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Outline

• Issues identified in biased representations

• Metrics and findings

• Solutions that have been proposed

2



EMNLP 2019 Tutorial on Bias and Fairness in Natural Language Processing, Hong Kong

Annotated Data + Machine Learning / Deep Learning

f(x)
Words,
Text,

Linguistic 
Structure
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Case Study 1: Most Basic form of Grounding: Image to Words

f(x)

kitchen
no-kitchen

Protected variable: Gender
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Case Study 1: Most Basic form of Grounding: Image to Words

f(x)

kitchen
no-kitchen

Protected variable: Gender For any pair of gender types:

P(kitchen = 1 / gender = m) = P(kitchen = 1 / gender = f)  
P(kitchen = 0 / gender = m) = P(kitchen = 0 / gender = f)  
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Approach 1: Feature Invariant Learning

ICML 2013
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Approach 1: Feature Invariant Learning

Learning Fair Representations 
Zemel, Wu, Swersky, Pitassi, and Dwork. ICML 2013

X: Images Y: Labels

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

no-kitchen

kitchen



EMNLP 2019 Tutorial on Bias and Fairness in Natural Language Processing, Hong Kong

Approach 1: Feature Invariant Learning

y = f(x)

Learning Fair Representations 
Zemel, Wu, Swersky, Pitassi, and Dwork. ICML 2013
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Approach 1: Feature Invariant Learning

Learning Fair Representations 
Zemel, Wu, Swersky, Pitassi, and Dwork. ICML 2013

Instead

X: Images Y: Labels
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Z: Representations
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Approach 1: Feature Invariant Learning

X: Images Y: Labels

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

y = f(z) 

Learning Fair Representations 
Zemel, Wu, Swersky, Pitassi, and Dwork. ICML 2013

Z: Representations

Instead

̂x = ∑
i

zivi

x y
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Approach 1: Feature Invariant Learning

X+: Images

Learning Fair Representations 
Zemel, Wu, Swersky, Pitassi, and Dwork. ICML 2013

Instead

X-: Images

Y: Labels
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y = f(z) 

Z: Representations
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Approach 1: Feature Invariant Learning

X+: Images

Learning Fair Representations 
Zemel, Wu, Swersky, Pitassi, and Dwork. ICML 2013

Instead

X-: Images

Y: Labels

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

no-kitchen

kitchen

y = f(z) 

Z: Representations

̂x = ∑
i
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P(zi |x+) = P(zi |x−)
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Approach 1: Feature Invariant Learning

Learning Fair Representations 
Zemel, Wu, Swersky, Pitassi, and Dwork. ICML 2013

L = ∑
k

CrossEntropy(y(k), ̂y(k)) + α∑
k

x(k) − ̂x(k) + β
1

|X + | ∑
X+

z(k)
i −

1
|X − | ∑

X−

z(k)
i

Classifications 
should be good

Reconstructions 
should be good

Intermediate Representations 
should be indistinguishable

across values of the protected variable
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Approach 1I: Adversarial Feature Learning

Controllable Invariance through Adversarial Feature Learning 
Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig. NeurIPS 2017

y = f(x)
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Approach 1I: Adversarial Feature Learning

Controllable Invariance through Adversarial Feature Learning 
Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig. NeurIPS 2017

y = f(x)
X: Images Y: Labels
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Approach 1I: Adversarial Feature Learning

Controllable Invariance through Adversarial Feature Learning 
Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig. NeurIPS 2017

y = f(x)
X: Images

z

kitchen / no-kitchen 
objective

gender prediction 
adversarial objective
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Approach 1I: Adversarial Feature Learning

Controllable Invariance through Adversarial Feature Learning 
Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig. NeurIPS 2017

y = f(x)
X: Images

z

Person identification 
objective

illumination type
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Approach 1I: Adversarial Feature Learning

Controllable Invariance through Adversarial Feature Learning 
Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig. NeurIPS 2017
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Case Study:  Visual Semantic Role Labeling (vSRL)

Commonly Uncommon: Semantic Sparsity in Situation Recognition 
Mark Yatskar,  Vicente Ordonez, Luke Zettlemoyer, Ali Farhadi CVPR 2017
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Lots of Images of People Carrying Backpacks
Not Many Images of People 

Carrying Tables

But Lots of Images of Tables in 
Other Images

Compositionality: How to learn what looks like carrying?



EMNLP 2019 Tutorial on Bias and Fairness in Natural Language Processing, Hong Kong

Deep Neural Network + Compositional Conditional Random Field (CRF)

Commonly Uncommon: Semantic Sparsity in Situation Recognition 
Mark Yatskar,  Vicente Ordonez, Luke Zettlemoyer, Ali Farhadi CVPR 2017
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Situation Recognition: CVPR 2017 
Compositional Shared Learning of Underlying Concepts

Commonly Uncommon: Semantic Sparsity in Situation Recognition 
Mark Yatskar,  Vicente Ordonez, Luke Zettlemoyer, Ali Farhadi CVPR 2017

http://imsitu.org/demo/
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However we kept running into this…

Commonly Uncommon: Semantic Sparsity in Situation Recognition 
Mark Yatskar,  Vicente Ordonez, Luke Zettlemoyer, Ali Farhadi CVPR 2017

http://imsitu.org/demo/
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However we kept running into this…

Commonly Uncommon: Semantic Sparsity in Situation Recognition 
Mark Yatskar,  Vicente Ordonez, Luke Zettlemoyer, Ali Farhadi CVPR 2017

http://imsitu.org/demo/
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Model?Dataset?

Key Finding: Models Amplify Biases in the Dataset
Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus Level Constraints 
Jieyu Zhao, Tianlu Wang, Mark Yatskar,  Vicente Ordonez, Kai-Wei Chang. EMNLP 2017
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Model?Dataset?

Images of People Cooking

Key Finding: Models Amplify Biases in the Dataset
Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus Level Constraints 
Jieyu Zhao, Tianlu Wang, Mark Yatskar,  Vicente Ordonez, Kai-Wei Chang. EMNLP 2017
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Model?Dataset?

Men Cooking: 33% Women Cooking: 66%

Key Finding: Models Amplify Biases in the Dataset
Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus Level Constraints 
Jieyu Zhao, Tianlu Wang, Mark Yatskar,  Vicente Ordonez, Kai-Wei Chang. EMNLP 2017
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Model?Dataset?

Men Cooking: 33% Women Cooking: 66% Test Images

Key Finding: Models Amplify Biases in the Dataset
Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus Level Constraints 
Jieyu Zhao, Tianlu Wang, Mark Yatskar,  Vicente Ordonez, Kai-Wei Chang. EMNLP 2017
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Model?Dataset?

Men Cooking: 33% Women Cooking: 66% Men Cooking: 16% Women Cooking: 84%

Key Finding: Models Amplify Biases in the Dataset
Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus Level Constraints 
Jieyu Zhao, Tianlu Wang, Mark Yatskar,  Vicente Ordonez, Kai-Wei Chang. EMNLP 2017
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ModelDataset

Men Cooking: 33%
Women Cooking: 66%

Men Cooking: 16%
Women Cooking: 84%

Model*

*Our solution: RBA: Optimize for accuracy 
but also to match data distribution.

Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus Level Constraints 
Jieyu Zhao, Tianlu Wang, Mark Yatskar,  Vicente Ordonez, Kai-Wei Chang. EMNLP 2017
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Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus Level Constraints 
Jieyu Zhao, Tianlu Wang, Mark Yatskar,  Vicente Ordonez, Kai-Wei Chang. EMNLP 2017

ModelDataset

Men Cooking: 33%
Women Cooking: 66%

Men Cooking: 16%
Women Cooking: 84%

Model*

Men Cooking: 20%
Women Cooking: 80%

*Our solution: RBA: Optimize for accuracy 
but also to match data distribution.



Reducing Bias Amplification (RBA)
Integer Linear Program

<= marginTraining Ratio  - Predicted Ratio 8 points
f(y1 … yn)

Lagrangian Relaxation

Sontag et al., 2011; Rush and Collins, 2012; Chang and Collins, 2011; Peng et al., 2015, Chang et al., 2013; Dalvi, 2015

s(yi , image) max 
yi

X

i

constraintsinference



ICCV 2019 Linguistics Meets Image and Video Retrieval Workshop, Seoul, South Korea

Our most recent work on this topic:

Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image 
Representations. Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, Vicente Ordonez. ICCV 2019 

•Biases are present even in more generic and widespread Image Classifiers
•Biases are present even when gender is not one of the target variables
•Biases are present even when a best effort is placed on  
balancing the dataset for gender

Key Findings
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Elazar and Goldberg (2018) introduced a notion of leakage 
from feature representations

Adversarial Removal of Demographic Attributes from Text Data 
Yanai Elazar, Yoav Goldberg. EMNLP 2018

y = f(x)
X: Text

Tweet Sentiment 
Objective

Can I predict gender or age 
from these features?
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Task: Multi-label Prediction

Knife
Carrot
Table

Kitchen
Utensils

Annotations

Man/Woman 
Classifier
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Definition: Dataset Leakage

Knife
Carrot
Table

Kitchen
Utensils

Annotations

Man/Woman 
Classifier

Gender 
Leakage 
from the 

Dataset/Task
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Definition: Dataset Leakage vs Model Leakage

Knife
Carrot
Table

Kitchen
Utensils

Annotations (acc=100%)

Man/Woman 
Classifier

Knife
Carrot
Table

Kitchen
Pineapple

Predictions (acc = 58%)

Man/Woman 
Classifier

Gender 
Leakage
from the 
Model 

Predictions

Model

Gender 
Leakage 
from the 

Dataset/Task



ICCV 2019 Linguistics Meets Image and Video Retrieval Workshop, Seoul, South Korea

Definition: Dataset Leakage vs Model Leakage

Knife
Carrot
Table

Kitchen
Utensils

Annotations (acc=100%)

Man/Woman 
Classifier

Knife
Carrot
Table

Kitchen
Pineapple

Predictions (acc = 58%)

Man/Woman 
Classifier

Model 
Leakage

Model

Dataset
Leakage
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Definition: Dataset Leakage @ 58% vs Model Leakage @ 58%

Knife
Carrot
Table

Kitchen
Baseball

Annotations (acc=58%)

Man/Woman 
Classifier

Dataset 
Leakage

Knife
Carrot
Table

Kitchen
Pineapple

Predictions (acc = 58%)

Man/Woman 
Classifier

Model 
Leakage

Model

Random 
Perturbations
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Definition: Bias Augmentation

Definition:  Model Leakage @ K - Dataset Leakage @ K
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Key Finding: Models Leak even when Dataset doesn’t

Women
27%

Men
73%

50

56.25

62.5

68.75

75

Dataset  
Leakage 
@ 100%

Model  
Leakage

Dataset  
Leakage

mAP 
100%

mAP 
58%

mAP 
58%

Bias 
Amplification:  

10% 

Training set size: 28k

Task: Classify 80 objects
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Key Finding: Models Leak even when Dataset doesn’t
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Key Finding: Models Leak even when Dataset doesn’t

Women
50%

Men
50%
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@ 100%
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Leakage

Dataset  
Leakage

mAP 
100%
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Issues Revelaed

• Models are again shown to not only replicate but 
also amplify effects of protected variables.

• Balancing a dataset is hard - and not effective to 
mitigate bias as it is hard to balance against latent 
variables

44
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Approach 1I: Adversarial Feature Learning

Controllable Invariance through Adversarial Feature Learning 
Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig. NeurIPS 2017

y = f(x)
X: Images

z

Person identification 
objective

illumination type
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Approach 1I: Adversarial Feature Learning

Controllable Invariance through Adversarial Feature Learning 
Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig. NeurIPS 2017

y = f(x)
X: Images

z

kitchen / no-kitchen 
objective

gender prediction 
adversarial objective
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Approach 1I: Adversarial Feature Learning

Adversarial Removal of Demographic Attributes from Text Data 
Yanai Elazar, Yoav Goldberg. EMNLP 2018

y = f(x)
X: Text

z

Tweet Sentiment 
Objective

adversarial demographic
prediction: age, gender
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Approach:  Deep Adversarial Feature Learning

y = f(x)
X: Images

z

kitchen / no-kitchen 
objective

gender prediction 
adversarial objective

Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations.  
Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, Vicente Ordonez. ICCV 2019 
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Approach:  Deep Adversarial Feature Learning

y = f(x)
X: Images

z

kitchen / no-kitchen 
objective

gender prediction 
adversarial objective

Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations.  
Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, Vicente Ordonez. ICCV 2019 
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Adversarial Removal of Sensitive Features

i.e. Predict Objects while trying to 
obscure gender
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i.e. Predict Objects while trying to 
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Adversarial Removal of Sensitive Features
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i.e. Predict Objects while trying to 
obscure gender

Adversarial Removal of Sensitive Features
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Results
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Case Study:  Image Captioning

Deep	
Convolutional	
Neural	Network

person
person

kite

Recurrent
Object
Encoder

Recurrent
Language
Generator

Two	people	
are	flying	a	
kite	on	the	
beach.

JURXS RI SHRSOH DUH IO\LQJ D NLWH (1'D

(QFRGHU�
2XWSXW 67$57

Recurrent Neural Text Decoder
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Case Study:  Image Captioning

Women also Snowboard: Overcoming Bias in Captioning Models 
Kaylee Burns, Lisa Anne Hendricks, Kate Saenko, Trevor Darrell, Anna Rohrbach. ECCV 2018

A woman cooking a meal

A man wearing a black hat is snowboarding
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Approach I: Add a Confusion Loss

Women also Snowboard: Overcoming Bias in Captioning Models 
Kaylee Burns, Lisa Anne Hendricks, Kate Saenko, Trevor Darrell, Anna Rohrbach. ECCV 2018

Idea: Augment the data by removing people artificially, and keep a set of 
gendered reference words where a different loss will be applied

Words for every pair of genders should be equally probable
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Approach II: Add a Confidence Loss

Women also Snowboard: Overcoming Bias in Captioning Models 
Kaylee Burns, Lisa Anne Hendricks, Kate Saenko, Trevor Darrell, Anna Rohrbach. ECCV 2018

Idea: Discourage the following from happening at the same time: 
 P(word = man) = 0.95 and P(word = woman) = 0.92

Take into account mutual exclusion among groups of words
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