SFT 9791 | 9514 0.2 3 29666.0

Table 3: Sequential ATPG without Partial Scan

A gate-level sequential ATPG tool, HITEC [1], was used
to identify the testability of the circuits. Table 3 reports the
ATPG results for the original and SFT implementations,
without using partial scan. The total number of faults,
the number of aborted faults, the percentage fault cover-
age (FC %), the percentage test efficiency (TE%), and the
ATPG time in seconds on a SUN Sparcstation 2 are reported.
The Table shows that in most cases, both the original as well
as the SFT implementations are very hard to test.

Table 4 reports the ATPG results for each circuit after
scanning the FFs of the feedback vertex set identified by

Design [Type [" FFs Faults | FC% | TE% | cPU
| Total | Scan | Total | Abort | ' (secs)

3rdIIR Orig 176 48 7112 3 96 100 94.5
SFT 176 16 6510 10 96 100 98.7

Speech | Orig 240 60 10004 3 97 100 163.9
SFT 240 20 8514 22 96 100 192.8

MAL Orig 160 48 6192 2 97 100 63.7
SFT 144 16 5928 5 96 100 86.1

EWF Orig 368 240 088 0 98 100 209.1
SFT 384 163 9791 0 97 100 183.3

Table 4: Sequential ATPG after scanning FFs in Feedback
Vertex Set

OPUS. Column FFs shows the total number of FFs (Total),
and the number of FFs that needed to be scanned (Scan).
As expected, the effect of scanning the FFs of the FVS is
remarkable: a test efficiency of 100% could be achieved for
all the circuits. However, to achieve the high test efficiency,
the SFT circuits need a significantly less number of EFs to
be scanned compared to the original circuits.

5 Conclusions

We presented a methodology for behavioral synthesis
of low-cost partial scan DSP ASICs using comprehensive
analysis of loop formation. The experimental results clearly
demonstrate the effectiveness of the proposed approach.

References

{11 T. M. Niermann and J. H. Patel . HITEC: A Test Generation Package for
Sequential Circuits. In Proc. EDAC, pages 214-218, 1991,

[2] K.T. Cheng and V.D. Agrawal. A Partial Scan Method for Sequential Circuits
with Feedback. JEEE Tr ions on Computers, 39(4):544— 548, April 1990.

[3] T.C.Lee,N.K. Jha, and W. H. Wolf. Behavioral Synthesis of Highly Testable
Data Paths under Non-Scan and Partial Scan Environments. In Proc. Design
AutomationConf., pages 292-297,1993,

[

S. Dey, M. Potkonjak, and R. Roy. Exploiting Hardware Sharing in High Level
Synthesis for Partial Scan Optimization. In Pr dings of the International
Conference on Computer-Aided Design, pages 20 — 25, November 1993.

[S] J.Steensma and W. Geurts and F. Catthoor and H. De Man. Testability Analysis
in High Level Data Path Synthesis. Journal of Electronic Testing: Theory and
Applications, 4(1):43 - 56, Februray 1993,

[6] S.Dey, M. Potkonjak,and R. Roy, Behavioral Synthesis of Partial Scan Designs
with Low-Cardinality Minimum Feedback Vertex Sets. Technical report, C&C
Research Labs, NEC USA, May 1993,

[7] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast Prototyping of Data Path
Intensive Architectures. JEEE Design and Test, pages 40 — 51, 1991.

[8] V.ChickermancandJ. H. Patel. A Fault Oriented Partial Scan Design Approach.
In P dings of the International Conference on Computer-Aided Design,
pages 400 — 403, November 1991.

[9] R.A.Haddad and T.-W. Parsons. Digitai Signal P ing: Theory, Appli.
and Hardware. Computer Science Press, New York, NY, 199].

[10] R.A. Walker and R. Camposano. A Survey of high-level synthesis systems.
Kluwer Academic Publishers, Boston, MA, 1991,

11-444

