
Detecting and Fixing Memory-Related Performance
Problems in Managed Languages

Lu Fang

Committee: Prof. Guoqing Xu (Chair), Prof. Alex Nicolau, Prof. Brian Demsky

University of California, Irvine

May 26, 2017, Irvine, CA, USA

Lu Fang (UC Irvine) Final Defense May 26, 2017 1 / 51

Performance Problems in Real World

Lu Fang (UC Irvine) Final Defense May 26, 2017 2 / 51

Performance Problems in Real World

Lu Fang (UC Irvine) Final Defense May 26, 2017 2 / 51

Performance Problems in Real World

Lu Fang (UC Irvine) Final Defense May 26, 2017 2 / 51

Performance Problems in Real World

Many distributed systems, such as Spark, Hadoop,

also suffer from performance problems

java.lang.OutOfMemoryError: Java heap space

Lu Fang (UC Irvine) Final Defense May 26, 2017 2 / 51

Performance Problems

Commonly exist in real world applications
I Single-machine apps, such as Eclipse, IE

I Traditional databases, web servers, such as MySQL, Tomcat

I Big Data systems, such as Hadoop, Spark

Further exacerbated by managed languages
I Such as Java, C#

I Big overhead introduced by automatic memory management

Cannot be optimized by compilers
I Cannot understand the deep semantics

I Cannot guarantee the correctness

Lu Fang (UC Irvine) Final Defense May 26, 2017 3 / 51

Performance Problems

Commonly exist in real world applications
I Single-machine apps, such as Eclipse, IE

I Traditional databases, web servers, such as MySQL, Tomcat

I Big Data systems, such as Hadoop, Spark

Further exacerbated by managed languages
I Such as Java, C#

I Big overhead introduced by automatic memory management

Cannot be optimized by compilers
I Cannot understand the deep semantics

I Cannot guarantee the correctness

Lu Fang (UC Irvine) Final Defense May 26, 2017 3 / 51

Performance Problems

Commonly exist in real world applications
I Single-machine apps, such as Eclipse, IE

I Traditional databases, web servers, such as MySQL, Tomcat

I Big Data systems, such as Hadoop, Spark

Further exacerbated by managed languages
I Such as Java, C#

I Big overhead introduced by automatic memory management

Cannot be optimized by compilers
I Cannot understand the deep semantics

I Cannot guarantee the correctness

Lu Fang (UC Irvine) Final Defense May 26, 2017 3 / 51

Performance Problems

Difficult to find, especially during development
I Invisible effect

I Often escape to production runs

Difficult to fix
I Large systems are complicated

I Enough diagnostic information is necessary

I Problems may be located deeply in systems

Can lead to severe problems
I Scalability reductions

I Programs hang and crash

I Financial losses

Lu Fang (UC Irvine) Final Defense May 26, 2017 4 / 51

Performance Problems

Difficult to find, especially during development
I Invisible effect

I Often escape to production runs

Difficult to fix
I Large systems are complicated

I Enough diagnostic information is necessary

I Problems may be located deeply in systems

Can lead to severe problems
I Scalability reductions

I Programs hang and crash

I Financial losses

Lu Fang (UC Irvine) Final Defense May 26, 2017 4 / 51

Performance Problems

Difficult to find, especially during development
I Invisible effect

I Often escape to production runs

Difficult to fix
I Large systems are complicated

I Enough diagnostic information is necessary

I Problems may be located deeply in systems

Can lead to severe problems
I Scalability reductions

I Programs hang and crash

I Financial losses

Lu Fang (UC Irvine) Final Defense May 26, 2017 4 / 51

Existing Solutions

Many solutions are proposed
I Pattern-based

I Mining-based

I Learning-based

Most are postmortem debugging techniques
I Require user logs/input to trigger bugs

I Bugs already escape to production runs

Lu Fang (UC Irvine) Final Defense May 26, 2017 5 / 51

Existing Solutions

Many solutions are proposed
I Pattern-based

I Mining-based

I Learning-based

Most are postmortem debugging techniques
I Require user logs/input to trigger bugs

I Bugs already escape to production runs

Lu Fang (UC Irvine) Final Defense May 26, 2017 5 / 51

Drawbacks in Existing Works

→ Our Solutions

I Lacking a general way to describe problems

→ Instrumentation Specification Language (ISL)

I Cannot detect problems under small workload

→ PerfBlower

I Lacking a systematic approach to tune memory usage
in data-intensive systems

→ ITask

Lu Fang (UC Irvine) Final Defense May 26, 2017 6 / 51

Drawbacks in Existing Works → Our Solutions

I Lacking a general way to describe problems
→ Instrumentation Specification Language (ISL)

I Cannot detect problems under small workload

→ PerfBlower

I Lacking a systematic approach to tune memory usage
in data-intensive systems

→ ITask

Lu Fang (UC Irvine) Final Defense May 26, 2017 6 / 51

Drawbacks in Existing Works → Our Solutions

I Lacking a general way to describe problems
→ Instrumentation Specification Language (ISL)

I Cannot detect problems under small workload
→ PerfBlower

I Lacking a systematic approach to tune memory usage
in data-intensive systems

→ ITask

Lu Fang (UC Irvine) Final Defense May 26, 2017 6 / 51

Drawbacks in Existing Works → Our Solutions

I Lacking a general way to describe problems
→ Instrumentation Specification Language (ISL)

I Cannot detect problems under small workload
→ PerfBlower

I Lacking a systematic approach to tune memory usage
in data-intensive systems
→ ITask

Lu Fang (UC Irvine) Final Defense May 26, 2017 6 / 51

Lu Fang, Liang Dou, Guoqing Xu

PerfBlower: Quickly Detecting Memory-Related Performance Problems via
Amplification

ECOOP’15

Lu Fang (UC Irvine) Final Defense May 26, 2017 7 / 51

Instrumentation Specification Language

I Motivation 1: an easy way to develop new detectors

I Motivation 2: detect the problems with small effects

Lu Fang (UC Irvine) Final Defense May 26, 2017 8 / 51

Instrumentation Specification Language

I Motivation 1: an easy way to develop new detectors

I Motivation 2: detect the problems with small effects

Lu Fang (UC Irvine) Final Defense May 26, 2017 8 / 51

Instrumentation Specification Language

I Focus on problems with observable heap symptoms

I Users define symptoms/counter-evidence in events

I Two important actions: amplify and deamplify

Lu Fang (UC Irvine) Final Defense May 26, 2017 9 / 51

Amplification and Deamplification

amplify: increases the penalty

deamplify: resets the penalty

Virtual space overhead (VSO)
I VSO =

Sumpenalty+Sizelive heap

Sizelive heap

I Reflects the severity on 2 dementions: Time and Size

Lu Fang (UC Irvine) Final Defense May 26, 2017 10 / 51

Amplification and Deamplification

amplify: increases the penalty

deamplify: resets the penalty

Virtual space overhead (VSO)
I VSO =

Sumpenalty+Sizelive heap

Sizelive heap

I Reflects the severity on 2 dementions: Time and Size

Lu Fang (UC Irvine) Final Defense May 26, 2017 10 / 51

Amplification and Deamplification

amplify: increases the penalty

deamplify: resets the penalty

Virtual space overhead (VSO)
I VSO =

Sumpenalty+Sizelive heap

Sizelive heap

I Reflects the severity on 2 dementions: Time and Size

Lu Fang (UC Irvine) Final Defense May 26, 2017 10 / 51

An ISL Program Example

1 Context defines the type

2 History of partition instance

3 Heap partitioning

4 Tracked objects

5 The actions on events

Detecting Leaking Object Arrays
Context TypeContext {

type = ''java.lang.Object[]'';
}

History UseHistory {

type = ''boolean'';
size = 10;

}

Partition AllPartition {

kind = all;

history = UseHistory;

}

TObject TrackedObject {

include = TypeContext;

partition = AllPartition;

instance boolean useFlag = false;

}

Event on_rw(Object o, Field f, Word w1, Word w2) {

o.useFlag = true;

deamplify(o);

}

Event on_reachedOnce(Object o) {

UseHistory h = getHistory(o);

h.update(o.useFlag);

if (h.isFull() && !h.contains(true)) amplify(o);

o.useFlag = false;

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 11 / 51

An ISL Program Example

1 Context defines the type

2 History of partition instance

3 Heap partitioning

4 Tracked objects

5 The actions on events

Detecting Leaking Object Arrays
Context TypeContext {

type = ''java.lang.Object[]'';
}

History UseHistory {

type = ''boolean'';
size = 10;

}

Partition AllPartition {

kind = all;

history = UseHistory;

}

TObject TrackedObject {

include = TypeContext;

partition = AllPartition;

instance boolean useFlag = false;

}

Event on_rw(Object o, Field f, Word w1, Word w2) {

o.useFlag = true;

deamplify(o);

}

Event on_reachedOnce(Object o) {

UseHistory h = getHistory(o);

h.update(o.useFlag);

if (h.isFull() && !h.contains(true)) amplify(o);

o.useFlag = false;

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 11 / 51

An ISL Program Example

1 Context defines the type

2 History of partition instance

3 Heap partitioning

4 Tracked objects

5 The actions on events

Detecting Leaking Object Arrays
Context TypeContext {

type = ''java.lang.Object[]'';
}

History UseHistory {

type = ''boolean'';
size = 10;

}

Partition AllPartition {

kind = all;

history = UseHistory;

}

TObject TrackedObject {

include = TypeContext;

partition = AllPartition;

instance boolean useFlag = false;

}

Event on_rw(Object o, Field f, Word w1, Word w2) {

o.useFlag = true;

deamplify(o);

}

Event on_reachedOnce(Object o) {

UseHistory h = getHistory(o);

h.update(o.useFlag);

if (h.isFull() && !h.contains(true)) amplify(o);

o.useFlag = false;

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 11 / 51

PerfBlower

A general performance testing framework

Supports ISL

Can capture problems with small effects

Reports reference path to problematic objects

Lu Fang (UC Irvine) Final Defense May 26, 2017 12 / 51

PerfBlower

Lu Fang (UC Irvine) Final Defense May 26, 2017 13 / 51

Heap Reference Path

1 Object leak is referenced by array

2 Knowing allocation site 1 is not
enough

3 Key point: array keeps a reference to
leak, which can be shown by leak ’s
heap reference path

Leak is reference by whom?

Object[] array = new Object[10];

// Allocation site 1, creating the leak.

Object leak = new Object();

// Object leak is referenced by array

array[0] = leak;

// Keep using Object leak

...

// ... Never use leak again.

// However, leak is referenced by array,

// GC cannot reclaim object leak.

Lu Fang (UC Irvine) Final Defense May 26, 2017 14 / 51

Heap Reference Path

1 Object leak is referenced by array

2 Knowing allocation site 1 is not
enough

3 Key point: array keeps a reference to
leak, which can be shown by leak ’s
heap reference path

Leak is reference by whom?

Object[] array = new Object[10];

// Allocation site 1, creating the leak.

Object leak = new Object();

// Object leak is referenced by array

array[0] = leak;

// Keep using Object leak

...

// ... Never use leak again.

// However, leak is referenced by array,

// GC cannot reclaim object leak.

Lu Fang (UC Irvine) Final Defense May 26, 2017 14 / 51

Heap Reference Path

1 Object leak is referenced by array

2 Knowing allocation site 1 is not
enough

3 Key point: array keeps a reference to
leak, which can be shown by leak ’s
heap reference path

Leak is reference by whom?

Object[] array = new Object[10];

// Allocation site 1, creating the leak.

Object leak = new Object();

// Object leak is referenced by array

array[0] = leak;

// Keep using Object leak

...

// ... Never use leak again.

// However, leak is referenced by array,

// GC cannot reclaim object leak.

Lu Fang (UC Irvine) Final Defense May 26, 2017 14 / 51

Mirroring the reference path

Original Objects

Mirror Objects

Mirroring Ref. Path

Stack stack = new stack;

// Allocation site 1, creating the leak.

Object obj = new Object();

// stack.elements[0] = leak

stack.push();

// Keep using Object leak

...

// ... Never use obj again

// However, leak is referenced by stack,

// GC cannot reclaim object leak.

Lu Fang (UC Irvine) Final Defense May 26, 2017 15 / 51

Experiments

Three detectors
I Memory leak amplifier

I Under-utilized container amplifier

I Over-populated container amplifier

DaCapo benchmarks with 500MB heap

Lu Fang (UC Irvine) Final Defense May 26, 2017 16 / 51

Memory Leak Amplifier

VSOs Reported by Memory Leak Amplifier

Programs with confirmed unknown leaks

0

10

20

30

40

50

60

antlr bloat eclipse fop luindexlusearch pmd hsqldb jython xalan

VSOs caused by confirmed memory leaks

Basic VSOs

VSO is large The program is likely to have leaks

Lu Fang (UC Irvine) Final Defense May 26, 2017 17 / 51

Under-Utilized Container Amplifier

0

10

20

30

40

50

60

antlr bloat eclipse fop luindexlusearch pmd hsqldb jython xalan

VSOs caused by confirmed under-utilized containers

Basic VSOs

VSOs Reported by Under-Utilized Container Amplifier

Programs with confirmed unknown
UUCs

VSO is large The program is very likely to have UUCs

Lu Fang (UC Irvine) Final Defense May 26, 2017 18 / 51

Over-Populated Container Amplifier

0

5

10

15

20

25

30

antlr bloat eclipse fop luindexlusearch pmd xalan hsqldb jython

VSOs caused by confirmed over-populated containers

Basic VSOs

VSOs Reported by Over-Populated Container Amplifier

Programs with confirmed unknown OPCs

VSO is large The program is very likely to have OPCs

Lu Fang (UC Irvine) Final Defense May 26, 2017 19 / 51

Performance Improvements

Benchmark Space Reduction Time Reduction

xalan-leak 25.4% 14.6%

jython-leak 24.3% 7.4%

hsqldb-leak 15.6% 3.1%

xalan-UUC 5.4% 34.1%

jython-UUC 19.1% 1.1%

hsqldb-UUC 17.4% 0.7%

hsqldb-OPC 14.9% 2.9%

Lu Fang (UC Irvine) Final Defense May 26, 2017 20 / 51

The Effectiveness of PerfBlower

VSOs indicate the existence of problems
I 8 unknown problems are detected

I All reports contain useful diagnostic information

Low overhead
I Space overheads are 1.23–1.25×
I Time overheads are 2.39–2.74×

Lu Fang (UC Irvine) Final Defense May 26, 2017 21 / 51

Fixing Performance Problems

Fixing performance problems is hard
I Enough information is necessary

I Have to understand the logic of the system

I The problem exists deeply in the system

Memory pressure
I A common performance problem in data-paralle systems

Lu Fang (UC Irvine) Final Defense May 26, 2017 22 / 51

Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, Shan Lu

Interruptible Tasks: Treating Memory Pressure As Interrupts for Highly
Scalable Data-Parallel Programs

SOSP’15

Lu Fang (UC Irvine) Final Defense May 26, 2017 23 / 51

Memory Pressure in Data-Parallel Systems

Data-parallel system
I Input data are divided into independent partitions

I Many popular big data systems

B Memory pressure on single nodes

Our study
I Search “out of memory” and “data parallel” in StackOverflow

I We have collected 126 related problems

Lu Fang (UC Irvine) Final Defense May 26, 2017 24 / 51

Memory Pressure in Data-Parallel Systems

Data-parallel system
I Input data are divided into independent partitions

I Many popular big data systems

B Memory pressure on single nodes

Our study
I Search “out of memory” and “data parallel” in StackOverflow

I We have collected 126 related problems

Lu Fang (UC Irvine) Final Defense May 26, 2017 24 / 51

Memory Pressure in the Real World

Memory pressure on individual nodes
I Executions push heap limit (using managed language)

I Data-parallel systems struggle for memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

OutOfMemoryError point

Long and useless GC

CRASH OutOfMemory Error SLOW Huge GC effort

Lu Fang (UC Irvine) Final Defense May 26, 2017 25 / 51

Memory Pressure in the Real World

Memory pressure on individual nodes
I Executions push heap limit (using managed language)

I Data-parallel systems struggle for memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

OutOfMemoryError point

Long and useless GC

CRASH OutOfMemory Error

SLOW Huge GC effort

Lu Fang (UC Irvine) Final Defense May 26, 2017 25 / 51

Memory Pressure in the Real World

Memory pressure on individual nodes
I Executions push heap limit (using managed language)

I Data-parallel systems struggle for memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

OutOfMemoryError point

Long and useless GC

CRASH OutOfMemory Error SLOW Huge GC effort

Lu Fang (UC Irvine) Final Defense May 26, 2017 25 / 51

Root Cause 1: Hot Keys

Key-value pairs

Popular keys have many associated values

Case study (from StackOverflow)
I Process StackOverflow posts

I Long and popular posts

I Many tasks process long and popular posts

Lu Fang (UC Irvine) Final Defense May 26, 2017 26 / 51

Root Cause 1: Hot Keys

Key-value pairs

Popular keys have many associated values

Case study (from StackOverflow)
I Process StackOverflow posts

I Long and popular posts

I Many tasks process long and popular posts

Lu Fang (UC Irvine) Final Defense May 26, 2017 26 / 51

Root Cause 1: Hot Keys

Key-value pairs

Popular keys have many associated values

Case study (from StackOverflow)
I Process StackOverflow posts

I Long and popular posts

I Many tasks process long and popular posts

Lu Fang (UC Irvine) Final Defense May 26, 2017 26 / 51

Root Cause 2: Large Intermediate Results

Temporary data structures

Case study (from StackOverflow)
I Use NLP library to process customers’ reviews

I Some reviews are quite long

I NLP library creates giant temporary data structures for long
reviews

Lu Fang (UC Irvine) Final Defense May 26, 2017 27 / 51

Root Cause 2: Large Intermediate Results

Temporary data structures

Case study (from StackOverflow)
I Use NLP library to process customers’ reviews

I Some reviews are quite long

I NLP library creates giant temporary data structures for long
reviews

Lu Fang (UC Irvine) Final Defense May 26, 2017 27 / 51

Existing Solutions

More memory? Not really!
I Data double in size every two years, [http://goo.gl/tM92i0]

I Memory double in size every three years, [http://goo.gl/50Rrgk]

Application-level solutions
I Configuration tuning

I Skew fixing

System-level solutions
I Cluster-wide resource manager, such as YARN

We need a systematic and effective solution!

Lu Fang (UC Irvine) Final Defense May 26, 2017 28 / 51

http://goo.gl/tM92i0
http://goo.gl/50Rrgk

Existing Solutions

More memory? Not really!
I Data double in size every two years, [http://goo.gl/tM92i0]

I Memory double in size every three years, [http://goo.gl/50Rrgk]

Application-level solutions
I Configuration tuning

I Skew fixing

System-level solutions
I Cluster-wide resource manager, such as YARN

We need a systematic and effective solution!

Lu Fang (UC Irvine) Final Defense May 26, 2017 28 / 51

http://goo.gl/tM92i0
http://goo.gl/50Rrgk

Existing Solutions

More memory? Not really!
I Data double in size every two years, [http://goo.gl/tM92i0]

I Memory double in size every three years, [http://goo.gl/50Rrgk]

Application-level solutions
I Configuration tuning

I Skew fixing

System-level solutions
I Cluster-wide resource manager, such as YARN

We need a systematic and effective solution!

Lu Fang (UC Irvine) Final Defense May 26, 2017 28 / 51

http://goo.gl/tM92i0
http://goo.gl/50Rrgk

Existing Solutions

More memory? Not really!
I Data double in size every two years, [http://goo.gl/tM92i0]

I Memory double in size every three years, [http://goo.gl/50Rrgk]

Application-level solutions
I Configuration tuning

I Skew fixing

System-level solutions
I Cluster-wide resource manager, such as YARN

We need a systematic and effective solution!

Lu Fang (UC Irvine) Final Defense May 26, 2017 28 / 51

http://goo.gl/tM92i0
http://goo.gl/50Rrgk

Our Solution

Interruptible Task: treat memory pressure as interrupt

Dynamically change parallelism degree

Lu Fang (UC Irvine) Final Defense May 26, 2017 29 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Program starts with multiple tasks

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Program pushes heap limit

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Long and useless GC

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

OutOfMemory Error

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Long and useless GCs are detected

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Killed Killed

Long and useless GCs are detected, start interrupting tasks

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Release the memory, memory pressure is gone

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Local Data Structures

Processed Input

Unprocessed Input

Output

Killed Consumed MemoryKilled

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Release the memory, memory pressure is gone

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Local Data Structures

Processed Input

Unprocessed Input

Output

Killed Consumed Memory

Released

Killed

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Release the memory, memory pressure is gone

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Local Data Structures

Processed Input

Unprocessed Input

Output

Killed Consumed Memory

Released

Killed

Released

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Release the memory, memory pressure is gone

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Local Data Structures

Processed Input

Unprocessed Input

Output

Killed Consumed Memory

Released

Kept in memory,

can be serialized

Killed

Released

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Release the memory, memory pressure is gone

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Local Data Structures

Processed Input

Unprocessed Input

Output

Killed Consumed Memory

Released

Kept in memory,

can be serialized

Final result: push

out and released

Killed

Released

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Release the memory, memory pressure is gone

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Local Data Structures

Processed Input

Unprocessed Input

Output

Killed Consumed Memory

Released

Kept in memory,

can be serialized

Intermediate result: kept in memory, can be serialized

Final result: push

out and released

Killed

Released

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

Program executes without memory pressure

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Killed Killed

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Why Does Our Technique Help

Task

Consumed

Memory

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Execution time

Heap size

If there is enough memory, increase parallelism degree

Task

Consumed

Memory

Task

Consumed

Memory

Task

Consumed

Memory

Killed Killed

Task

Consumed

Memory

Newly created

Lu Fang (UC Irvine) Final Defense May 26, 2017 30 / 51

Making Task Interruptible Is Non-trivial

Task

Consumed

Memory

?

?

?

?

Consumed Memory

Released or Kept in

Memory?

Interrupted

Released or Kept in

Memory?

Released or Kept in

Memory?

Released or Kept in

Memory?

Lu Fang (UC Irvine) Final Defense May 26, 2017 31 / 51

Making Task Interruptible Is Non-trivial

Task

Consumed

Memory

?

?

?

?

Consumed Memory

Released or Kept in

Memory?

Interrupted

Released or Kept in

Memory?

Released or Kept in

Memory?

Released or Kept in

Memory?

Require Semantics

Lu Fang (UC Irvine) Final Defense May 26, 2017 31 / 51

Challenges

How to expose semantics

→ a programming model

How to interrupt/reactivate tasks

→ a runtime system

Lu Fang (UC Irvine) Final Defense May 26, 2017 32 / 51

Challenges

How to expose semantics → a programming model

How to interrupt/reactivate tasks

→ a runtime system

Lu Fang (UC Irvine) Final Defense May 26, 2017 32 / 51

Challenges

How to expose semantics → a programming model

How to interrupt/reactivate tasks → a runtime system

Lu Fang (UC Irvine) Final Defense May 26, 2017 32 / 51

Challenges

How to expose semantics → a programming model

How to interrupt/reactivate tasks → a runtime system

Lu Fang (UC Irvine) Final Defense May 26, 2017 32 / 51

The Programming Model

An ITask requires more semantics
I Separate processed and unprocessed input

I Specify how to serialize and deserialize

I Safely interrupt tasks

I Specify the actions when interrupt happens

I Merge the intermediate results

A unified representation of input/output

A definition of an interruptible task

Lu Fang (UC Irvine) Final Defense May 26, 2017 33 / 51

The Programming Model

An ITask requires more semantics
I Separate processed and unprocessed input

I Specify how to serialize and deserialize

I Safely interrupt tasks

I Specify the actions when interrupt happens

I Merge the intermediate results

A unified representation of input/output

A definition of an interruptible task

Lu Fang (UC Irvine) Final Defense May 26, 2017 33 / 51

Representing Input/Output as DataPartitions

I How to separate processed and unprocessed input

I How to serialize and deserialize the data

1 A cursor points to the first
unprocessed tuple

2 Users implement serialize and
deserialize methods

DataPartition Abstract Class
// The DataPartition abstract class

abstract class DataPartition {

// Some fields and methods

...

// A cursor points to the first

// unprocessed tuple

int cursor;

// Serialize the DataPartition

abstract void serialize();

// Deserialize the DataPartition

abstract DataPartition deserialize();

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 34 / 51

Representing Input/Output as DataPartitions

I How to separate processed and unprocessed input

I How to serialize and deserialize the data

1 A cursor points to the first
unprocessed tuple

2 Users implement serialize and
deserialize methods

DataPartition Abstract Class
// The DataPartition abstract class

abstract class DataPartition {

// Some fields and methods

...

// A cursor points to the first

// unprocessed tuple

int cursor;

// Serialize the DataPartition

abstract void serialize();

// Deserialize the DataPartition

abstract DataPartition deserialize();

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 34 / 51

Representing Input/Output as DataPartitions

I How to separate processed and unprocessed input

I How to serialize and deserialize the data

1 A cursor points to the first
unprocessed tuple

2 Users implement serialize and
deserialize methods

DataPartition Abstract Class
// The DataPartition abstract class

abstract class DataPartition {

// Some fields and methods

...

// A cursor points to the first

// unprocessed tuple

int cursor;

// Serialize the DataPartition

abstract void serialize();

// Deserialize the DataPartition

abstract DataPartition deserialize();

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 34 / 51

Defining an ITask

I What actions should be taken when interrupt happens

I How to safely interrupt a task

1 In interrupt, we define how to deal
with partial results

2 Tasks are always interrupted at the
beginning in the scaleLoop

ITask Abstract Class
// The ITask interface in the library

abstract class ITask {

// Some methods

...

abstract void interrupt();

boolean scaleLoop(DataPartition dp) {

// Iterate dp, and process each tuple

while (dp.hasNext()) {

// If pressure occurs, interrupt

if (HasMemoryPressure()) {

interrupt();

return false;

}

process();

}

}

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 35 / 51

Defining an ITask

I What actions should be taken when interrupt happens

I How to safely interrupt a task

1 In interrupt, we define how to deal
with partial results

2 Tasks are always interrupted at the
beginning in the scaleLoop

ITask Abstract Class
// The ITask interface in the library

abstract class ITask {

// Some methods

...

abstract void interrupt();

boolean scaleLoop(DataPartition dp) {

// Iterate dp, and process each tuple

while (dp.hasNext()) {

// If pressure occurs, interrupt

if (HasMemoryPressure()) {

interrupt();

return false;

}

process();

}

}

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 35 / 51

Defining an ITask

I What actions should be taken when interrupt happens

I How to safely interrupt a task

1 In interrupt, we define how to deal
with partial results

2 Tasks are always interrupted at the
beginning in the scaleLoop

ITask Abstract Class
// The ITask interface in the library

abstract class ITask {

// Some methods

...

abstract void interrupt();

boolean scaleLoop(DataPartition dp) {

// Iterate dp, and process each tuple

while (dp.hasNext()) {

// If pressure occurs, interrupt

if (HasMemoryPressure()) {

interrupt();

return false;

}

process();

}

}

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 35 / 51

Multiple Input for an ITask

I How to merge intermediate results

1 scaleLoop takes a
PartitionIterator as input

MITask Abstract Class
// The MITask interface in the library

abstract class MITask extends ITask{

// Most parts are the same as ITask

...

// The only difference

boolean scaleLoop(

PartitionIterator<DataPartition> i) {

// Iterate partitions through iterator

while (i.hasNext()) {

DataPartition dp = (DataPartition) i.next();

// Iterate all the data tuples in this partition

...

}

return true;

}

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 36 / 51

Multiple Input for an ITask

I How to merge intermediate results

1 scaleLoop takes a
PartitionIterator as input

MITask Abstract Class
// The MITask interface in the library

abstract class MITask extends ITask{

// Most parts are the same as ITask

...

// The only difference

boolean scaleLoop(

PartitionIterator<DataPartition> i) {

// Iterate partitions through iterator

while (i.hasNext()) {

DataPartition dp = (DataPartition) i.next();

// Iterate all the data tuples in this partition

...

}

return true;

}

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 36 / 51

ITask WordCount on Hyracks

Map Operator Map Operator Map Operator

Merge Operator

Reduce Operator

Final

...

Final Final

Shuffling

Reduce Operator ... Reduce Operator

1

HDFS

Merge Operator

1 1 n n

HDFS

MapOperator
class MapOperator extends ITask

implements HyracksOperator {

void interrupt() {

// Push out final
// results to shuffling
...

}

// Some other fields and methods

...

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 37 / 51

ITask WordCount on Hyracks

Map Operator Map Operator Map Operator

Merge Operator

Reduce Operator

Final

...

Final Final

Shuffling

Reduce Operator ... Reduce Operator

1

HDFS

Merge Operator

1 1 n n

HDFS

ReduceOperator
class ReduceOperator extends ITask

implements HyracksOperator {

void interrupt() {

// Tag the results;
// Output as intermediate
// results
...

}

// Some other fields and methods

...

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 37 / 51

ITask WordCount on Hyracks

Map Operator Map Operator Map Operator

Merge Operator

Reduce Operator

Final

...

Final Final

Shuffling

Reduce Operator ... Reduce Operator

1

HDFS

Merge Operator

1 1 n n

HDFS

MergeOperator
class MergeTask extends MITask {

void interrupt() {

// Tag the results;
// Output as intermediate
// results

}

// Some other fields and methods

...

}

Lu Fang (UC Irvine) Final Defense May 26, 2017 37 / 51

Challenges

How to expose semantics → a programming model

How to interrupt/activate tasks → a runtime system

Lu Fang (UC Irvine) Final Defense May 26, 2017 38 / 51

ITask Runtime System

Monitor

Scheduler
Partition Manager

Data Partition

Data Partition

Data Partition

Data Partition

ITask Runtime System

Lu Fang (UC Irvine) Final Defense May 26, 2017 39 / 51

ITask Runtime System

Monitor

Scheduler
Partition Manager

Data Partition

Data Partition

Data Partition

Data Partition

Memory
ITask Runtime System

Grow/Reduce

Check Reduce

Lu Fang (UC Irvine) Final Defense May 26, 2017 39 / 51

ITask Runtime System

Monitor

Scheduler
Partition Manager

Data Partition

Data Partition

Data Partition

Data Partition

Memory

ITasks Disk

ITask Runtime System

Grow/Reduce

Check

Serialize/DeserializeInput/Output

Reduce

Lu Fang (UC Irvine) Final Defense May 26, 2017 39 / 51

ITask Runtime System

Monitor

Scheduler
Partition Manager

Data Partition

Data Partition

Data Partition

Data Partition

Memory

ITasks Disk

ITask Runtime System

Grow/Reduce

Check

Interrupt/Create Serialize/DeserializeInput/Output

Reduce

Lu Fang (UC Irvine) Final Defense May 26, 2017 39 / 51

Evaluation Environments

We have implemented ITask on
I Hadoop 2.6.0

I Hyracks 0.2.14

An 11-node Amazon EC2 cluster
I Each machine: 8 cores, 15GB, 80GB*2 SSD

Lu Fang (UC Irvine) Final Defense May 26, 2017 40 / 51

Evaluation Environments

We have implemented ITask on
I Hadoop 2.6.0

I Hyracks 0.2.14

An 11-node Amazon EC2 cluster
I Each machine: 8 cores, 15GB, 80GB*2 SSD

Lu Fang (UC Irvine) Final Defense May 26, 2017 40 / 51

Experiments on Hadoop

Goal
I Show the effectiveness on real-world problems

Benchmarks
I Original: five real-world programs collected from Stack Overflow

I RFix: apply the fixes recommended on websites

I ITask: apply ITask on original programs

Name Dataset

Map-Side Aggregation (MSA) Stack Overflow Full Dump
In-Map Combiner (IMC) Wikipedia Full Dump
Inverted-Index Building (IIB) Wikipedia Full Dump
Word Cooccurrence Matrix (WCM) Wikipedia Full Dump
Customer Review Processing (CRP) Wikipedia Sample Dump

Lu Fang (UC Irvine) Final Defense May 26, 2017 41 / 51

Experiments on Hadoop

Goal
I Show the effectiveness on real-world problems

Benchmarks
I Original: five real-world programs collected from Stack Overflow

I RFix: apply the fixes recommended on websites

I ITask: apply ITask on original programs

Name Dataset

Map-Side Aggregation (MSA) Stack Overflow Full Dump
In-Map Combiner (IMC) Wikipedia Full Dump
Inverted-Index Building (IIB) Wikipedia Full Dump
Word Cooccurrence Matrix (WCM) Wikipedia Full Dump
Customer Review Processing (CRP) Wikipedia Sample Dump

Lu Fang (UC Irvine) Final Defense May 26, 2017 41 / 51

Improvements

Benchmark Original Time RFix Time ITask Time Speed Up

MSA 1047 (crashed) 48 72 -33.3%

IMC 5200 (crashed) 337 238 41.6%

IIB 1322 (crashed) 2568 1210 112.2%

WCM 2643 (crashed) 2151 1287 67.1%

CRP 567 (crashed) 6761 2001 237.9%

I With ITask, all programs survive memory pressure

I On average, ITask versions are 62.5% faster than RFix

Lu Fang (UC Irvine) Final Defense May 26, 2017 42 / 51

Experiments on Hyracks

Goal
I Show the improvements on performance

I Show the improvements on scalability

Benchmarks
I Original: five hand-optimized applications from repository

I ITask: apply ITask on original programs

Name Dataset

WordCount (WC) Yahoo Web Map and Its Subgraphs
Heap Sort (HS) Yahoo Web Map and Its Subgraphs
Inverted Index (II) Yahoo Web Map and Its Subgraphs
Hash Join (HJ) TPC-H Data
Group By (GR) TPC-H Data

Lu Fang (UC Irvine) Final Defense May 26, 2017 43 / 51

Experiments on Hyracks

Goal
I Show the improvements on performance

I Show the improvements on scalability

Benchmarks
I Original: five hand-optimized applications from repository

I ITask: apply ITask on original programs

Name Dataset

WordCount (WC) Yahoo Web Map and Its Subgraphs
Heap Sort (HS) Yahoo Web Map and Its Subgraphs
Inverted Index (II) Yahoo Web Map and Its Subgraphs
Hash Join (HJ) TPC-H Data
Group By (GR) TPC-H Data

Lu Fang (UC Irvine) Final Defense May 26, 2017 43 / 51

Tuning Configurations for Original Programs

Configurations for best performance
Name Thread Number Task Granularity

WordCount (WC) 2 32KB
Heap Sort (HS) 6 32KB
Inverted Index (II) 8 16KB
Hash Join (HJ) 8 32KB
Group By (GR) 6 16KB

Configurations for best scalability
Name Thread Number Task Granularity

WordCount (WC) 1 4KB
Heap Sort (HS) 1 4KB
Inverted Index (II) 1 4KB
Hash Join (HJ) 1 4KB
Group By (GR) 1 4KB

Lu Fang (UC Irvine) Final Defense May 26, 2017 44 / 51

Improvements on Performance

WC HS II HJ GR
0

1

2

1 1 1 1 1

1.4
1.11

1.28

1.67 1.61

N
or

m
a
li

ze
d

S
p

ee
d

U
p Original Best

ITask

On average, ITask is 34.4% faster

Lu Fang (UC Irvine) Final Defense May 26, 2017 45 / 51

Improvements on Scalability

WC HS II HJ GR
0

10

20

1 1 1 1 1

5.1
2.7

24

6 5

N
or

m
al

iz
ed

D
at

as
et

S
iz

e

Original Best
ITask

On average, ITask scales to 6.3×+ larger datasets

Lu Fang (UC Irvine) Final Defense May 26, 2017 46 / 51

The Effectiveness of ITask

ITask is pratical
I it has helped 13 real-world applications survive memory problems

ITask improves performance and scalability
I On Hadoop, ITask is 62.5% faster

I On Hyracks, ITask is 34.4% faster

I ITask helps programs scale to 6.3× larger datasets

A programming model + a runtime system
I Non-intrusive

I Easy to use

Lu Fang (UC Irvine) Final Defense May 26, 2017 47 / 51

Conclusions

First general technique to amplify problems
I A class of performance problems

I Reveals pontential problems during testing

A general performance testing framework
I Includes a compiler and a runtime system

I Very pratical

First systematic approach to address memory
pressure

I Consists of a programming model and a runtime system

I Solves real-world problems

I Significantly improves data-parallel tasks’ performance and
scalability

Lu Fang (UC Irvine) Final Defense May 26, 2017 48 / 51

Future Works

Extend ISL

Add support into production JVMs

Consider more factors to improve test oracle

Instantiate ITask in more data-parallel systems

Lu Fang (UC Irvine) Final Defense May 26, 2017 49 / 51

Publications

I K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, O. Mutlu
Yak: A High-Performance Big-Data-Friendly Garbage Collector
OSDI’16

I Z. Zuo, L. Fang, S. Khoo, G. Xu, S. Lu
Low-Overhead and Fully Automated Statistical Debugging with Abstraction Refinement
OOPSLA’16

I K. Nguyen, L. Fang, G. Xu, B. Demsky.
Speculative Region-based Memory Management for Big Data Systems
PLOS’15

I L. Fang, K. Nguyen, G. Xu, B. Demsky, S. Lu
Interruptible Tasks: Treating Memory Pressure As Interrupts for Highly Scalable
Data-Parallel Programs
SOSP’15

I L. Fang, L. Dou, G. Xu
PerfBlower: Quickly Detecting Memory-Related Performance Problems via Amplification
ECOOP’15

I K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, G. Xu
Facade: A Compiler and Runtime for (Almost) Object-Bounded Big Data Applications
ASPLOS’15

Lu Fang (UC Irvine) Final Defense May 26, 2017 50 / 51

Thank You

Q & A

Lu Fang (UC Irvine) Final Defense May 26, 2017 51 / 51

	Motivation
	Our Solution
	Evaluation
	Conclusions

