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CONTINUOUS CONTROL WITH STOCHASTIC STOPPIRG TIME

.
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Abstract
The criterion for a continuous control

=

process whose stopping time is a ran

(o

om
variable of known cumnmulative probability
distribution is expressed as e single im—
proper integral. (Physical examples of
interrupted control situations are: regu—
latcr component failure, catalyst deterio—
ration, space vehiclie midcourse guidance,
and randem waiting for e digital computer
used in the controcl of several systems.)

4 necessary condition for en optimal tra—
jectory is derived, shown to be time—
‘imvariant only for the exponential prob—
ability law, and related to reliability
theory. The optimal feedback contrel law,
optimal trajectory, and minimum expected
cost are presented for time—invariant
linear systems with quadratic cost and
exponentially distributed stopping time.
A simple condition on the feedback rule
for time—varying linear systems with

arbitrary stopping time probability dis—

tribution is derived. A connection with
the deterministic theory is esteblished

vie the limit as the variance approaches
zZero.

1. Introduction

In many control applications, the
duration of the control process itself is

uncertainm—e.g., the time when the mid—

course maneuver of & space vehicle will

be
accomplished is known, a priori, only
approximately; & component may fail at a
random time; or changes in the system to
be controlied or our knowledge of the sys—
tem may occur at times which are initially
unknown. (Some other physical examples
where such an interrupted control model
seems useful are: catalyst deterioration

in chemical plants, and random waiting for
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& digital computer used in the control of
Bellman and Kzlaba [1],
and Eaton [3] have considered

several systems.)
Zadeh [21],
interrupted control for discrete—time

1A

stochastic control systems. We conslder

a continuous deterministic control pro—
cess where only the interruption time is
stochastic and assume that the uncerteinty
regarding the duration of the process is
summsrized in a given cum:lative prob—
ability distribution for the stopping

re the expected cost of control
can be written &s an improper integral
invoiving the distribution and the inte—
grand of the original (deterministic)
criterion; im stochastic control, when
the random variations in the system are
independent of the stopping time, the
improper integral provides a simplifica—
tion of the corresponding expected cost
criterion. For & scaler first—order
system with quadratic criterion we use
this formulation to derive a necessary
condition for a control to be optimsl in
terms of the distribution of the stopping
time. The condition is a second—order
differential equation with coefficients
that depend on the distribution only
through the conditional rate of failure
function of reliegbility theory. We illus—
trate its application by examining some
simple cases in detail. The cptimal
control, minimum expected cost, and feed—
back rule are derived for a linear time—
invariant system under the exponential
probability law. For time-varying linear
systems with arbitrary stopping time prob—
ability distribution the condition is
shown equivalent to a simple type of

Riccati equation in & linear feedback



rule. Finally, the usual deterministic

ccntrol problem is shown to be the limit
of rhe interrupted control case as the
variance of the stopping time distribu—

tion goes to zero.

2. FExpected Cost Criterion

Let

Pt
N

| g(t,x,x,u,u)dt (
0

be the cost functional of a control pro—
cess with state x, control u, and stopping
time T, a random variesble distributed as
F(r) = Prob [T < r], where F(0') = 0 since
T>0.

variable denctes the derivative.)

(A dot above a function of one

We seek
2 control that minimizes the expected cost
E(J), which we write as an improper
Stieltjes integral:

@ T

g{t,x,%,u,0)dt dF(7). (2

{
“0

E(J) = |
0
The follcwing lemma reduces this to a
single integral.
Lemma. If T is a random variable
distributed as F(r) = Preb [T < 71,
F(0) =0 (T 2 0), then

T ®
{] s(tmwde} = [ sle,xw (1-F(e) Jat.
0

0
, (3)
. Proof. For a given uw and T = 7,
fo g(t,x,u)dt = G(7) and dG(r) = g(7,x(7),
u(t))dr. Hence the result follows from
the definition of expectation and the

integration by parts formula

f‘&

[, ear - [G(T)F{T)}z - f; F(+)dG(").

3. A Necessary Condition

Let the system dynamics be described
by the scalar first—order equation

% = h(t,x,u). (%)

+ bu, b, = Lx’ and hu = b.

Then 2 necessary condition can be found
from {(3) and (4) by an optimization pro—

cedure. For example, the Euler—Lagrange

equations are

(3)

£(E,%,%,u,0) = g(t,x,%,u,0) [1 — F(t)]

+ >-<t> [‘X’ - h(t,X:U}” ],

where r(t) is a Lagrange multiplier.
Denoting partial differentiation with
respect to a variable by writing it as a
subscript and deleting explicit reference
to the arguments of the functions g and h,

we have i

(g, (1=F) — b - Sl(g) (1-P)] - S = o,
(5a)

(g,)(1=F) = xh_ = $=[(g) (1-F)] = 0. (5b)

If the system is of form h = £(t,x)
Then elimina—
ting L between (5a) and (5b) yields

1,
(&) (-9 = g [(8,) (1) - Sel(ey) (1-P)]]

- Slg) (=01 - £ Sle) (1-P) ] 6)
2
1d
+2 S [(g,)(1-F)] = 0.
b 5z [(8)(7F)
Thus Egs. (4) and (6) together are a

necessary condition for an optimal tra—
jectory for minimum expected cost under
stochastic stopping with probability dis—
tribution F. Letting b = 1 and simpli-—
fying yields

¥ = L(t,x) +u,

")
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A& 4 - -
o N 7 5 5 . T FEEN
5 [(gg) (I-F) 1 + L 5% [(g)(I-F)1 (&7)
dt
-2 ¢ +g Y(1-F}] + (g —t_g ) (1-F) =0
qr Lt g ) (imE ]+ (g8, ) 1t F) ‘
The extension of this approach to the
‘,J
vector case is straightforward. Hence the
details will be omitted. The vector
results aré summarized in Sec. 7. In what
follows we present & detailed scalar ex—
ample.
4 Quadratic Cost
When g is known analvytically, (&%)
with (4')

can be gimplified and combined
a

to yield & single differenti

in the state or control whose sclution

yields the optimal trajectoryf/ For

example, let g = x% + w?.  Then (6') be—

comes

- & [w-F)] + (x=iu)(1=F) = 0 )
dt * Ux ) ’

When Prob [T < t] < 1, this can be written

as

.1 d - ‘8
X = LXL‘ T 1-F ac {U( —'—)}” (&)
Eliminating u between (4') and (8):
v = {/ (5(_'{\ + ___}-__ 9’;__ 5/5’_'})<1-'F\1 7o
c =4y )t D g (G )] (9)

For a continuous probability law of den—
3

sity £ = F, this is
LY ._E.. Y - ...._E__ — f = 100
I R e ] e Ry (10)

a second—order nonlinear differential

equation which depends on the stopping
time distributicn only through the ratio
of density to one minus cumulative dis-—

tribution.

5. Stopping Time Distributions

The only continuous probability law
for which (10) could be time—invariant is
the exponential law.

It is necessary for

“(11) shows that v
£
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(11)
where v is a constant. This implies
In[l-F{t}] = —vt. Thus
PN L . t
F{t) = Prob (T < t) = 1 - e Y5, ot >0,

(12)
the exponential law with mean = E(T) =
1/v. 1If the svystem is autonomous, i.e.,
if h does not depend on time explicitly,

)] T

hen for this probability

o

0) becomes

(13)

a nonlinear equation with constant co—
efficients.

f we put v v(t) Eq.
t) completely charac—

The distribu—

1

i
(

tion and density are then easily found to
be -
/\L‘ 5

- v{r)daT

F(ty =1 -¢ 0 and
Lt
) - 0\)<z)dx

f(e) = F(t) = v(t) e

The ratio of density to one minus cum-

ulative distribution, v(t), is called
“the conditional rvate of failure" function

in reliablility theory, since v(t)dt
+ dt!T > £]. A table of

function for several probability

Prob [t < T < ¢

this

et

aws presented below.

Time—Invariant Linear Systems

When the system dynamics are linear,
Eq. (13) can be solved analytically.
Furthermore, Lee [4] states that the three

conditions

et
ey

strictly convex with

[
o

e

e

convex with respect to X,



and

3. h linear in x and u,

which are satisfied in this case, are
sufficient for the solutiens of the Euler
equations to be the unigue global mini-

mum. Hence the optimal control will be

found in this case as follows.

put 4(x) = ax. Then
% = ax + u (&
and
% — vk — [1L +a—avlx =0 (14)
The roots of the characteristic equation

cf (14) are

2 Z

-

3 s x/(%)- +1 42" — av (15)
————T
=Y. N 2]
—zi/1+(d 5)" =% = R
Then, applying the initial condition
x(0) = c,
(3 Rt 3 -Rt
X = a e + (c—a) e s (16)
(% Rt
u = a(% +R~—a) e (17)
, (3 -R)t
+ (¢ = Q)(% - R ~—a) e z .
This implies
B = [ x? +uh) eV ae (18)
0

-]

{az[l + (3 +R—a>2} e (VHZR)E

Y0
+ 2a(c-a)[1 + G -at- Rz] eVt
27 Y opesy 2] (v2R)E Y vt
+ (0?1 + G Ra)}e }, at

2Rt

l} — . o
- [a"(R%-—a) e?RE (c—a) 2 (R $ra)e 2?“]0.
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Therefore o must be zero to keep the ex—
pected cost of control finite.

Hence a linear system with initiel

state x(0) = ¢, guadratic cost, and ex—

ponentially distributed stupping time has

an optimal trajectory

¥
(z -R)t

x%(t) =ce . (19)

o

the corresponding feedback optimal control
(from (19) and (4))

W) = - (a — (20)

and a minimum expected cost of control

E(I%) = c?(a = ¥ + R). (21)

N

As v = 0, so that the expected terminal
time E(T) = T
trol, trajectory, and criterion become

s — =, the optimal con-—
the corresponding optimal quantities for
the regulator (infinite—duration) problem
with linear dynamics and quadratic cost.

7. Time—Varving Linear Systems

If the stopping time is not exponen—

tially distributed, for a linear time—

varying system %X = a(t)x + u, Eq. (10)

becomes

% — £ % — [1+a2(t)+a(t) - ~Es a(t)]x=0
I-F ety T I-F :

(22)

The change of variable

w=Z (23)
X

shows that this is equivalent to the
Riccati equation

Ve — E o

al

I=F

0.
(24)

Equation (24) may be simplified and given
Define the

55 wo [La’ (o) +a(0)-

T )]

a physical interpretetion.
linear feedback rule G(t) by



ult) = G(t)x(e). (25)
Then by (4") and (23)
w = a(t)y + G(£). (263

Substitution of (26) in (24) leads to the
following condition on G(&):

=516 - 1

6 + 6%+ [2a(t) - = 0. (27)
Equation (27) is a simple necessary
and sufficient condition on the linear
feedback rule for minimum expected cost
with quadratic criterion. For specific/
a(t) and F(t), solutions can be obtained
by several methods. If a(t) and F(t)
27

cause (27} to have the coefficient of G

a constant, say Q, (as for F{t) the uni-—
) 1 ,

orm law on [Q,M a(t) = mmr—c + a

form £ (0,M], a(t) = o3y +

one parameter family of solutions is

—-2R _t
- [§ +Ry] + k[§ - RJe @
6(t) = e (28)
1 -ke Q
where
- (9% 4
RQ )/(2; + 1

(The sclution of the previous section is
Eq.
eter.) If a(t)

(28) with k = 0 the appropriate par

a and F is Rayleigh

with a = 1
L2
"(i“ — 2at)
G(t) = = 5 +t - 2a.
£ — (5 - 2ar)
k + JO e dt (29)
(The solution also holds for a(t) = — t/2

and F exponential with parameter v if we
replace "2a" by 'V in (29).)
The analogs of (22) and (27) can be

derived for the vector case. Let x and u

be column vectors; prime denote transpose;

and 4 = A{t), P, Q, G(t) and the identity
I, be matrices of appropriate order. Then
for

% = Ax + u, (30)

when we seek a trajectory x or control u

which minimizes

S22 T
J= | Uxlp +lulgde = | (x'Px +u'Quadt,
- UG
(31)
we have
. o VU P i I
%o+ [Q A'Q - A- I E_F]g (32)
~[qlp +aqa) +qh - A £ =0
Q7 Q4) +Qh - 4 Tp]x = 0
or
&+ 6%+ [GA +q A -6 TEE} (33)
-Q "tz 0

as necessary and sufficient optimality
conditions when P is nonnegative definite

dand Q is positive definite.

8. Limit as Variance Approaches Zero

A relationship between control with
stochastic stopping—time and the usual
deterministic case is given by the fol-
lowing thecrem.

Theorem. Let Fg(t) be a probability

distribution on [0,») of mean T < = and

variance 62 < e, gty = g(t, x(t), u(e))
be nommnegative and such that
@
gig% dt < « for all x(t), u(t), and
0 14t”
t ¢ [0O,o). Then
T T
lim E{; g(t)dt|I~F (t)} = [ g(t)dt.
2(‘ Yo g Y0
o -y
(34)



Proof. The lemma yields the equiv—

zlent conclusion:

T
© r
lim I g{t) [l—Fo(t)}dt =] g(tydt.
~ 2_.0 0 0
(35)
Since
rT r* ;
| s(r)dt = J g(t) - [1-F(t)ldt, (36)
0
where
. 0, t<T
F(t) = lim F_(t) = 1, s T (37)
o"=0 -

this will be established by dominated

convergence. The inequality (38) will be
used

2, =2
1-F_(t) ¢ =L (38)

[02 = E{Tz} - Ez{T} = f 2 dFO(s)—¥2
“0
2, =2 2 = 2
o% + T = jo s? dF_(s) 2 jt s? aF_(s)
b _ 20
>t Jt dFG(s) = t“[1 Fg(t)}}.
Define r? = 02 + ?2. Then, since
[1-F_(£)] < 1,
g(t), t<r
g(t) - {1—F6(t)} < T(t) ={ g(t)-rz/tz,
t>r
(39)

r(t) is summable, i.e.,

r . @ (t\ 2
d -redt,
JO g(tydt + jr %ﬁ-‘ rédt

o2

- > jo r(t)dt

(40)
since the hypotheses g(t) nonnegative
and

© r
J 515%— dt < =, imply f g(t) dt < «,
2 P
0 1+t 0 1+t
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and | gﬁ;% dt < e, and since
“r 1+t

Ty, r
88 acco=[ge) ae <o (41)
0 1+t

and

(-] @ s

“r 1+t r t

(42)

Hence Lebesque's theorem on dominated
convergence (see e.g.,
jo

[5] Natanson,
161) applies and yields (2).

9. Conclusion

We have shown that it is possible to
find optimal controls and feedback rules
for continuous control systems with sto—
chastic stopping time. Results for the
case of a scalar system with quadratic
criterion have been given to illustrate
a procedure for incorporating the pos—
sibility of interruption into the analysis
of a cdntrol process. A connection with
the deterministic theory has been estab—
lished by allowing the variance of the
stopping—time distribution to approach
zero.

*

r T

o> [ B g x Lo T o) ac - ()
0 1+t° T 14 0
r

= > [ gr) at
0

2> B - [ BE 4 (42)
r 1+t r ot

since for any r there always is a finit

constant k such that 515% > k gg;l‘
14 2
+C t

(The converse implications also hold.)
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