HYPER : An Interactive Synthesis Environment
for High Performance Real Time Applications

Chi-Min Chu, Miodrag Potkonjak, Markus Thaler, Jan Rabaey

Department of Electrical Engineering and
Computer Science
University of California, Berkeley

ABSTRACT

A synthesis system called HYPER is proposed for real time applica-
tions. HYPER takes a flow graph description of an algorithm as the
input and performs scheduling, resource allocation, optimizations,
and transformations. A dedicated bit-sliced data path cluster is gen-
erated by the system and the layouts can be further generated through
the LAGER 1V system.

1. INTRODUCTION

1.1. The Target Architecture

A real time system is normally a heterogeneous composition of
architectures and components. The architectures for real time appli-
cations can be classified into several categories based on the amount

of operation sharing on an arithmetic unit. One extreme end of the "

scale represents the traditional micro-processor architecture, where
all operations are time-multiplexed on one single general purpose
ALU. This architecture is classified as control driven. On the other
end of the spectrum, one can find architectures such as systolic
arrays, where each operation is represented by a separate hardware
unit. This architecture is called hard wired or data flow driven. In
the computation intensive parts of real time systems, the data rate
often equals or exceeds the maximum achievable clock rate. In those
cases, the use of a cluster of dedicated bit-sliced data paths with
extensive pipelining and limited resource sharing is unavoidable.
Examples of such architectures are found in speech recognition
[Rab88a] and image processing systems [Reu86], where the data
rates are at the order of 10M Bytes per second. The characteristics of
this kind of architecture are that the data paths are hard wired in
order to match the algorithmic data flow. The amount of program-
mability is very restricted. The controller section for those architec-
tures is therefore small compared to the data path and memory
blocks, but has to be fast and efficient.

The design process for those architectures is rather cumber-
some and normally requires many design iterations. To expedite the
design process, we have developed an interactive synthesis environ-
ment HYPER, which derives data path and controller structure start-
ing from a high level description.

After a short description of the basic components of the
HYPER system, we will focus on one particular step, being the
hardware mapping. A real time speech recognition subsystem will
be used as a design example.

1.2. Related Work

Until now, synthesis systems for Digital Signal Processing
(DSP) have focused either on control oriented architectures (such as
CATHEDRAL-II [Rab88b]) or on fully hard-wired architectures.
Design systems for heterogeneous data path architectures however

CH2794-6/89/0000/0432$01.00 © 1989 IEEE

have either focused on a subpart of the system (such as ADAM
[Par88]) or addressed only the lower level part of the design task
(such as CATHEDRAL-III [Not88]). The HYPER system is an
attempt to address the problem in its totality including the high level
optimization as well as the low level library driven hardware map-
ping operations.

2. SYSTEM OVERVIEW

HYPER starts from a graphicalftextual flow graph description
of the algorithm. In the first pass, the algorithm is transformed in
such a way that a close matching between memory, chip /O, and
computation hardware is obtained. Next, a structural description is
derived using some novel scheduling and hardware allocation algo-
rithms. The final structure is then mapped into hardware (macro cells
or gate arrays) and generated using the Lager IV silicon assembly
system [Shu89]. Since high efficiency and optimal performance is a
must, the HYPER system allows for user interference and entry at
every level of abstraction. An overview of the entire HYPER system
is shown in Figure 1.

Schematic
(Mixed Data Flow - Estimation
Control Flow Graph) Transformation
_»| DCFG ,.) Optimization
-------- -1
:'User Constraints Estimation
' hn::re%arrye ! Scheduling
-——— .
, connectivity ! 7 Assignment
Lo bmng __, [TperG
/| (decorated)
, 7
’
/
’
/
/
//
,/ |Data Paﬂ;l Interface Control
/
Cell Libra Structure
.kl:(nowledmgrey: ———e - FS P »| Translation
| Base 1 Programs
['
E«Iu_l [om | l_bclis_l
LAGERIV

Figure 1 : The HYPER Synthesis System : Overview

2.1. Input Language

The input language to the system is an extended version of
Silage [Hil85). Silage is an applicative, signal flow oriented
language, designed especially for the description of digital signal
processing algorithms. We have experienced however that the
efficient implementation of high performance system sometimes
requires an unambiguous description of the overall control flow of
the system (which is hard to achieve in a purely applicative environ-
ment). We therefore introduced some macro-control constructs, such
as the while-loop, the if-then-else block statement, and the interpro-
cessor synchronization into the Silage language.

2.2. Estimation and Analysis

After the flow graph is generated, a number of important
parameters are extracted. Those parameters include critical path,
available concurrency, presence of recurrences, arithmetic complex-
ity, regularity, memory requirements, and input/output bandwidth,
As a result, a table of parameters is obtained which can be used as a
driver for the optimizations and transformations or which might
guide the designers in the following design steps.

2.3. Flow Graph Transformation

Very often, the flow graph specified by the designers does not
meet the performance specifications or results in an inferior realiza-
tion. The application of optimizing transformations is therefore of
utter importance. Most of the transformations are well known from
optimizing software compilers. Examples are constant arithmetic,
common sub-expression elimination, and dead code elimination. Far
more important for real time systems are the loop transformations

however: loop retiming, loop pipelining, partial or complete loop-

unrolling, and loop jamming. These transformations, which are
already used in some parallel processor compilers, are far more
effective for custom real time systems, where each program contains
an infinite loop of time and where the concurrency can be exploited
more efficiently by controlling the hardware resources. We are
currently implementing a search driven transformation environment,
where the order and the type of the transformations are determined
by a table of hardware utilization ratios.

2.4. Scheduling, Resource Allocation and Assignment

The goal of this task is to minimize the total hardware cost of
an implementation of an algorithm given a maximal execution time
and extra timing and hardware constraints. The hardware cost con-
sists of the costs of functional units, memory and interconnect. We
assume a restricted library of hardware components, consisting of a
variety of execution units, memory modules such as FIFO’s, RAM'’s,
ROM'’s and registers, and a well defined set of interconnection

An overview of the state of the art in this area is given in
[MCcF88]. None of the available approaches however allows for a
consistent and unbiased treatment of the three contributions to the
cost function, being the execution units, the memory and the inter-
connect. Furthermore, most available techniques remove all hierar-
chies from the flow graph before scheduling : functions are
expanded, loops are unrolled. This results in huge graphs for most
problems. It is our belief that hierarchical scheduling is an absolute
must. We therefore developed a suite of scheduling algorithms,
which addressed the mentioned deficiencies.

In short, the scheduling techniques are based on a search of the
available design space, driven by resource utilization ratios. A
scheduling core checks the feasibility of a proposed solution, taking
simultaneously the availability of interconnect, memory and arith-
metic units into account. A detailed description of the techniques can
be found in [Pot89].

433

3. HARDWARE MAPPING

The last step in the synthesis process consists of the mapping
of the scheduled and allocated flow graph (called the decorated flow
graph) into the available hardware blocks. The result of this step is a
structural description in the sdl-language [Shu89], which serves as
the input to the Lager IV assembly environment. The mapping pro-
cess transforms the decorated flow graph into three structural sub-
graphs: the data path structure graph, the controller state machine
graph, and the interface graph. The interface graph determines the
relationship between the data path control inputs and the controller
output signals. This graph is important since it defines the overall
clocking strategy of the data paths and often influences the critical
timing path. Three dedicated mapping tools then translate those
graphs into the corresponding structural views.

3.1. Data Path Generation

The hardware mapping process of data paths requires a suite of
small transformation steps including multiplexer reduction, hardware
choices of assign operations, and data path partitioning. The goal of
the multiplexer reduction is to try to merge registers into register
files so that the multiplexers can be removed. This also reduces the
number of data buses due to the fact that all the registers of a register
file share the same 1/O bus. Figure 2 shows the multiplexer reduc-
tion process. A heuristic algorithm for solving the clique partition
problem [Tse86] is used to identify the register files (if not yet
resolved during allocation). The same algorithm is used later to
solve the control register allocation problem.

Assign operations can be implemented in several different
ways. Although these operations do not need to be performed on an
execution unit and hence no hardware is allocated for them, some
control operations have to be performed. For example, assigning a
value 0 to a counter can be achieved simply by a reset operation.
However, other assignments might require register transfers or
encoding a constant block in the data path. The choice is made
through a set of rules so that the hardware is minimized. The rules
include using reset operations as much as possible, since they are the
cheapest operation among all the rules, using register transfers if no
extra bus is required, and if a constant block is required, sharing the
block if possible.

Data path partitioning is done based on three criteria. First, a
depth first search is performed through the hardware graph. Sets of
disjoined blocks are put in different groups. Each group is further
divided if different word lengths are found within the group. If the
number of blocks in a group is still too large after the above
processes, the Kernighan-Lin algorithm [Ker70] for solving the
min-cut problem is finally used to partition the data paths. Since the
number of blocks is usually less than 40 even in an extremely com-
plicated data path; furthermore, the linear placement program in
LAGER IV can handle up to 20 blocks pretty well, the partitioning
process will not be used more than once in most cases. Therefore, a
simple partitioning algorithm can meet the requirement.

Figure 2 : Multiplexer Reduction

In addition to the algorithmic processes, the hardware mapping
process takes on several translation steps, which require an accurate
knowledge of the available cell library in terms of functionality,
speed, area, and black box view. This is provided by a rule baséd
library database. Currently, the database is implemented in a Lisp
format. We are planning to rewrite it into another object oriented
environment based on OCT [Har86) or C++ in the near future. The
access routines to the database allow for a search based on the func-
tionality or the cell name. The search can be constrained by timing or
area requirements. All the cells are stored in the database in the
order of the cell size so that the search can be performed efficiently.
The system also provides a rule editor, which allows the cell
designer to input, edit or delete a rule and its attributes. Figure 3
shows a segment of the database which illustrates some of the
features. This data base also serves as an aid to the transformation,
optimization, and scheduling steps.

(+ (“adder" (parameters (N}))
(area (* N 48 214))
(delay ((CRITICAL ((IN1 IN2) SUM (+ 2 (* 3 N})})
(NON-CRITICAL (IN1 COUT (+ 2 N)})
{timing-constraint NO)
(ctl-in-terminal ((CIN GND) (CININV vdd)))
(ctl-out-terminal (if even COUT (not COUTINV)))
(data-terminal (SUM (IN1 IN2)))
(driving-capability NO})
("fast-adder” (parameters (N)}
(area (* N 60 214))
(delay ((CRITICAL ((IN1 IN2) SUM (+ 1 (* 2 N)}}))}
ii other information
)
{- (“adder" (parameters (N))
(area (* N 48 214))
(delay ((CRITICAL ({IN1 IN3) DIFF (+ 2 (* 3 N)}))}))
(timing-constraint NO)
(ctl-in-terminal ((CIN Vdd) (CININV GND))}}
(ctl-out-terminal (if even COUT (not COUTINV)))
(data-terminal (DIFF (IN1 IN3)))
{driving-capability NO}))
(register (“reg2port® (parameters (N))
{area (* N 107 48))
(delay (CRITICAL ((IN} OUT 2)})
(timing-constraint ((LOAD PHI1) (OEN PHI2))}
(ctl-in-terminal (LOAD OEN))
(ctl~out-terminal NO)
{data-terminal (OUT (IN)))
(driving-capability SMALL}})

(1) CHEAPEST RULE FIRST BASED ON BLOCK SI%E.
(2) USE FUNCTION AND BLOCK NAME AS THE KEYS.

Figure 3 : A Segment of The Database

3.2. Control Path Generation

The control path of a processor can also be derived from the
decorated flow graph. A state transition diagram is first generated
from the scheduling information. This is a recursive procedure due
to the hierarchical nature of the flow graph. The transition diagram
is then optimized by removing the dummy states such as the ending
states of the if-then-else constructs.

Notice that the scheduling and resource allocation described in
Section 2.4 does not include the allocation of control registers, inter-
face logic, and finite state machines. The hardware required for
these three parts (called control path) is allocated in this phase. The
interface logic between the data paths and the finite state machine is
allocated based on a demand driven algorithm so that no redundant
logic is allocated. For example, if the carry out signal of an adder is
not used in the flow graph, no logic will be allocated in the interface
logic for the signal. This algorithm traces the flow graph recursively
and uses sets of rules to decide if a logic operation is performed in
the interface logic or in the finite state machine. From the transition
diagram and the interface logic, a finite state machine description can
be generated. To reduce the size of the finite state machine and also
to simplify the wiring between the control path and the data path,
several optimization steps are performed before the control structure
is actually generated.

The first optimization is to recognize control signals that are
independent of control states and replace them by a local control in
the interface logic. This optimization is especially useful for cases
such as pipeline registers and multiplexers since the load and
output-enable signals of pipeline registers can be simply driven by
the clock signals and the control signals of multiplexers can usually
be hard wired locally. The second optimization is to merge
equivalent or complementary signals with properly allocating buffers
or inverters in the interface logic. The boolean value DON’T CARE
is assigned as much as possible to facilitate the merging. This has a
second advantage that the logic optimization system MIS [Bra87]
can make use of this value to reduce the size of the finite state
machine. Other control optimizations include allocating decoders
for register files to reduce the wiring and using life time analysis and
the algorithm for clique partitioning to allocate the minimum number
of control registers. Control registers are needed when the genera-
tion time and the usage time of a control signal are not equal, and
therefore a temporary storage is required. The control registers will
be part of the finite state machine and are treated identically to the
states of the machine.

All the control optimization steps deal with the control struc-
ture as well as the net list description of the whole processor. A net
list management routine is therefore implemented to ease the optimi-
zations.

4. A DESIGN EXAMPLE

Figure 4 shows the the mixed signal flow/control flow descrip-
tion of the so called epsilon processor, which is a part of a Hidden
Markov Model based speech recognition system [Rab88a]. The
epsilon processor has been synthesized using the HYPER system.
One particular implementation is to allocate hardware for each
operation in which no resource is shared. The data path structure and
the state transition diagram for this implementation generated by the
hardware mapping step are given in Figure 5 and Figure 6 respec-
tively. This design has been partitioned into five data paths based on
the partitioning algorithm. The layout as produced by the LAGER
system is given in Figure 7. The essential problem which has to be
addressed in this example is the central loop in the algorithm, which
has to be scheduled as compact as possible.

PRWAend subgraph

—-_—

T
alitf '
eof_flag - _? J' E :

field node
Ml : mergenode
[DF : detay node with initial vatud

Figure 4 : The Signal Flow Graph of the Epsilon Processor

18 118 14 114 e}
: ? BEad —{ Epsilonl =
s _ _ | 9 | _ o] Processor =
r - FIFOezpty —
\ 1 | [NexPnme —1 Controller F—
L — _ | EPSILONREG | _ _ 4 Roset ——

i

=i

-l |

Nl =
—

dp-3

Figure 7 : The Layout of The Epsilon Processor

Another implementation of this processor is to try to share
resources as much as possible. With the same flow graph as shown
in Figure 4, we modified the scheduling and allocation and obtained
a different design. In this design, the scheduling of the central loop
can not be as compact as the first implementation. Furthermore,
some overhead such as irreducible multiplexers is introduced due to
the resource sharing. Therefore, the area reduction is not dramatic.
Table 1 lists the timing and area tradeoffs of the two implementa-
tions.
5. Conclusions

An integrated synthesis system, HYPER, is proposed, which
synthesizes processors of heterogeneous data path architectures from

435

Table 1 : Comparison of Two Implementations of Epsilon Processor

AREA RATIO TIMING
DESCRIPTI
ESC ON include control] (central loop)
dedicated hardware
impl .
implementation 1 20 resource s . L1t 4 states
in hard

implementation 2 o rare 1 5 states

resource sharing

a mixed signal flow/control flow description down to a layout level
design. The main features of this system are the interactiveness
between the user and the design environment, the dedicated

hardware model, the mixed data flow and control flow input
language, the universal hierarchical flow graph representation, the
novel scheduling and resource allocation algorithm, and the highly
optimized hardware mapping operations. Most important of all,
HYPER is different from current synthesis systems in that it is a
complete environment in which transformations and optimizations
are performed at various levels.

Acknowledgement

This project is sponsored by DARPA under the contract number of
N00039-87-C-0182.

References

[Rab88a) J. Rabaey, et al., "A Large Vocabulary Real Time Continuous
Speech Recognition System,” in VLS! Signal Processing IlI, ed. R. Broder-
sen, H. Moscovitz, IEEE Press, 1988.

[Rue86] P. Reutz and R. Brodersen, "A Realtime Image Processing Chip
Set," Proceedings International Solid State Circuit Conference, pp. 148-
149, San Francisco, Feb. 1986.

[Rab88b] J. Rabaey, et al., "CATHEDRAL-II: A Synthesis System for Mul-
tiprocessor DSP Systems,” in Silicon Compilation, ed. D. Gasjski, Addison
Wesley, 1988.

[Par88] N. Park and A. Parker, "Sehwa : A Software Package for Synthesis
of Pipelines from Behavioral Descriptions,” IEEE Transactions on CAD,
vol. 7, no. 3, pp. 356-370, March 1988.

[Not88] S. Note, et al., "Automated Synthesis of A High Speed Cordic
Algorithm with The CATHEDRAL-III Compilation System," Proceedings
ISCAS’ 88, Helsinki, 1988.

[Shu89] C.S. Shung, et al., "An Integrated CAD System for Algorithm-
Specific IC Design," International Conference On System Design, Hawaii,
January 1989.

[Hil8S] P. Hilfinger, "A High Level Language and Silicon Compiler for
Digital Signal Processing,” Proceedings Custom Intergrated Circuit
Conference, pp. 213-216, Portland, May 1985.

[Lei83] C.E. Leiserson, et al., "Optimizing Synchronous Circuitry by
Retiming," Third Caltech Conference on VLSI, pp. 87-116, 1983.

[McF88] M.C. McFarland, et al., "Tutorial on High-Level Synthesis,”
DAC’88, pp. 330-336, Anaheim, June 1988.

[Pot89] M. Potkonjak and J. Rabaey, "A Scheduling and Resource Alloca-
tion Algorithm for Hierarchical Signal Flow Graphs," Accepted by the
Design Automation Conference in Las Vegas, June 1989.

[Tse86) C. Tseng and D. Siewiorek, "Automated Synthesis of Data Paths in
Digital Systems,” JEEE Transactions on CAD, vol. 5, no. 3, pp. 379-395,
July 1986.

[Ker70] S. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Par-
titioning Graphs," The Bell System Tech. Journal 49:2, pp. 291-307, 1970.
[Har86]) D. Harrison, et al., "Data Management and Graphics Editing in the
Berkeley Design Environment,” Proceedings IEEE 1986 International
Conference on Computer-Aided Design, pp. 24-27, Nov. 1986.

[Bra87] R. Brayton, et al., "MIS: A Multiple-Level Logic Optimization Sys-
tem," IEEE Transactions on CAD, vol. CAD-6, no. 6, pp. 1062-1081,
November 1987.

