Identification from Aperiodic Dis-
crete-Time Data and Estimation of
Exponential Parameters

Several authors have proposed system
identification methods in which discrete-
time data are used. Kalman [1], Lendaris
[2], Levin [3], and Steiglitz and McBride
[4], use periodic sampled data to estimate
pulse transfer function coefficients. Bell-
man, Kagiwada, and Kalaba [5] discuss the
estimation of parameters of conventional
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(Laplace transform) transfer functions from
discrete-time data at special times.

In many cases, however, the independent
variable in an identification experiment is
neither regularly spaced nor under the con-
trol of the experimenter. For example,
periodic data may be obtained with gaps—
as when a communications link to a space-
craft is lost temporarily. The purpose of this
paper is to extend one of the above identi-
fication procedures to the situation where
the experimenter cannot choose when ob-
servations can be obtained, or cannot rely
on their being periodic, in a way that reduces
interpolation inaccuracies, and the effect of
measurement errors and noise.

The transfer function of a linear, lumped-
parameter, time-invariant, single-input
(f(t)), single-output (x(t)) system expressed
as the ratio of polynomials with constant
coefficients:
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(e =v below and in most systems) leads to
the transform-domain input-output-state
relation:
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when the effect of the initial state s(0)
=[5:(0)] is included. (See [6], ff. 227, for
equivalent system representations.) Identi-
fication of the system is the estimation of
vy boy oo by @y - - - a0 (we put a,=1)
and the initial state. In what follows we
assume that y and » are known and examine
the determination of the remaining (2v+u
+1) parameters.

Reference [S] suggests that the initial
state and the transfer function parameters
can be found by making the theoretical out-
put transform of (2) agree with approxima-
tions to the transform derived from measure-
ments of x(¢) and f(¢) by least squares. A
quadratic in the unknowns,
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is minimized by the solution to the set of
(2v+p+1) linear algebraic equations in the
(2v+p-+1) parameters:
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The sum in (3) is on real positive s, for
numerical convenience. In most cases, sum-
mation produces differences in the coefficients
of the unknowns in (4) which make these
equations independent. If the input can be
chosen by the experimenter, F(s)=F(s)
should be other than 0, 1, s, ..., s

(e.g., F(s)=1+s"1), since for these values
(4) may be dependent.

One way to incorporate aperiodic dis-
crete-time data is to use the integrated
Lagrange-interpolation relation:

X = elTvy] = M (s5)VY, O
Y = [20), - -, 2],
T =[1,4-- -, 1],
M'(s) = £[T']
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Here the nXn Vandermonde matrix ¥ de-
pends on the actual observation times #;, and
is nonsingular for distinct #. The above
matrix representation of interpolation and
several results used below are given in [10].
Equation (5) is also the numerical analysis
“method of moments” for obtaining quad-
rature weights [7]. When the discrete-time
observations are inexact, the least-squares
regression polynomial of degree (m—1)
fitted to n data can be integrated. Then,
with V., denoting the n-row, m-column
matrix corresponding to V, the transform
of the polynomial found from the normal
equations is

X() = L[T' Vo' Vo) Wan¥]
=M’(5‘) (Vnm’Vnm)ﬂVanA (6)

Vam" Vam is related to the ill-conditioned
Hilbert matrix when the ¢ are uniformly
distributed, so the numerical matrix inver-
sion can be difficult for large m. Rice [10]
states that this has little effect for m=4 or 5.

These approximate transform expres-
sions can be modified to account for non-
polynomial integrands (x(¢)). For example,
other functions—exponentials, sinusoids,
damped sinusoids—(and their £-transforms)
can replace the powers (and transforms of
powers) of £ in V and T’ (and M(s)) of (5).
In [S], a change of variable used to adapt
a stored-weight formula to exponential
polynomials; Reference [9] discusses for-
mulas for the approximate integration of
periodic functions; the numerical results
below were for interpolation by exponen-
tials: V=[exp (—(—1t)], M(s)=]1
/(s+7—1)]. In this case the procedure ex-
tends Prony’s method [7] to aperiodic,
noisy data (using (6)).

The sensitivity to noise of the above
procedure is, as the numerical examples be-
low indicate, appreciable. (Reference [8]
discusses one aspect of this.)

Aperiodic discrete-time data from

x(t) = 2 exp (—1) + exp (—21)
Cy exp all + Co exp agt (7)
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were used to investigate the application of
(4) and (5) to the system described by the
differential equation
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TABLE I

ADDITIVE NOISE AND EFFECT OF OVERDETERMINATION

Equations F a ao ‘ c al 2] s
(5) 1075 2.64 1.57 —3.96 1.49 —0.911 1.51 —1.73
(6) 1073 2.78 1.74 —3.98 1.72 —0.949 1.28 —1.83

TaBLE II

EFFECT OF INTERPOLATION INACCURACIES

Experiment o ao c a i 2] a
L True 3.02 2.03 —4.03 2.00 —1.01 1.00 —2.01
Est. 3.10 2.13 —4.04 2.08 —1.02 0.92 —2.08
. True 3.20 2.31 —4.30 2.00 —1.10 1.00 —-2.10
t Est. 3.86 3.16 —4.37 2.45 ~1.18 0.555 —2.69

The parameters sought were a1=3, ao=2,
and ¢=x(0)=—4; x(0)=3 was assumed
known. Once a,, a¢ and ¢ were found, we cal-
culated the corresponding ci, ¢, a1, and as.
Exact observations x(t;) at ¢;=0.1, 0.2, 0.3,
0.4, 0.6, 0.7, 1.2, 1.3, 2.0, 2.1, 3.6, and 3.7
were used; calculations were done on an
IBM 7044 computer; matrix inversion was
done by a standard routine. When double
precision was used, exact estimates of the
parameters were found using all the data
and using as few as five observations. In
single precision, using only five observa-
tions, we found a1=3.01, ac=2.015, ¢
=—4.00 (¢,=2.01, ar=—1.00, ¢,=0.986,
ay= —2.01). Similar results would have been
obtained had we used the interpolation of
(5) to compute values of x(¢) at the times of
the stored-weight formula used in [5].
(These times lie between pairs of adjacent
t; separated by 0.1 in the above set.) How-
ever, linear interpolation gave a,=2.05,
ay=0.865,c=—3.01 (c:=0.531, ay= —0.594,

=247, ap=—1.46). By way of further
comparison we used linear interpolation to
find an ordinate at t=0.5 and then tried to
use Prony's method on the equally spaced
set from ¢=0(0.1)0.7. The calculation gave
the meaningless result, exp (af)=an imag-
inary number.

The effect of inaccurate observations
was examined as follows: Zero-mean Gaus-
sian noise was added to the twelve «x(¢,);
estimates were obtained using (5)—inter-
polation—and also using (6)—overdeter-
mination—for m=n/2=6. For interpola-
tion, a standard deviation of 1075 caused the
inaccurate parameter estimates in Table I;
with overdetermination, the comparable
inaccuracies in the table were produced at a
1073 standard deviation.

Noiseless data generated by the true pa-
rameters in Table I1 led to the corresponding
estimates when interpolation was by an ex-
ponential polynomial (powers of exp (—t)).

The above results suggest that in the
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general case the following techniques should
be used:

a) Overdetermination with #>m to
suppress noise.

Reservation of data at the extremes
in time to check the estimates by ex-
trapolation to reduce estimate errors
caused by an inappropriate interpola-
tion set.

Iteration (using the last estimates to
choose the new interpolation func-
tions) to improve the accuracy of the
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estimates,
A. KLINGER
RAND Corporation
Santa Monica, Calif.
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