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Control with Random Stopping

This correspondence relates control with
random terminal time to reliability theory
and to deterministic optimal control theory.
The Hamilton-Jacobi-Bellman equation for
random termination control stated here
extends the linear quadratic case analyzed in
Sivan! to general system dynamics, loss
functions, and termination probabilities.
Previous papers on this subject?3 discuss
physical motivation. Random stopping con-
trol models are useful when estimates of
plant parameters are improved, or the plant
itself changes at random times. Queuing for
a digital computer used in controlling several
systems leads to the first case; component
failures and catalyst deterioration exemplify
the second.

If stopping time T is a positive random
variable distributed as F(r) =Pr[T'<~], the
expectation of the integral portion of a cost
functional of the control process

G=f odi
]

where g=g(¢, x, u), evaluated for any control
u(t) and corresponding state vector x(2), is

E{G} -=f:forgdtdF(r).

The following lemma (an easy consequence
of integration by parts) reduces this to a
single integral.

Lemma

If T is a positive random variable dis-
tributed as F(r) =Pr[T <], then

Eg fng(t, X, u)dtg

=f”g(t, x, )|l — FH)lds. (1)

The resulting infinite integral has the
original integrand weighted by 1—F(2)
=Pr[T>t], the probability of nontermi-
nation by time ¢ or “surv-ival probability.”

The lemma enables the optimization of
the expected cost by stand ard procedures for
any criterion, dynamic sy stem, constraints,
and probability of termination. Every proce-
dure leads to equations which can be most
simply stated in terms of » (£), the conditional
rate of failure function of reliability theory.

Definition

The conditional rate of failure function
»(t) has the property that, to terms of first
order in dt, ‘

v)dt =Pr(t < T <¢+dt| T>¢l
=— )

As (2) implies, »(¢) completely charac-
terizes any continuous probability law.
Density, distribution, and conditional rate
of failure are all equivalent: any two
can easily be expressed in terms of the third.
See Klinger? or Papoulis,* pp. 109-111 and
246-248, for a general reference; Klinger?
contains a table of »(¢) for several continuous
probability laws.
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The Hamilton—]acobi-Bellman equation
illustrates the role of conditional rate of
failure. Consider a general system with
dynamics

x = h(t, x, u), @)

random terminal time, and minimum ex-
pected cost function S(x, t) given by

S(x,) = min [E% f‘ngtlx(t),

t<T~v(t)ﬂ- 4)

A standard argument involving the defini-
tion of expectation, principle of optimality,
Taylor series expansion, and limits as At—0,
yields

‘z—f ~ ()3 + min [(gg Al %, )
+ g(¢, %, u)] =0. (5

In (4) ~ denotes “distributed as”; S/dx in
(5) is the row vector “gradient of S with
respect to x.”

Note that the equivalent deterministic-
terminal-time equation is (5) with »(¢) =0.
Likewise, when »(t) =0, the feedback Riccati
equation of Klinger? [eq. (33); linear time-
varying system, quadratic cost, stochastic
stopping ] corresponds to that obtained for
control on a deterministic interval [0, T']
(see, e.g., Athans and Falbd p. 763).

These remarks and Theorems 1 and 2
suggest that control over a deterministic
interval [0, T'] with no terminal state cost is
a limiting case, as variance approaches zero,
of control for random stopping time T with
expectation criterion, where T =E[T].
Theorem 1 states the conditions for this to
hold for the cost criteria; the proof is by
Lebesgue’s theorem on dominated conver-
gence (see, e.g., Natanson,® p. 161).

Theorem 1

If T .is a positive random variable with
probability distribution F,(¢) of mean T<»
and variance o2 < «, and g(¢) =g(¢, x(t), u(f))
is non-negative and such that /f4* g(¢)
/(14182 dt < » for all x(t), u(t) on [0, «),
then

J}_I_%Eg fOTg(l, x, u)dt%
- f jg(l, x, wydt.  (6)

Hence the control optimal for the determi-
nistic interval, u°, where the superscript o
denotes “optimal” is that for zero variance.
The usefulness of the stochastic-stopping
optimal control as an approximation to u®
for ¢ small is established by Theorem 2,
which follows from a continuity result in
differential equations (see, e.g., Birkhoff
and Rota,” p. 107, corollary).

5 M. Athans and P. L. Falb, Optimal Control.
New York: McGraw-Hill, 1966.

6 I. P. Natanson, Theory of Functions of a Real
Variable, vol. 1. New York: Ungar, 1961.

7 G. Birkhoff and G. C. Rota, Ordinary Differential
Equations. New York: Ginn, 1962.

Theorem 2

If the distributions 7, are continuous
functions of variance ¢% a unique optimal
control u,° exists for the criterion

E% fng(i, x, u)dt I TNF,% @)

for all ¢>0, and the functions Z; of the ca-
nonical Hamiltonian equations for 2z’
= [x’, p'], which follow from elimination of
u via Pontryagin’s maxim um principle,

z=Z/(z 1, F,), 2; <t <tin

2=1,2,--- (8)
in the limit satisfy Lipschitz conditions

| Zi(z1, 1) — Zi(2s, 1) l <L: I z; — Z2| , 9
Z(z,t) = lim Z; (z, ¢, Fo)
o0

for some finite constants L, i=1, 2, ¢
then
lim we® = u°. (10)
a2

Proofs of these theorems appear in
Klinger.?

For some probability distributions,
random stopping optimal controls can yield
unbounded trajectories if the interruption
is delayed until very large time values (an
improbable event). For example, the time-
invariant scalar linear quadratic exponential
probability law case [k(¢, x, u)=ax-+u,
g(t, %, u)=x*+u? »(t) =» constant; see
Klinger?] has a finite optimal trajectory as
time approaches infinity only if

If o is negative, the contrary inequality never
holds; if @ is positive and the contrary is
true, the probability of the event T— = will
be small: E[T] will be bounded so the ex-
ponential distribution will assign almost all
mass to the event T bounded. Thus insta-
bility of randomly stopped optimum trajec-
tories should not occur in practice.
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