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1. Introduction, This paper is concerned with the allocation of a
fixed inventory of unreliable units to a random number of demands.
Qualitatively, only one unit of those allocated has to satisfy a demand.
However, each unit will only satisfy a demand with a given probability;
in that sense the units are ''unreliable''. The goal of an allocation stra-
tegy is to meet all demands encountered, that is, to have at least one
allotted unit satisfying each demand. Two other measures of success
will be discussed below: the expected number of consecutive demands
met and the expected inventory remaining after meeting a seguence of
demands successfully.

The model we deal with can be applied to situations where

(1) all the unreliable units have the same probability p of
functicning-successfully, where 0<p <1 ;

(2) demands for units occur at random times but only one demand
occurs in any infinitesimal small time-interval;

(3) the random events of "a unit functioning' and '""a demand
occurring'' are independent of each other; and

(4) allocated units are not reusable.

This model was originally developed for an operations research
analysis of a military system. However, it is also well suited to (a)
an inventory allocation with random customer arrivals where p repre-
sents the probability that a given good will satisfy a customer and
(b) an allocation of communication channels to messages which arrive
at random when use of several parallel channels increases the overall
probability of reliable transmission of a message. (Here, the assump-
tion that the channels are not reusable corresponds to single message

transmission times being much larger than the expected interval between

TAny views expressed in this paper are those of the authors. They
should not be interpreted as reflecting the views of the RAND Corporation
or the official opinion or policy of any of its governmental or private
research sponsors. Papers are reproduced by The RAND Corporation

as a courtesy to members of its staff.
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174 Allocating Unreliable Units to Random Demand:

successive messages. )

The original application considered a bomber which had t uni
of time remaining to accomplish its mission, n units of air-to-air or
bomber-defense missiles on board and expected to meet enemy inter-
ceptors generated by a nonstationary Poisson process with known sta-
tistics. The n units were defensive armament to be used against the
enemy interceptors; each had the same 'kill probability'. We origina.
assumed that an interceptor which had not been shot down was certain
to destroy the bomber. This was relaxed in the analysis of other mode
to include interceptors with kill probability less than one. In the fol-
lowing we refer to such a situation as an "unreliable demand', by ana
ogy with the unreliable units (missiles), and speak of probabilities
that the demand is sustained or withdrawn rather than kill probability.
The presentations of both models are substantially independent.

The overall purpose of the initial model is best given by the
title of the classified RAND report on the subject, '"Calculating the Va
of Bomber Defense Missiles™ [1]. 1In addition, the functions defined
below give the strategy ( firing doctrine) and maximum probability of
success, 1.e. reaching destination having satisfied all demands ( des-
troying all enemy interceptors) enroute.

2. The Basic Model.

2.1 Allocation to Poisson Demands. Let t represent the amc
of time remaining during which demands may be encountered. We asst
that there exists a continuous positive function r(t) such that for ans
small interval of time At

(i) the probability that exactly one demand occurs in the inte:
val (t-At/2, t+At/2) is r(t)At + o(At)T;

(ii) the probability that exactly zero demands occur in the int
val is 1 - r(t)At - o( At); and

( ii1) the probability that two or more events occur in the inte:
is o(At). These assumptions are those of the Poisson probability lav
Define m(t)= fO r(t) dtv, so m(t) is the mean number of demands ir
in the interval [0,t]. Then for k =0,1,2,...

3

k
prob {k demands in [0,t]} = e—m(t)%j_

3

likewise, for 7< t,
t
- d
prob {0 demands in [T,t]} = e fT (o) do
Since these facts are consequences of the Poisson assumptions
and follow by generalizing standard argmmems;t to the case r =1r(t),
0ot constant, they will not be proven here.

. Terms which go to zero faster than At— 0 .
“see, for example, Haight [2].
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Combining the above with (1) and taking the limit as At
approaches zero, we find

th r( o) do ,

prob {first demand at T} = e (7) dT.

The allocation strategy ""one unit to each demand' has a positive
probability that all demands encountered will be met successfully.
Let P(n,t) be the probability that all demands encountered in [ 0,t]
are filled successfully when one unit is allotted to each demand and
n units are available at time t. Then

P(o,t) = prob {0 demands in [0, t] } = e-m( t),

P(1,t) = prob {0 demands in[0,t]}
+p - prob {l demand in [0,t]}
e L ey t) = e [T+pm(t)],

and we can state the following.

Theorem 2.1.1. If n units, each with probability p of func-
tioning successfully, are {a) available when t units of time remain,
and ( b) allotted one to each demand encountered until zero units of
time remain, then the probability that all demands encountered are filled,
P(n,t), is given by

-m(t) § [om(o)]”
i=o I
Proof: The formula holds for n =0,1. Assume it holds for
n<k. Then

: t
Pkl 1) =e 8 4 fOtpP(K’T)e'fT‘(‘T) A ry dr

P(n,t) =e¢

= e ;
0 i= ‘
= ™D (g, (D) i L)
kO i=0 i

_ _-m(1) [pm(t)]

=e {1+1ZO (i+1) }

= ommt) i [pm(t)]?

i=o

A larger probability that all demands encountered are filled
successfully can be obtained by allocating more than one unit under
some circumstances. Let P"(n,t) be the maximum probability of
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successfully meeting all demands in [0, t] given n units available
when demands may occur for t more units of time. That is, P*(n,t)
is the probability of meeting all demands in [0, t] when the allocatio:
strategy used maximizes this probability. Since the strategies are
identical when n =0 and n =1 we have

P¥(0,t) =P(0,t)

P¥(1,t) =P(1,1t) .
In general,

t . t
P, = ™0 I e (12 ) P(mem ) e Ay
i=l(1)n

The integration is over all possible first demand times, T; g denotes
l-p, the probability that an allotted unit fails to fill the demand. If .
units are allotted, the probability of filling the first demand is (1-g').
The "optimality principle't and independence yield the above. That
P*(n,t) depends only on m(t) and not explicitly on t is the point
of the following theorem. m( 1)

Theorem 2. 1. 2. P*( n,t) = e &(n,m(t)),

where &(n, x) is defined by

q:(n,x)51+fx max {(l—qi)@(n—i,y)}dy for n>1
0 i=1(1)n -
and
®(0,x) =1.

Proof: The theorem is true for n =0 . Assume it is true for
n<k. Then

t
P (k,t) =e ™Y 4 f(;r rﬁalx {(1 - ") P*( k-1, 7) }e_f'r 3
1=1( 1) k

)
) ATy dr

m( 1) e—ﬁ o) dcrr

e ™Y P max {(1-ah) e Pakotmim)) ()

i=1(1) k

=™ MY ek {(1mg)) ekt 3) ) dy)
0 i=1 (1) k

=Y 5k m(n).
Thus P™(n,t) can be tabulated versus n and m(t) =x. To simplify
notation, henceforth we write P(n,x) instead of P¥(n,t) for the
probability that all demands are successfully filled given that n unit
of supply are available when x =m(t) demands are expected.

By the preceding theorem the optimumT number of units to allo
cate to a demand is given by that i which attains the maximum in the

TRela‘cive to the criterion "maximize probability of successfully meetir
all demands''.
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integrand defining ®(n,x). To render this unique, we define the
allocation strategy function ¥(n,x) as the smallest value of i at
which (l-gi) + a( n-i, x), considered as a function of i, achieves
its maximum. Using prime to denote differentiation with respect to x,
symbolically, ,

T(n,x) =first[1 =1(1)n: (1-q) « &(n-i,x) =&'(n,x)]
and _

3(n,%) =1+ [F[1-g¥ ™Y ] o(n-w(n,y),y) g,

where "first [i = 1(1)n:...]" denotes the first value of i from | to
n, in steps of 1, at which the condition to the right of the colon holds.
For n =1 and 2, direct application of the above yields:

(L, x) =1+ (l-g)x =1+ px,

T(l,x) =1,
and
2
I+(l-qg)x x < qu =%
o(2,x) = g2 2.5 ot
L+ = +px+TpX ;x> 2

2, x<q/p,
1, x> g/p

Thus for n small the @(n, x) are polynomials of degree < n on certain
intervals of the x-axis. The & and ¥ functions for n =3 and 4
can also be easily given in analytic form:

(2, x) =

2
l+(l—q3)x, 0 <x< 9 5
l-g
4 5 > > -
g 2 (1-g%) (1-q) x q gt/ 2g
2(14+q) +(l-g)x+ > , lqz_<_x< v
203, 2= - g* L2, 2aNeg <
2( 14q) 3 3!
2 2 2 33 —_—
g (l-g) x (l-g) "x g 2g ,
\+(l+ > ) (1-g)x + > + 30 , g < X

T in this case the integral has to be broken up in two parts as follows:
g/ 2 X
o2, x) = l+fo' P(1-g )dy+fq/p p( l+py) dy

q 2, x% (g/p) 2
l+(l+q)q+p(><—p)+p( > T T 3 ).
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U(3, x)

o(4,x)

(4, x

where

P 2
3 0 <xK< d
- 2
l -qg
2 —
2
2 q S <x < ql+«/~q
1 -qg -
g +n~2g .
1, g < X
\.
3
4
(1. (l1-g)x, 0< x< —3 5
l-gq
4 2 3 2 3
, _ 9 (l+g+q72) §(1-gd) x + U=e )2.<1—q>x i 3i><<1_qq
l+g+g I -q i
4 2 3 2 2
2 1-¢7) (1-
5 q(l+q+q/2)+g__(l_g)+(1_q)(1+_g__)x+( g)(l-g
2 3 2 2 2
l+ag+q
2 2 3
ﬁ Ld=g ) -9 x g < x < o
4 2 3 3y e
l4+g+q7/2) o
p o Utata 799 ) 9y o 1-2- 2 (g
2 3 2 2772
l+g+g
2 33
1 q 2 all-q) ¢ (¢
tl5+a-7101-q) "c(aq) + 30
(-a) ‘<) o 2 %
12-4) © 19) 2 v =
T Hl-g)x + (1 +57)(1-q)
33 4 4
1- - {1 x
L + g? — +“qi, c(qg) < x;
3
4, o<x< <L
= 3
l-g
q3 g
< <
3, 32X i-q
l-q
g
2, g =x <cla,
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1/3
(@) = T—la+(aa +€a) ">+ (alq) - e
h(o) =al 3a' 2t +3- 2425 ),

) =N(h()?-8q .
( The formula for the roots of a cubic equation was used in obtaining
®(4,x), c(qg), h(qg), and f(qg). See[3], p. 358.) _
As one can see, for higher values of n the complexity of
®(n,x) increases markedly. Nevertheless, extensive €ables of
P(n, x) =e ®®(n,x) have been computed at The RAND Corporation by
use of approximate numerical integration in digital computer programs.
As a practical matter, it is quite easy to compute the functions
® numerically. Such computation simply involves the solution of a
system of, say, N +1 differential equations of the form

®'(n,x) = max {(l—qi)é(n—i,x)} n=0,1...,N,
i=1(1)n

subject to the initial conditions
®(n,0) =1 n=0,1...,N.

Many of the properties of the functions &(n,x) and ¥(n, x)
which hold for the analytic expressions also hold, in general, for all n.
The following section presents a rigorous mathematical derivation of
these properties, based solely on the above definitions. Many of these
properties correspond to what our intuition tells us that holds, given
the physical interpretation of the model. However, some results which
are intuitively almost obvious, and which are verified by the tables re-
ferred to above, remain as yet unproven.

2. 2. Properties of the Functions & and W. First, let us
make the dependence of &(n,x) on the parameter 0< g <1 explicit by
writing @(qg, n, x).

Lemma 2.2.1. If n>1, x>0, and 0<g<gq' <1, then

®(g, n, x)> &(q', n, x) .

Proof: Assume n =1. Then
®(q,L,x) =l+(l-g)x>1+(l-g")x =®(qg",1,x) .

Assume the lemma holds for all n >1 and n <k, then since
(1-g) &( g, k-n,%) >(l-g™) & (g, k-n, x)

for all 1 <n <k, the desired result follows at once from the definition
of @.
Lemma 2. 2. 2. (1, n, x) =1.

Proof: Trivial .
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The case g =1 (thatis, all units have zero success probabil;
is exceptional, and in subsequent discussions we shall assume g <]
unless we explicitly state otherwise.

Corollary 2.2.1. &(n,x) >1.

i
X

n
Lemma 2.2.3. ®(0,n,x) = ), .
=0 I

Proof: The statement is true for n = 0, and the inductive ste)
trivial. n
Corollary 2.2.2. @(n,x) < ),
i=0
Lemma 2.2.4. &(n,x) has a continuous first derivative and
&' (n,x) >0 if n>1.
Proof: From the definition we compute

w1l

il

®'(n,x) = max ( l—ql) ®(n-i, x).
i=l1)n
The guantity on the right is clearly positive by Corollary 2. 2.
Lemma 2.2.5. &'(n,x) >3@'(n-1,x) if n>1 and either x°
or g~>0.
Proof: For g =0, Lemma 2.2.3 above immediately implies
the desired result. If g>0, then since

i , 141 .
(l-g)@(n-1-i,x) <(l -qg 7)&(n-1-i,x) ,

it follows that

®'(n-1,x) = max ( l—qi) &(n-1-1i, x)
i=l(1)n-1
<  max (l—ql)é(n-i,x) = &'(n,x).
i=sl(1)n

Corollary 2.2.3. &(n,x) >&(n-1,x) if x>0.

Lemma 2.2. 6. (1l-¢g™) & (n,x) >@'(n,x) .

Proof: For g =0 this is a trivial consequence of Lemma 2.
For g >0 we know that

(1-g®) @(n,x) >(l-g')@(n-i,x) for i =1(1)n,

and thus the desired result follows.

o
Corollary 2. 2. 4. &(n,x) < l1-a )%

Proof: By Lemma 2. 2. 6. we have

! <
®'(n, x) < l_qn
a(n,x) —
Integration from 0 to x gives
tn@(n,x) <(l-gMHx .
Hence,
n <
®(n’x) < e(l—q )X

From this point on we shall tacitly assume that 0 < g < 1 anc
supress dependence of & and ¥ upon x when it is convenient.
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Lemma 2.2.7. ¥(n,x) <¥(n-l,x) +1 if n>1.

Proof: Since ¥(n-l,x) is defined to be the first i for which the
function (l-gl)@(n-1-i,x) attains its maximum we have

(1-a" Dy no1w(n)) > (1Y ) g (nw(my) .
If ¥(n,x) >¥(n-1,x) +1, then by definition of ¥(n,x) we have
(1-") g (n-w(m)) > (=" 5 (nig(non -1,
Combining these inequalities with the identity
U n-1) +1
( quy( n-1) H)@ (n-¥(n-1)-1) = (1-9 \1[' ) ( l—qgj( n-1) )&( n-1-¥( n-1))
v {n-1)
(1-qg )
given us
U(n-1) +1
¥(n) (l-g (n)-1
(l-g y&(n-v(n)) > (1_q\If(n-l)) (l-g )®(n-T(n))
which implies
l_q\lf( n) y l-q\lf( n-1) +1
T(n)-1 U( n-1)
I-g l-¢g

Since (l—qY+1)/( 1—qy) is @ monotone decreasing function of y ( for
0< g<1), this last inequality contradicts the assumption that
¥(n,x) >¥(n-1,x) +1.

In order to derive our main theorem concerning & and ¥, we
will need the following general result.

Lemma 2.2.8. If f, g, and h are positive functions defined on
[0,9), f=gh, h(0)>1, and h is a nondecreasing function, then

l+f5<f(t) dt

1+f5< g(t) dt

is an increasing function of x .
Proof: For compactness of notation, we suppress the dummy
variable t :

R A L+ [ n(l+f5<+Af)(l+f5<g) S (L [Ty 5{+A@)

R M —l+f5<g _ (l+fg<+Ag)(lf+fOXg)
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The denominator is obviously positive, so let us consider the
numerator:

(1+ P00+ [fo -0+ oo+ [

:fX+Af [l—!—fS{g] - fj+Ag[l+f5<f]

X

> h(x) f;+Ag[l + ngg] - f;+Ag[l + f‘g f] >0.

It seems intuitively obvious that ¥(n,x) > ¥ n-1, x); that is,
with a larger supply one is always willing to make at least as generot
an allocation. The extensive tables we computed have confirmed this
conjecture. However, determined efforts by a number of people at
RAND have failed to yvield a rigorous proof that this is indeed the case
If this could be proven, we could relax the hypothesis in our main the
rem below.

Theorem 2. 2.1. Suppose W(k,x) >¥(k-1,x) forall x and
for all k <n . Then the following hold for n :

(a) ¥(n,x) is a monotone nonincreasing function of x ;

(b) ®(n,x) has n-1 discontinuities;

(c) @&(n, x)/ @ ( n-1,x) is a monotone increasing function of

Proof: Direct computation shows that both (a) and (b) holc
for n =1 and n =2, Assume condition (a) holds for all n < N. TFor
notational economy, let i = ¥(N, x). Thus, by the definition of ¥(n
we have

(l-githo(N-i-1,x) < (l-gl)®(N-i,x) .

Let j = ¥(N-i-l,x) and k = ¥(N-i,x). By hypothesis we kn
that 1> j:
i+1 i+1 j
( l—qH ) @ (N-i-1,x) = ( 1—ql ) ( l~qJ) &(N-i-j-1, %) (def. of j)
< (1-gh (1-d*h (@(N-i-j-1,%)  (since i>j)

< (1-¢} (1-g%) ®( N-i-k, x) (def. of k)

= (1-gl) ®1( N-1, %)

where prime denotes, as before, differentiation with respect to x .
This means that if (1-g!)®(N-i,x) is greater than or equal to
( l—ql“) ®( N-(i+l), x), then it is also greater than or eqgual to it for a
y > x. In other words, (N, x) can never jump up from i to i+l ac
X lincreases, On the other hand, by the hypothesis of induction
¥(N-1, x) 1is monotone decreasing in x and by Lemma 2. 2.7 it follo
that it is impossible for ¥( N, x) to jump from i up to any number
greater than i+ 1. This completes the proof that ¥(N, x) is a monc
tone nonincreasing function of x .

Part (b) of the theorem follows by induction. Direct computa



Allen Klinger and Thomas A. Brown 183

tion shows that (b) holds for n =1, 2. Assume it holds for all n < N.
By the expression on p. 5,
%ﬁl — l_q as X — 00
Assume for n < N

o(n,x) _(l-g)"
n!

as X — 00,
n
Then * fX ( ; }
, 1+ - max (1-gh@(N-i, y) Jdy
lim AN, x) lim 0 i=l(1l)N

X —>00 xN X~ 00

I

N

lim max l-ghy®( N-i, x
L Hm i:ll(l)N (I-gl) a( , X))

NXN—I

( The last equality holds since &(n,x) is at most of degree n in x.)
Hence the inductive step holds and we have &(n,x)/xI! - (1-g)*/n! as
x > . This implies that for x sufficiently large, ¥(N,x) =1.1It is
also easy to see that for x sufficiently small, ¥(N,x) =N . Thus
(N, x) can have at most N-1 discontinuities. The only way in which
¥( N, x) could have fewer than N -1 discontinuities is if it drops 2
or more at one of them. By Lemma 2. 2.7 and the hypothesis of induc-
tion, this could not happen at a point of continuity of ¥(N-1,x) .
Let y be a point of discontinuity of ¥(N-1,x), and say ¥(N-l,y) =k.
Then

(1-¢%) @(N-k-1,y) =(l-c**ha(N-k-2,y) .

The only way ¥(N) could drop two at y is if ¥(N,y) =k and
U(N,y-e) =k + 2 for e sufficiently small. This would imply

(1-d%) ®(N-k,y) =(1-g*2) & (N-k-2,v).
Eliminating ®(N-k-2,y) between these two eguations gives

k+2

l-g _
l-—qk+l ® (N-k-l,y) =@(N-k,vy) .

Since (l—qkﬂ) /(1-gK) is a monotone decreasing function of k we have

l—qk+2 < 1 - qk-l-l
1 qk-i—l l—qk

It follows that
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k+1 k
(l-g ) @ (N-(k+l),y) >(l-g) @ (N-k,y),
which implies ¥(N,y) =k+l. This concludes the proof of part (b) .
Now we turn to part (c¢) of our theorem. Part(c) is clearly
true for n =1, 2; assume it is true forall n <N . Let i = ¥(N-1,x).
We have &(n,x) >0 if n>1 (Lemma 2.2.4). Then
(N, %) max{(l-cd)e(N-i,%x), (I-g'the(N-i-1, %)}

®'(N-1, x) (1-gh) ®(N-i-1, x)

(®(N-1i, %) 1-gitl )
max -
\@( N-i-1,x) > l-of

= H(N, x) (this is our definition of H ).

It is clear that H(N,x) >1. By Lemma 2. 2.8, all we must dc
is to show that H(N, x) is a nondecreasing function of x and our
proof will be complete. It is clear from the hypothesis of induction
that H( N, x) is nondecreasing at points of continuity of i=U( N-1, x)
Let y be a point of discontinuity of ¥(N-1,x), and let ¥(N-1,y) =
then for all sufficiently small ¢ we have ¥(N-1l,y-¢) =k+l. By
definition of W(N-I, y-e) we then have

(1-* T @ ( N-k-2, y-e) > (1-gK) ®(N-1-k, y-e)

S(N-(k+l), y-e) _ 1-g5*!
S(N-(ktD) -Ly-¢) " _ .k
Since k42 k+]
l-g < l-g
)
|k oK

it follows that H(N,y) > H(N,y-¢) for all sufficiently small ¢ , wh
completes the proof.

2.3. Discussion The first few results of Sec. 2.2 deal with the pa
meter g = l-p, the probability that a unit fails to function. Lemma 2.
states that for a given number of units n, less reliable units yield a
lower maximum probability of meeting all demands; hence from the ex

treme cases g =0 and g =1, bounds can be obtained for arbitrary «
Lemma 2. 2. 2 states that totally unreliable units do not increase the

probability of meeting all demands above that of the event '""no demanc
occur'. Lemma 2. 2.3 shows that with n perfectly reliable units

(p =1) & is the sum of the first n + 1 terms of the power series for

e* . From the preceding we get the bounds of Corollaries 2.2.1 and
2. 2.2, which imply

e X<P(n,x) <e Z T
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An alternate upper bound on P(n, x) follows from results on
®'(n, x), the derivative with respect to x . From Corollary 2. 2.4 we
obtain the bound

n

P(n,x) < e ,

which is generally smaller than the preceding one for x small; the
summation bound is smaller, for x large. The results are:

(1) & has a continuous positive x-derivative, which is a
monotonic increasing function of n ( Lemmas 2. 2. 4 and 2. 2. 5).

(2) @ 1is a monotonic increasing function of n so more units
being available improves the maximum probability of meeting all
demands, P(n,x) (Corollary 2.2.3).

The remaining results concerning the optimum allocation strategy
¥(n,x) are set forth in Theorem 2. 2. 1. Part a) confirms that fewer
units should be allocated to a single demand when more demands are
expected: ¥{n,x) is a monotonic nonincreasing step function of x.
When x is sufficiently small ( few demands expected) all n units
should be allocated to any demand that occurs. The values of x at
which ¥ changes can be expressed in terms of n and g as discussed
below.

There are two conjectures about the & and ¥ functions which
appear plausible and which are supported by extensive computations,
but which we have not been able to establish by a rigorous mathematical
argument:

(a) ¥(n,x) >¥(n-1,x) forall x>0 and forall n>1.

(b) @(n, %)/ ®( n-1, x) is a monotone decreasing function of n.

Conjecture ( b) immediately implies conjecture (&). Note that
it is not always the case that the increment &(n,x) - @ (n-1,x) is a
monotone decreasing function of n. For example, when g =0.5, the
analytic expressions for ®(n,x), n =0,1, and 2 ( see p. 5) yield

®(l) - &(0) =0.5x,
0. 25x% x <1,

b —_—

&(2)-a(l) =

>

\O. 125( l+X2) x> 1,

Figure 1 shows the region where the increment in success probability is
greater for the second unit than the first.

However, for many values of n and x the incrementin @ is
monotone decreasing. It is easy to show that when these increments
are monotone decreasing, then (b) (and hence (a)) holds.

Because of the frequent validity of (&) and its key role in the
mathematical development we define it henceforth as the regularity
condition for ¥ . When this condition holds, it can be proven that the
discontinuities of ¥(n,x) are related to those of ¥(n-2,x). If
X =Y., is the [{-th discontinuity of ¥(n,x), as x increases from
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4
=3 =
P
|
~ |
+ i
o n=0 < 2(1+4+0.75)
e ' ~ 3,74
o n=l || )

0 ! | ! |1 |
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Increments in success probability versus expected
number of demands for first and second units.

Figure 1
zero, and ¥ satisfies the regularity condition, then
qn_l
Yn1 = n-1 7’
l-q
= =2,3,... > 30-2 .
Vg ZVnoz g T A =23,.00
and qn+l—212
Yne T _n+l-2
-4
for £ =2,3,...,n>30-2

{ Proofs of the first two statements are given in Corollary 4.1.5 and
4. 1. 6; the third statement is proven in [1], p.77.)

3

3. Optimal Policies The purpose of this section is to illustrate the
application of the optimum strategy functions ¥(n, x). We also wish
to make explicit that although the optimum return functions &(n, x) a1
computed a priori, application of ¥ does in practice yield the best
return.

For any sample function of the random process ( demands, succ
of allotted units), the optimal policy consists of using different strate
functions as the process unfolds. Suppose n = N units are available
the initial time t =T, and the random variables "total number of de-
mands'" L and "actual-demand-times' are Ty, i =1,2,...,L, where
Ti <Tij4+] <Tp, <T. Then the allocation at the first demand encountere
T, should be

(N, m(T )) = N-N 0 <N, <N-1,

L
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where Np inventory is retained for future demands. If this demand is
met, at the second demand

$(N,,m(T, ) =N -N 0<N. , <N_-l,

L L L-1" I-1—"L

units should be allottea, Nj_; units retained, and so forth. (Here
the Ny, 1 <L, are a sequence of random variables since they depend
on the actual T; realized.)

Dreyfus [ 4] has observed that the best possible stochastic
allocation policy is obtained by taking account of the random realiza-
tion in the optimization, as it occurs. We have done this. We apply
the best allocation to the first demand which is to occur, taking ac-
count of the time of occurrence as well as of the inventory available.
Then, the random inventory remaining, together with the time, Ti-1
at which the next demand occurs, determines the one-stage-optimal
allocation W( Ny, m(Ty_1)) used at a future demand. (Each one -stage
optimal allocation assumes optimal use of the remaining inventory. )

Note that all the information we have about subseguent demands
at time Ty is summed up in the number m(T, ); if any additional infor-
mation were conveyed by the values of the T,'s (i1>k), or even by
the value of L - k, then our problem might be much more difficult, both
conceptually and computationally.

4. (Other Models. The Poisson demand model can be used in connec-
tion with criteria other than probability of meeting all demands. This
section extends the probability criterion to a more complex model, and
illustrates two additional criteria: inventory remaining after meeting
all demands, and consecutive demands filled given that all demands
should be met if possible. In the first case (4.1) the results presented
are as detailed as for the basic model; however, a less comprehensive
analysis is provided for the alternate criteria (4.2, 4.3). These results
illustrate how our formulation can be applied to other contexts.

4. 1. Unreliable Demands. In this section we assume that a
demand may be withdrawn with probability w = 1-v, and that this is
independent of the number of units allotted, the occurrence of demands,
and the success of whatever units have been allotted. We let P(n,t,v)
be the maximum probability of filling all demands encountered with time
t remaining and n units availablet (in other words the probability of
success given that units are used to maximize probability of success).

4.1. 1. The Model When Demand May Be Withdrawn. Since an
inventory of no units can '"meet all demands encountered' provided
that all demands encountered are withdrawn, we have

2
P(O,t,v) = et - t)m( t) - w + e P m(Z::) Cwla.,
_ e—m( t). OZO m( t)l-w n :e—m( t) ew- m( t)
n=0 =
PO, t,v) = e V(B

TThis is analogous to the earlier quantity P (n,t)
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If i unreliable units are allotted to an unreliable demand which has
been encountered, the probability that these units fill that demand is

prob {demand withdrawn or if not withdrawn then at least one
unit works) =w + (l-w) (l-gl) = 1l-vgl

Noting that one might choose to allot no units at all, P(n,t,v) is de-
fined in accordance with the analysis in section 2 as

-m( t

P(n,t,v) = e (1

A t ;

+ ft max  {( 1-—Vql) P(n-i, 7, v) } e_fT Ho) do
0 i=0(1l)n

where the factors involving r make up the probability that the first

demand is encountered at time 7.

Intuitively, nothing is gained at an encounter if no units are
allotted. Indeed a rigorous mathematical proof exists that the maximu
is never attained at 1 =0 . We state this as Theorem 4. 1. 1.

Theorem 4. 1. 1. At least one unit should be allotted to any
unreliable demand encountered, if this is possible.

Proof:T Let y be any arbitrary t. By substltutm? P(1,t,v)
from Corollary A.1 of the Appendix and P(0,t,v) =e VT B we fm«
after some manipulation that the following inequality holds for n = 1:

r( T) dT,

1-
(1) Pn,y, ) < o

Assume that (i) holds for n<k . P(k,0,v) =P(k-1,0,v) =1 hence
(i) holds for y =0, and, since both sides are continuous, for an
interval about y =0 . Assume that there exists a Vg > 0 such that
(i) holds for y < Vi with equality at vg - Thenfor y <y,, we hav

by the definition of P'(k, vy, v) that

P(n-1,y,v).

P (k,y,v) = max (l—qjv) P(k-j, v, V)
j=0(1)k
( ii) < max. (1l-gdv) H=T g k-1-j, v, v)
n=0(1) k-1 (1-v)
l-gv
= 1_qv P(k-1,y,v) .

To prove the inequality (ii), consider it term by term. For j =0, (1ii)
reduces to (1), and hence is true by assumption for y < vg - For

j =1,2,...,k-1, the ineguality ( ii) holds by the inductive hypothesis.
The term j =k appears only in the left hand side of the inequality sic
but

' Due to R. Strauch, The RAND Corporation.
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(k-1) . (1-qv)

(l1-g v) P(k-k,y,v)< (l-g V) (1) P(0, vy, V)
k-1 1-
= (1-¢' o) B ety v, )
< X {(1-d’v) (1-gv) P(k-1-j, v, v) }
— j=0(1) k-1 (1-v) o

This proves (ii). But since
; (1-gv)
P(k,0,v) < —(-it'\;)——P(k—l,O,V) ,
and, for y <y, ,
’ (1-qv)
P'(k,y,v) < m P'(k-1,y,v) ,
it is impossible that equality holds for y = Yy
all n, and the theorem follows.

Theorem 4. 1. 2.

Hence (i) is true for

(1) P(n,t,v) =e’m(t)§>(n,m(t),v) ,

where @(n,x,v) is defined for n =0

(i) ®(0,x,v) =eWx |

and, for n > 1,

(iii) ®(n,x,v) =1+ [ max {(t=va)e(n-1,y,v) } dy .
0i=l(1)n

Proof: By definition of P(n,t,v) and the preceding theorem,
P(n,t,v) =e-m(t)

+ (;E i:r{l(af;n {( l—vqi) P(n-i, 7, v) }

LY

t
A C Ao 0y g

Assume that the assertion is true for n < k. Then

P(k, t, v) :e_m( R + f(;t 'T(af;k { l—VQi)
i=

+
15

(o) do

. e_m(T)é(k—i, m( T),v)}e—fT r(t)dr

= ™0 Y max {(evaha(kes, v, v Y ay]
i=l(1k
Thus the theorem holds then for n =k . Since it holds also for n =0,
it is true for all n.
Theorem 4.1, 2 is consistent with the earlier case where v =1
corresponding to demand never withdrawn. For
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lim®(0,x,v) =1=&(0,x),
v=l
and hence we have the following lemma:
Lemma 4. 1.1, lirri ®(n,x,v) =&(n,x) .
v—>
Proof: Assume that this is true for n<k, and let prime denote
differentiation with respect to x at constant v and n. We then

have

@'(k,x,v) < max ( l—vql) ® (k-i, x,v)
i=l(1)k
. X
< max &(k-i,x,v) <e
—i=l(D)k
since P(n, m -1 x) ,X) =e™® &(n,x,v) <1 by the definition of &(n, x
Furthermore, we have
lim ®'(k,x,v) = lm max {(l-vgl) &(k-i, x,v) }
v—=-1 v—>1 i=l{1) k

max 1{(1l-g!) & (k-i, %)} =&'(k,x) .
i=1(1) k
Hence

lim &(k,x,v) = lim ["a'(k,y,v) dy + 1
v™>1 v—>1 "0

fj@’(k, y) dy +1 =&(k, x)

by Lebesgue's theorem on dominated convergence ( see, for example,
Ref. [5]). The lemma follows, since this proves the induction hypo-
thesis, and we already have seen that the lemma is true for n =0 .

4.1. 2. Properties of the Functions & and ¥ for 0<v <1,
Let ¥(n,x,v) be the strategy function for &(n,x,v), defined analo
gously to ¥(n,x) of Sec. 2. This part presents the properties whic.
carry over to the more complex model where demand may be withdrawr
following the development of 2. 2.

Lemma 4.1. 2. If n>1, x>0, and 0< g<g' <1, then

Q(Q7n?xﬁv) >®(q!}n’xiv)

forall 0<v<l.
roof: The assertion is true for n =1. If v >0 and the lemr
is assumed true for all n>1 and n <k, then

( l—an) ® (g, k-n,x,v) >( l—vq‘n) ® (g', k-n,x,v),

all 1 <n <k, and the result follows by definition of &(. -
Lemma 4.1.3. &(l,n,x,v) =eWX alln, 0<v<l,
Proof: Immediate.
From here on we assume g <1 unless otherwise stated.
Corollary 4. L.1. &(n,x,v) > e"¥

}'7V)'
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Lemma 4.1, 4.
. X
(1) ®(0,n,x,v) =1+ [ &(0,n-1,y,v) dy

(i) @"(0,n,x,v) = @(0,n-1,x,v),

(ii) @(0,n-1,x,v) = max &(0,n-i,x,v) .
i=l(1)n
roof: The equivalence of all three statements is immediate by
inserting g = 0 in the definition of ®(g,n,x,v). (1iii) holds for
n =2 since
WX eWX v '

®(0,0,x,v) =e < —T—- =®(0,1,x,v)

for w >0, x>0, by Cor. A.1 of the Appendix . Assume the lemma is

true for n<k . Then it is true for all n, since
®(0,k-1,x,v) >&(0,k-2,%,v)
because
®(0,k-2,0,v) =1 =&(0,k-1,0,v)
and by (ii) and the hypothesis of induction

®'(0,k-2,%x,v) =&(0,k-3,%,v) <&(0,k-2,x%x,V)

31(0, k-1, %, v)

Lemma 4. 1. 5.

eWx n-1 1 xr
(1) ®(0,n,x,v) = + Z(l‘ ) e
n r=0 n-r, r.
W w
1
(i) ®(0,n,x,V) :—n[ewx—h(n,wx)]—kh(n,x)
WJJ.
where n i
X .
h(n,x) = Z — =3(0,n,x) = lim &(0,n, x,v) ,
i:l 1. v——»l

Proof: Let f(n,x) = &(0,n,x,v). Using prime to denote the
derivative with respect to x, by (ii) of Lemma 4.1. 4 f(n,x)
satisfies

f'(n, x) =1£f(n-1,x) subject to the conditions

f(n,0) =1,

(0, x) :eWX,
ey

f(lx) = ———— ,

w
and the lemma is the solution of this eguation. Since e h( n, wx)
is the tail of the exponential power series from ( wx) n+l/( n+l)! on,
the limit of ®(0,n,x,v) is indeed h(n,x) .
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Corollary 4. 1. 2,

WX n-1 r
e ' 1 X
®(n,x,v) < ot rzb (1_ wn—I’)T

Lemma 4.1. 6. &(n,x,v) has a continuous, positive, first
derivative for n =0,1,2,...

Proof: Analogous to Lemma 2.2.4 for n>0; for n =0, by
inspection.

Lemma 4.1. 7. @'(n,x,v) >&'(n-1,x,v) if n>1 and either
X>0 or g>0. :

Proof: For g =0 by Lemma 4. 1.5,

eWX n-1 1 > Xr—
l - -
&1(0,n,x,v) n_1+rZJl <1 = oo
w
WX n-2 / 1 Xs
= 1 + Kl - 1 —
an— s=0 \ Wn— -S s!
ewx n-3 1 \ Xs
> -
wh—2 * SZ___ <l Wn—Z—s) s!

1

@'(0,n-1,x,v) .

If g >0 the proof parallels that of Lemma 2. 2. 5.

Corollary 4. 1. 3. ®(n,x,v) >®(n-1,x,v) if x>0.

Lemma 4.1.8. (l-gW) & (n,x,v) > &'(n,x,V)

Proof: For g =0 this follows from Corollary 4.1. 3. and (ii)
of Lemma 4.1. 4. For g>0,

n i, . ,
(I-vg') &(n,x,v) >{l-vg") @&(n-i,x,v) for i =l{1)n

by Corollary 4. 1.3, so the result follows.

Corollary 4.1. 4. &(n,x,v) < Gl 1-av) x
Proof: Same as proof of Corollary 2. 2. 4.
Henceforth 0 < g <1 unless otherwise stated.

Lemma 4.1.9. ¥(n,x,v) <¥(n-l,x,v) +1 if n>1.

Proof: Analogous to that of Lemma 2. 2. 7.

Theorem 4.1.3. If ¥(k,x,v) is a monotone nondecreasing
function of k for 0 <k <n, then ¥(n,x,v) is a monotone non-
increasing function of x.

Proof: The theorem holds for n =1. It is proven as in part (a)
of Theorem 2. 2. 1. Let all quantities there depends on v also and
note that the lemmas cited are also true in this case (see Lemma 4. L.

Lemma 4.1.10. For v>0, 1 <j<i+]l,

l—vqu < l—vqJ

-1

l-vgl l-vqg
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i+] -1 i j
Proof: —Vql - qu < —vql - va_J is eguivalent to
i -1
~q(1-q) > -¢’ (l-q)
er -1 i
(¢ -g)p>0.
Theorem 4. 1. 4.
2 1- \ n
(l) llm @(H,X,V) - / VQ)
WX 1 - v
3 > 00 e

For x sufficiently large

(ii) max 1( l—vql) ® (n-i, x,Vv) } o= (1-vg) @ (n-1,x,v) ,

i=l(1)n
or equivalently,
(iii) T(n,x,v) =1.

Proof:T (i) is true for n =0. We prove first t(i

n < k implies (ii) for n =k, then that (i) for k-1 and (ii) for k
implies (i) for k. Assume (i) for n<k . (ii) holds for n =k
if for1 <1i<k

Q.

(l—vqi) @ (k-i,x,v) _
) @ (k-1,x,v)

lim
X —>00 (1—Vq
or if
1-vg k-1

i
(1-va) | 75

<
k-1 !

13

[ v

<1—vq>(1“’q

(division by e¥* and (i)). But this is the same as

i i-1
(iv) 1-vg _ <1— va)

l—v)

which holds for i = 2 by a trivial computation. If (iv) holds for 1 it
also holds for i +1, for

1- Vq1+l 1- vql 1 -vq i-1
1 -vg l—vqu l-v
o
Hmpies i+l i+1 i-1
1 - wvg 1 - vg 1 - vg
l - Vq l —_ ti 1 - V

Thus we must show

"Due to J. Folkman of the RAND Corporation.
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i+1 Vi-1 i
1 -vg ] [ lovg T 1= yg |2
1 - vl 1 -v /’ 1-v
to prove the induction step. But this is the same as
1 - vql+l < 1 -vg
1 - Vql 1l - v ’

which holds by Lemma 4.1.10 . Hence (iv) holds for all i and
hence (ii) holds for n =k . To prove (i) for k, note that (ii)
implies that for x sufficiently large,

' k,x,v) =(1l-vg) @ (k-1,x,v)

b
and apply L'Hospital' rule. Hence the theorem follows for all n by
inductionon k =0,1,2,...

Lemma 4. 1. 11. Xlim . ¥(n,x,v) =n.

Proof: Since lim &(n,x,v) =1 by (i) of Lemma 4. 1. 4, there
x—=>0
exists a 6 >0 such thatfor x <&, r<n,

B(r,x,v) <1+

)

where
1 - Gnv
—_— 1> >0,
1 - qn_lv
Then
( l—qnv) (n-n,x,v) = (1 - qnv) eV

> (l—qnv) > (1 - qn—lv)(l-Fe)

n-i .
I -g "v)®(n-i

v

\
5 X; V)

for 1<i<n, so
¥(n,x,v) =n.

The following results hold under the condition that ¥ is reg-
ular, that is
¥(n,x,v) >¥(n-1,x,v)

for all n,x, and v.

Theorem 4.1. 5.  ¥(n,x,v) has n-l discontinuities.

Proof: The assertion holds for n =1. Assume it holds for
n < N. According to (iii) of Theorem 4. 1. 4. Xleoo T(N,x,v) =1. B
the preceding lemma, Xlimo (N, x,v) =N. Hence, ¥(N,x,v) hasa
most N-1 discontinuities. Moreover, ¥(N,x,v) could have fewer
than N-1 discontinuities only if it dropped two or more at one discon
tinuity. By Lemma 4.1.9 and the hypothesis of induction, this could
not happen at a point of continuity of ¥(N-1,x,v). Let y be a point
of discontinuity of ¥(N-1,x,v), and say ¥(N-1l,y,v) =k . Then
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k k+1
(l—QV)Q(N—k—l,Y,V):(]-'q v) @ (N -k -2,y,v) .

The only way ¥(N,x,v) could drop two at y is if

T(N,y,v) =k
and
U(N,y-e,v) =k + 2
for ¢ sufficiently small. This would imply
k k+2
(l-gv) @ (N-k,y,v) =(1l-q v) @ (N -k -2, y,v).

Eliminating &(N - k - 2,vy,v) between the last two eguations gives

1 clk-!—ZV
— 7 (N -k-Lvy,v) =®(N -k,vy,v) .
1 -qg v
But this and
- k+2v 1 - k+lv
QK_H < qk ( Lemma 4. 1. 10)

l-qg v l-g-v

imply
, k+l1 k
‘l_q V)@(N—(k+l),y,V)<(1—'qV)@(N-k,y,V}.
Hence
T(N,y,v) =k +1.

Definition 4.1.1. The £-th discontinuity of ¥(n,x,v) as X
increases from zero is denoted by ypy-
Corollary 4. 1. 5.

S
p—t

(a) Yoy = \_

;_4

(0) élinl nl _:—q_ﬁ‘:i

Proof: By Lemma 4.1.11, Theorem 4.1.3, and Theorem 4. 1. 5,
x =y, at the first discontinuity of ¥(n,x,v) . This implies that

-1
(l—an) 2 (0,y V) =(l—qn v) @ (lynl, V)

or w
Ynl

l-gv _l-qv _vp
1 - I'l l 1l -v w
Part (&) follows from simplifying this equation. To see (b), apply
L'Hospital's rule.
Lemma 4. 1. 12,

(1-gwe™ -w1-4)

1l - v

®(n,x,v) =
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for
n-1
< L £n l-q v =
Ty l_qn—T “Vn1 e
Proof: For x < Yo
(n,x,v) =1+ fgc (1 - qnv)eWy dy .
Corollary 4. 1. 6,
<
(a) Vo1 S ¥no 1
(b) Yz = ¥no2 .:f’c,)r‘n._>_4.

Proof: (a) follows from Corollary 4. 1. 5, the monotomcng/
of the exponential, and reduction of this mequallty to g

Tosee(b) notethatfor n >4 and x<yn21, by (a), (va)
s given by Lemma 4.1, 12. Then Theorems 4.1.3, 4. 1. 5, and Lemma
4. 1.1l imply that Yh2 occurs at
n-1 n-2

(I-a "v) (L vy, v) =(l-qg V) @(2,y,, v) .

Hence wy wy
(l—qn"lV)[(hqv)e "2 ) = (1-4""%0) [(1-g“v)e nZ—V(l~q2)],

which reduces to

n-3
_ 1 ‘n l-g A
Yn2 T Tov Tt T-gis TYnp
Theorem 4.1. 6. &(n,x,v)/®(n -1,x,v) is a monotone
increasing function of x .
Proof: or n =1 the assertion holds, since

o(l,x,v) _1-vg _ VP -wx
2(0,x,v) 1 -v w
Assume it holds for all n < N. Let i =¥(N-l,x,v). Then define

H(N, x,v) by

SN, x.v) _ max{(l-g'v) @(N-i,x,v), (1= ) o (i1 %, v) }
'(N-1, x, v) (I-gtv) @ (N-i-1, x,v)
i+1
B O(N-1i, %, v) l-g vy
maX{(Nllxv) * l-glv JEH(N % v)

H(N,x,v) >1 forall x. Hence Lemma 2. 2.8 can be applied pro-
vided H(N, x,v) 1is a nondecreasing function of x . By the induction
hypothesis, H(N,x,v) is nondecreasing at points of continuity of

I =¥(N-1,x,v). Let y be a point of discontinuity of ¥( N- 1, x,v),
and let (N I,yv,v) =k. For « squlclently small, T(N- 1 y—€, V)
=k +1, and (l- q1’+1v)q>(N k-2, y-¢, v) > (1-g*v) ®(N-1-k, y—e, ) .
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Hence

O(N-(k+l), -e,Vv) < 1

B(N-(k+l) -1, y—e, V) l-gkv

k42 k+1

1 -g v o l-qg v

1 qk+l v 1 - gkv
it follows that H(N,y,v) > H(N, y-e,v) forall e¢ sufficiently small,
so H(N,x,v) 1is nondecreasing. Therefore Lemma 2. 2.8 proves the
theorem.

4, 2. Allocation to Preserve Inventory. Seeking to ''preserve
inventory' corresponds to adding a nonrandom demand at t =0
for as many units as possible. If t#0 , that demand can be
met only if first all random demands encountered on (0,t) are
filled . There are two ways to view this . The first divides
the total inventory, reserving some units for the terminal demand and

operating in accord with the ¥ functions with the remaining units;
this approach is well suited to inventcries involving two different
types of goods. The alternate model, which corresponds to one type
of good, seeks the optimum allocation when the total inventory can be
used for either random or terminal demands. This model is developed
below.

If two distinct goods are involved, the maximum number of
units might be limited, for example, by weight or volume constraints.
For a total of L units allowed, let n* = n(L, x) be the optimum amount
of inventory set aside to meet random demands. Then n* can be
obtained from the probabilities P(n,x) (or P(n,x,v)) by:

Since

n'l

1

n(L,x) =first[n=11)L:(L-n)P(n,x)

<

)
max {(L-i) P(i,x)}] .
i=l(1) L
Here (L - n)P(n,x) is the expected number of units delivered to the
fixed demand having filled all random demands encountered.

A major purpose of the allocation model is to present material
relevant to the overall effectiveness of several alternate inventory
configurations. Conseqguently, we turn now to the case where the
inventory consists of only one type of good, a dual-purpose unit use-
ful for both random and terminal demands. The relative merit of this
approach compared to the one with two distinct goods is developed
in this section. The section is composed of three parts: 4. 2.1, the
mathematical formulation of the dual-purpose-unit model; 4. 2. 2, com-
parison of this type of inventory to the two-distinct-goods configura-
tion analyzed above ; and 4. 2. 3, discussion of a suboptimal strategy
for the dual-purpose-unit case.

4,2.1. Mathematical Formulation. Recall that the probability
of no demand-encounters in t remaining time units is e-m( t); the
probability of the first occurring at T is

1
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t
e_fT f(0) do r( T) dt

If no distinction is made between random and terminal demand units,
the allocation strategy can be chosen to maximize expected number of
units delivered to terminal demand. Let F( n, t) represent the expecte:
number of units delivered given 1) that at time t there are n units
remaining and 2) that the number of units allotted to a random demand
will maximize the number delivered to terminal demand. Then

E(0,t) =0,
E(1,t) =e-m(t)
and, in general,

E(n,t) =ne-m(t)

t
t - d
"o (3@ an (e B ) Je Jrorde oy o
Theorem 4. 2.1. E(n,t) = e_m( t)®( n, m(t)) where
@(n,x) =n + fgf max {(1-01)@(n-i,v) } dy

i=l{1yn-1

O(0,x) =0, O(l,x) =1.
Proof: The theorem is true for n =0,1, 2. Assume that it is
true for n <k . Then

E(k,t) =ke-m(t)

t i tr(cr)dcr
a3y {i1_~"vorn_ 1 TJr AN
g l:nh‘)xk_l 1 yE(Ck-1, ) je r{T) dr
_ke—m( t)
t
d
+ max {(l—q)e m( T )®(k -1, m( )}e fT t( o) (Tr(T) dr
0 i=1(1)k-1

For p =g =0.5, Tablel shows E(n,t) for n =1(1)10, m(t)=1(1)1lo0.
( Calculations were done using trapezoidal approximate integration witk
step size 0.05 for m <5 and stepsize 0.1 for m > 5.) Table 2 for
g =0.3 and Table 3 for g =0.1(m(t) =1(1)5, n =1(1)10, computed
using trapezoidal approximate integration with step size 0. 1y, illustrat
the dependence upon g.
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4, 2. 2. Comparison with Two Distinct Units. A detailed
comparison of the expected number of units delivered, (1) when two
distinct types of units are used, with ( 2) when a dual-purpose unit is
employed, can be made using numerical tables for P and E. As
Table 4 shows, a dual-purpose unit yields a higher expected number
of units delivered to terminal demand. We define the effectiveness
ratio, E.R., as the maximum expected number to terminal demand ob-
tainable with two types of units divided by that with dual-purpose
units. ( Both maxima were obtained as described above. )

4, 2. 3. A Suboptimal Strategy. A strategy for dual-purpose
units which does not depend on m(t) is given below; we call this the
"'static strategy'. The number of units, i(n), allocated to a demand
encountered when n units are available is:

i(n) =first (i =1)n : — <

i+1 n
l-qg! n-i

-i

AR

That is, the static strategy provides the smallest number of units which
must be allotted to maximize the product of the probability that the
demand is met (l-qi) times the remaining inventory ( n-i) .

The expected number of units delivered to terminal demand
using the static strategy, E*(n,x), was computed as follows. The
probability Q(j) of exactly j demands arriving in an interval oflength
[0,x =m(t)] is, from the Poisson model, Q(j) =e~¥ x3/jt; under the
static strategy, "allot i(k) units" (k =1,...,]), the probability P(j)
of successfully meeting these j demands is P(]j) =0 (l—qi( k) ), P(0) =1;
and the inventory remaining, n(k), is n(k)=n(k-1) -i(k) (k =1, ... ],
n(0) =n). Combining these expressions with the total number of en-
counters, J , for which inventory remains (n(J) =1) using the static
strategy, we obtain:

E¥(n,x) = ji n( ) P(5) Q(J) .
Some typical values of E¥(n,x) for g =0.5 with n betweeen 4 and
40 and x =m(t) =1(1)10 are given in Table 5. The values are in very
close numerical agreement with the maximum expected number delivered
of Sec. 4.2.1 (for example, n =8, m =8: 0.075 versus 0.088; m =3,
n =10: 2.57 wversus 2. 66). Large percentage differences occur only
where the actual values are themselves very small ( for example, n =10,
m =10: 0.036 versus 0.048).

The preceding indicates that a considerable simplification is
possible in allocation strategy without appreciable reduction in effec-
tiveness if dual-purpose units are used. No similar simplification
now seems possible if simgle-purpose units are used.

4,3, Extending the Number of Demands Met. In certain situ-
ations it might be desirable to use inventory to fill as many demands as
possible. In this section our allocation function uses the available
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Table 4

SOME VALUES OF THE EFFECTIVENESS RATIO

Tot‘al Encounter Effectiveness RatioT by Probability of
Units Parameter )
L m( 1) failure
E.R (g=.1)] E.R (g=5) E.R. (g=9)
5 1.0 .75 .78 .79
5.0 . 63 . 68 .
1.0 . 83 .78 . 81
10 5.0 . 65 . 64 .67
10. 00 . 55 .
1.0 . 86 .79 .79
15 5.0 .74 . 67 . 68
10.0 .62 . 63
15.0
1.0 . 87 . 80 .78
5.0 .77 . 67 . 66
20 10.0 L7l 63
15.0 61
20.0 . 54
1.0 . 88 . .82 .78
5.0 .78 . 68 .57
25 10.0 .75 . b4
15,0 .70
20.0 . 62
1.0 . 89 . 83 .78
5.0 .79 .70 . 67
30 10.0 .75 . 64
15.0 .73 . 61
20. 0 . 69

TI\/[e:‘t:xcimunrl expected number to terminal demand with two types of unit
divided by that with dual-purpose units.
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units to maximize the expected number of demands met. The maxi-
mum expected number of demands met with t units of time and n
units of inventory remaining will be denoted by D(t,n).

The expected number of demands met if one is encountered at
time 7, and i of n available units are allotted to it is

1+ prob {not all i units fail}
+ prob {not all i units fail} - D(T,n-1)

Recalling that this probability is (l-gl), and that the probability of th
first encounter at T is

t
r( T)e_fr (o) de dr

b

we see that

t
D(t,n) = f

max {(l-gi)[1 + D(n,n-l)] }+ e J7 i

0 i=l()n

Of course, D(t,0) =0. IX t,1) =p[ l—e—m( t) ], since the probability

that one demand is met is the probability p times the probability

(1- e~m( t)) that at least one demand occurs during the t time units.
Theorem 4.3.1. D(t,n) =e-M(t)Ym(t),n) where

ﬁx .
 x, n) :J max {(l-ql)[ey+§2(y,n~i)]}dy,
O i=l(1)n
A x,0) =0
Qx,1) =p(e-1) .
Proof: Assume that the theorem is true for n < k . Then

ot
D( t, k) :fg i:rﬁafszk{(l—qi)[HD( T,k-i)]}e"JTr( TV ATy

+ \ t
- 6 max {(1-¢")[1 + e ™ T g m( ™), k-i)] }- e“fTr(“) 4y g
i=l( 1)k

-m( t) ,
e 7m0 fO max  {(1-g")[e¥ + v k=1)]} dy
i=l(1) k

Am(t),k) .

An exemplary table of I t,n) for g =0.5, n=11) 10, and m(t) =
1(1)10. 0 follows (Table 6 was computed by trapezoidal integration
with step size 0.05 for m( t)< 5 and 0.1 otherwise).

The maximum expected number of demands met does not depend
on either time or the expected number of encounters (x =m(t)) providec
either is sufficiently large. This is true because each of the limited
numbers of units can fill only one demand. Hence after a point, an

e—m( t)
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increase in the actual number of encounters does not increase the
maximum expected number of demands met. This saturation effect can
be seen in Table 6 ; each of the D(t,n) approach a limiting value as
m(t) increases. To begin an analysis of this property we make the
following definition:

Definition 4. 3. 1. D(n) = tgmw D(t,n). Itis clear that

D(0) =0

D(1) =p =1l-q,

since with zero or one unit the expected number of demands met is,
respectively, none and one times the probability of success of a unit.
The following lemma gives D(n) for higher values of n.

Lemma 4. 3. 1.

D(n) = max {( l—qi)[l + D(n-i) ] } \
i=l(1)n

D(0) =0, D(1) =1-q.

Proof: By definition,

D(n) = lim e ~§ X, n)
X = o

Since

3 i v .
- - Q(y, n-
A x, n) fo i:m;{n{(lq)[e +Q(y,n-1)]7 dy ,

Q(x,n)>kex, k>0 ;
thus this limit is of the form /e , Applying L'Hospital's rule,

Q o
D(n) = lim ~2%3 . o (x.n)
x> 00 eX X 00 eX
max  {(l-g)[e* + A x,n-1) ]}
X—= 0 ex

lim max {(l-gh[1 + e ey x,n-i) ] }
x—-o0 i=1(1) n

max  {(1-g%) [1+ lim e oy x,n-i) ]} .
i=l(l)n X~ 00
Lemma 4. 3.1 was used to calculate D(n), the limit of the maxi-
mum expected number of demands met as m(t) (and hence the number
of encounters) increased without bound. The values aregiven in Table 7
for n =1(1)10, g =0.1(0.1)0.9. The values of D(n) for g =0.5
correspond to the limiting values we previously presented ( Table 6).
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5. Conclusion. The models we have presented made possible guan-
titative analysis of a complex system. In themselves, they provide
examples of stochastic allocation situations with an interesting
mathematical structure.

Appendix

The Function P(n,t,v). We can differentiate the expression for
P(n,t,v) on page 16 with respect to t for fixed n and v to obtain
the following lemma.

Lemma A. 1.

dp _ i .

It (n,t,v) =-r(t)[P(n,t,v) - : ;I’é?)ii) n{( l-vg™) P(n-i, t, v) }] .

Proof:

—%l:( n,t,v) =-r{t)] e_m( R + f max  {( l—vql) P{n-i,7,v) }
i=0()n

—ft r( o) do i
X e Jr r(t) dt - max (l-vg)P(n-i,t,v)].
i=0()n

We now relax the maximum condition in the differential equation of
Lemma A.1 and consider the solutions of the equations that result
when 1 is equal to zero and n.

Let P(n,t,v; i) Dbe the solution to

dP _ i ,

—a—t—( n,t,v) =-r(t)[P(n,t,v) - (l-vg")P(n-i, t,v)] ,
with initial condition P(n, T,v) .

Lemma A, 2.

eWm( T)

P(n,t,vin) =e ™M [eMT)p(y 1 ¢y 4 (ewmlt)_ ) (L5 1-a™))]

Proof: Using P(0,t,v) = e-vm( t) , multiplying through by
em( t) , and replacing P(n,t,v;n) with P(t) (or P, when no confusior
results), for brevity, the differential equation is the same as

d[e™( B p) = l-vgMyr( 1) eVt g,

Thus,
em{ t) P(t) - em( 7) P(T) =( l—vqn) f: r( t) ewm( t) dt
n m(t) wy
=(1- d
(1-vg") fm( 9 e y
- l~vqrl (ewm( t) ewm( T)) ,
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which reduces to the first expression above. This simplifies when
T =0, since m(0) =0 and P(n,0,v) =1.
Lemma A. 3.
- ) —
P(n,t,v;0) =e vim(t) -m(7)], P(n, T,v) .
Proof: In this case the differential equation is the same as

dP(n, t, v;0)
P(n,t, v;0)
We can now prove the following theorem:
Theorem A. 1. If allocation must be via a '"bang-bang!' strategy
(all or none of the available units), all the units should be used for
any demand encountered.
Proof: The probabilities of success under each alternative
are given by Lemmas A. 2 and A. 3 with m(0) =0, P(n,0,v) =1.
But

= -r(t)v dt.

e—vm( t)[l . %( 1_qn) ( l_e—wm( t) )] > e—vm( t) ,

t
since w>0, and if t#0, m(t) >0 ; this implies ewm( ) >1,
which insures the stated inequality. Hence

P(n,t,v;0) < P(n,t,v;n) ,
and the theorem is proven.
Corollary A, 1.
P(1,t,v)= eV t)[l + yv;p(l - e—wm( t,))] .
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