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Abstract
Cooperative statistical debugging is an effective approach
for diagnosing production-run failures. To quickly identify
failure predictors from the huge program predicate space,
existing techniques rely on random or heuristics-guided
predicate sampling at the user side. However, none of them
can satisfy the requirements of low cost, low diagnosis la-
tency, and high diagnosis quality simultaneously, which are
all indispensable for statistical debugging to be practical.

This paper presents a new technique that tackles the
above challenges. We formulate the technique as an instance
of abstraction refinement, where efficient abstract-level pro-
filing is first applied to the whole program and its execu-
tion brings information that can pinpoint suspicious coarse-
grained entities that need to be refined. The refinement pro-
files a corresponding set of fine-grained entities, and gen-
erates feedback that determines what to prune and what to
refine next. The process is fully automated, and more im-
portantly, guided by a mathematically rigorous analysis that
guarantees that our approach produces the same debugging
results as an exhaustive analysis in deterministic settings.

We have implemented this technique for both C and Java
on both single machine and distributed system. A thorough
evaluation demonstrates that our approach yields (1) an or-
der of magnitude reduction in the user-side runtime over-
head even compared to a sampling-based approach and (2)
two orders of magnitude reduction in the size of data trans-
ferred over the network, completely automatically without
sacrificing any debugging capability.

∗Work was partially done while the author was with National University of
Singapore.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—statistical meth-
ods; D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, diagnostics, monitors, tracing

General Terms Experimentation, reliability

Keywords Automated debugging, field failures, statistical
bug isolation, abstraction refinement

1. Introduction
Despite extensive in-house testing, bugs commonly escape
to production runs on user machines. To debug field failures
[12], cooperative statistical debugging [23, 24] has been
shown to be particularly promising due to its crowd-sourcing
nature. Cooperative statistical debugging profiles program
executions at each user site, compares success-run profiles
with failure-run profiles, and identifies failure predictors —
the top k failure-correlated program entities, such as the
outcome of a branch, the value of a variable, the thread
interleaving pattern at a shared-variable access, etc. [19,
24, 35]. These failure predictors reflect failure root causes
and can be helpful in patch design. Although cooperative
statistical debugging is promising, severe challenges still
exist.

1.1 Problems and Motivation
An open and fundamental challenge in statistical debug-
ging is how to quickly identify a small number of failure-
correlated program entities (e.g., needles) from an ocean
of entities in any program of a reasonable size (e.g., a
haystack). For any type of entities, often referred to as pred-
icates in statistical debugging, collecting a complete profile
for every production run – e.g., logging the run-time out-
comes of all branches – would incur not only unacceptable
user-side slowdown but also huge amounts of overhead in
data transfer, storage, and analysis, making it impossible for
production deployment.

To address this challenge, two approaches have been pro-
posed so far. One uses the random sampling technique [23],
with the hope that the predicate profiling cost can be amor-
tized across a large number of users and runs.
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While random sampling reduces the overhead the user ex-
periences in each run of the instrumented program, it does
not reduce the aggregated total cost of data collection and
analysis from the developer’s perspective. In other words,
although sampling collects less data from each run at each
end-user, to achieve statistical significance, more runs/end-
users need to be involved and their data need to be trans-
ferred, leading to increased latency for failure diagnosis and
delayed patch design. For example, under the common 1/100
or 1/1000 sampling rate, hundreds or thousands more failure
runs need to be traced before sufficient predicates get sam-
pled to produce statistically meaningful results [4, 19, 23].
Furthermore, a whole-program sampling infrastructure may
lead to a large baseline overhead (e.g., more than 50%) that
cannot be amortized through sampling [6].

The other approach uses the heuristics-guided sampling
technique [5, 7, 10], with the hope that failure-correlated
predicates get sampled earlier than others. Some assume
that failure predictors are likely around failure points [5,
7], while others first profile predicates near the program
entrance and iteratively search down the control-flow graph
based on the failure-correlation metric, informally referred
to as suspiciousness in this paper, of already profiled branch
predicates.

Unfortunately, these heuristics-guided techniques still
have limitations. Each of these heuristics naturally only
works for some types of bugs and predicates, and may be-
have worse than random sampling in other cases [5, 7].
More importantly, they can never prune out any predicates
while guaranteeing the quality of debugging reports — with-
out exhaustively profiling all predicates, it is impossible for
them to know whether the best predictor has been found or
not. As a result, some of these techniques simply terminate
after a given number of predicates are profiled, sacrificing
diagnosis ability [5]. Others require developers to manu-
ally and periodically check diagnosis results to determine
whether a good enough failure predictor has been found [7],
which is, obviously, a daunting task that most developers
would be reluctant to do [32].

Instead of looking for a new sampling strategy, this paper
takes on a new quest driven by a key question: can we
prune the predicate space with quality guarantees? If so, we
can fundamentally reduce diagnosis cost without sacrificing
diagnosis ability.

1.2 Our Contributions
We propose a general, rigorous, and automated predicate-
space pruning technique for statistical debugging. Our tech-
nique applies to all types of predicates. It can greatly reduce
the number of predicates that need to be profiled and ana-
lyzed, while never missing top-ranked failure predictors with
mathematical guarantees∗. With the help of the effective

∗We will refer to these guarantees several times in the paper, and discuss
the assumptions behind them in §6.1.

pruning, our approach greatly saves the cost of production-
run failure diagnosis — the costs of both user-side profiling
and developer-side data collection and analysis are reduced,
without sacrificing any failure diagnosis capability.

Our technique is inspired by — and formulated as an in-
stance of — the abstraction refinement framework [11]. Our
key observation is simple: predicates are concrete program
entities constituting a huge space; profiling and analyzing
them directly is doomed to result in a high cost. If we can
raise the abstraction level by first profiling and analyzing
data from coarse-grained† program entities (e.g., functions),
we may obtain a bird-eye view of how each coarse-grained
entity is correlated with a failure. This view may then help
us decide, iteratively, (1) which coarse-grained entity should
be refined, with all the fine-grained entities (e.g., predicates)
it represents profiled and analyzed, and (2) which coarse-
grained entity does not need to be refined, with all the fine-
grained entities it represents pruned away.

Informally speaking, using inexpensive, coarse-grained
suspiciousness information, we can identify the top k fine-
grained suspicious predicates — the ultimate goal of statisti-
cal debugging — efficiently and rigorously by profiling and
analyzing only a small portion of the large predicate space.

To carry out this insight, there are two critical questions
to answer: (1) given an existing suspiciousness metric I for
concrete entities (e.g., the Importance metric in [23] for
predicates), how to design a suspiciousness metric C for
abstract entities; and (2) how to use C to guide the fine-
grained predicate profiling and analysis?

1.2.1 Designing Metric C
Answering these questions is not trivial. Let us first consider
the first question. Our goal here is to make C as indicative
of I as possible so that precise refinement guidance can
be obtained from applying C to coarse-grained profiles. An
ideal design of C is such that the function with the highest
C value must contain the predicates that have the highest
I values. Hence, to identify the top k predicates, one only
needs to refine and analyze a small number of functions
with the highest C values. However, this ideal situation is
impossible to achieve, as designing such a C that works for
all types of predicates is infeasible.

An alternative way to design C is to use various kinds
of heuristic information so that the top bug-correlated pred-
icates (e.g., ranked by I) are likely to be inside the most sus-
picious functions (e.g., ranked by C). However, this is fun-
damentally no better than heuristics used by previous work.

To overcome this challenge, we take a novel perspective
that allows us to explore the middle ground. Given a suspi-
ciousness metric I for predicates, we derive C from I with
the guarantee that for any function f , C(f ) gives the tightest
upper bound of all I(e) such that e is a predicate in f . This

† The terms “abstract” and “coarse-grained”, and “concrete” and “fine-
grained” are used interchangeably.
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Approaches User-side Overhead Data Analysis Effort IsAuto Quality of Results
Sampling-based statistical debugging [23] Dep. on sampling rate Analyze all profiles Yes Dep. on sampling rate

Iterative statistical debugging [7, 10] Low Analyze selected profiles No Dep. on heur. and manual insp.
Statistical performance debugging [35] Dep. on sampling rate Analyze all profiles Yes Dep. on sampling rate

This work Low Analyze selected profiles Yes Fully precise

Table 1. A comparison between existing statistical debugging techniques and the proposed work.

P

f1 f2 f3 f4

e2 e3 e4 e5 e6e1 e7 e8 e9 e10 e11 e12

(a) Traditional approach.

P

f1 f2 f3 f4

e2 e3 e4 e5 e6e1 e7 e8 e9 e10 e11 e12

(1) Abstraction 
Phase

(2) Refinement Phase
Iteration 1

(3) Refinement Phase
Iteration 2

(b) New approach.

Figure 1. A high-level comparison between the traditional
approach and our approach.

upper bound guarantee will be useful in guiding predicate
profiling and pruning, as discussed below. The derivation is
done by exploring the entire input space of I , and encoding
the inputs and outputs of C in a table; details of this deriva-
tion can be found in §4.

1.2.2 Using C to Guide Refinement
Following our design of C, we answer the second question
with a diagnosis process consisting of two major phases,
with the high-level idea illustrated in Figure 1(b).

The first phase conducts simple and light-weight profiling
of functions (i.e., abstract entities indicated by the yellow
rectangles in Figure 1(b)), collecting a set of abstract profiles
for functions. These profiles are then used to calculate C(f)
for each function f .

The second phase conducts iterative refinement. Each it-
eration takes a function f from a list L of all functions sorted
on their C values and refines f by profiling all predicates in
it. For instance, the predicates corresponding to yellow cir-
cles in Figure 1(b) are profiled. Since the suspiciousness of
f , C(f), provides an upper bound for the I values of all
predicates inside f , our diagnosis automatically terminates
when it has obtained k predicates whose I values are higher
than the suspiciousness of all the remaining functions on L,
effectively pruning away a large number of predicates (i.e.,
dashed gray circles in Figure 1(b)) from profiling and analy-
sis. The detailed discussion and formulation of the iterative
process can be found in §3.

As a result, our approach is fully automated and fully pre-
cise: the mathematical guarantee (cf. Theorem 3.1) dictates
that when our process terminates, the top bug predictors re-
ported are the same as those that would have been reported
by an exhaustive approach that instruments all predicates.

In comparison, the original approach, shown in Fig-
ure 1(a), does not profile any functions. Instead it profiles
all fine-grained predicates in one phase. A quantitative com-
parison between our approach and several representative ex-
isting techniques can be found in Table 1.

Summary of Results We have implemented the proposed
technique for both C and Java. An additional distributed pro-
gram has been developed for the Java-based implementation,
enabling us to evaluate our approach on a 12-node cluster.
This makes our results a better reflection of how the tech-
nique would be used and how well the technique would per-
form in practice. To the best of our knowledge, this is the
first time that the network traffic and latency is evaluated
for a statistical debugging technique in a distributed setting
closer to its practical usage.

An evaluation on a variety of real-world C and Java sub-
ject programs demonstrates that our approach yields (1) an
order of magnitude reduction in user-side runtime overhead
even compared to a sampling-based approach and (2) two
orders of magnitude reduction in the size of the data trans-
ferred over the network, completely automatically without
sacrificing debugging capability.

2. Background
The cooperative statistical debugging approach was first pro-
posed in the Cooperative Bug Isolation (CBI) work [24, 25],
and has been well researched since then [4, 5, 7, 10, 19, 35].
Its key idea is to collect execution information from both
failing and passing runs of production-run software at many
end users’ sites, and apply statistical techniques to analyze
the collected traces and identify likely failure root causes.
Most existing statistical debugging techniques only consider
one bug or one type of failures at a time. Software companies
often conduct triage/bucketing to group traces with similar
root causes [15].

2.1 Predicates
Cooperative statistical debugging collects the outcome of
predicates at run time. A predicate reflects a certain aspect of
program state. CBI considers the following three categories
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of predicates, which have been shown to be effective for
diagnosing a wide variety of software bugs:

• Branches: At each conditional, two predicates are tracked,
recording which branch is taken at run time;
• Returns: At each scalar-returning call site, six predicates

are tracked, capturing whether the return value r is >
0,≥ 0, < 0,≤ 0,= 0, or 6= 0, respectively;
• Scalar-pairs: At each assignment of a scalar value, six

relationships between the assigned value x and each other
same-typed in-scope variable yi are considered. Specifi-
cally, for each yi, six predicates are tracked: x <,≤, >
,≥,=, 6= yi.

The outcomes of these predicates are obtained through
software instrumentation or hardware support [4], and con-
stitute the profile of each run. Finally, a profile consists of a
set of predicate counts, each recording the number of times
a predicate is observed true during the run. In the statistical
model of CBI [24], these counts are simplified to indicate
(1) whether the predicate has been observed at all (no mat-
ter true or false) at least once and (2) whether a predicate
has been observed true at least once, regardless of the exact
number of times in the run. Additionally, each profile is la-
beled passing or failing, depending on whether it is collected
from a passing or failing run.

2.2 Statistical Model and Metric
After the profiles are obtained from many runs, statistical
analysis is performed to compute a suspiciousness value for
each predicate. The top scored predicate is regarded as the
best predictor of the failure.

CBI [24] uses a metric Importance (Equation 1) to assess
predicate suspiciousness. This metric has since been used
by many other tools. Importance is defined as the harmonic
mean of Increase (Equation 2, measuring how much e being
true increases the probability of failure over e simply being
observed, no matter true or false) and Sensitivity (Equation 3,
measuring how much e being true accounts for failing runs).
For a predicate e, let p(e) and n(e) be the total number of
passing and failing runs in which e is observed, no matter
true or false, respectively. Let pt(e) and nt(e) be the number
of passing and failing runs in which e is observed to be true,
respectively. For all these functions, their inputs are natural
numbers: p ∈ [0, P ], n ∈ [0, N ], pt ∈ [0, p], nt ∈ [0, n],
where P and N are the total number of passing and failing
runs, respectively.

Importance(e) =
2

1
Increase(e)

+ 1
Sensitivity(e)

(1)

Increase(e) =
nt(e)

nt(e) + pt(e)
− n(e)

n(e) + p(e)
(2)

Sensitivity(e) =
lognt(e)

logN
(3)

P

f1 f2 f3 f4

e2 e3 e4 e5 e6e1 e7 e8 e9 e10 e11 e12

Predicate e10 e2 e3
I 0.85 0.8 0.7

0.5 0.8 0.7 0.85 0.4 0.60.6 0.5 0.4 0.55 0.2 0.1

Figure 2. A detailed illustration of the original approach.

Previous work [18, 24, 26] has shown that the top k (k
being a small number) suspicious predicates can effectively
point out the root cause of many software failures.

2.3 Sampling
A crucial challenge for production-run tools is how to lower
the run-time overhead at user sites. To address this chal-
lenge, CBI and several other cooperative statistical debug-
ging tools use sparse random sampling [23], which evaluates
and records the outcomes of only a sparse and random sub-
set of all predicates during each run. Good failure predictors
can still be found under this setting, as long as profiles from
many failing runs and passing runs are collected.

The CBI work has found that, without sampling, usually
10 – 20 failing runs are sufficient for identifying failure pre-
dictors with statistical confidence. Sampling would greatly
increase this number, because only a subset of predicates
are profiled during each run. Given the default sampling rate
used in previous work, 1/100 – 1/1000, thousands to tens
of thousands of failing runs and similar numbers of passing
runs are needed to get high-quality failure predictors.

Note that, although sampling reduces predicate evalua-
tion and logging overhead, it introduces overhead due to
maintaining a whole-program random sampling infrastruc-
ture, which cannot be amortized by sampling. This baseline
overhead is often more than 50% for CPU-intensive work-
loads [6].

3. Abstraction-Guided Statistical Debugging
This section presents our new statistical debugging ap-
proach, first through an informal description illustrated by an
example in §3.1 and then through an abstraction-refinement
based formulation in §3.2.

3.1 Overview
Basic idea At the core of all existing approaches is predi-
cate profiling. While the outcomes of predicates are critical
for failure diagnosis, whole-program predicate tracking and
handling is too expensive. As discussed in §1, existing over-
head reduction techniques all have drawbacks. None of them
can automatically reduce the overall cost of predicate track-
ing and handling, without sacrificing diagnosis quality.
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P

f1 f2 f3 f4

e2 e3 e4 e5 e6e1 e7 e8 e9 e10 e11 e12

Function f1 f4 f2
C 0.9 0.85 0.65

f3
0.6

0.9 0.65 0.6 0.85

Figure 3. Abstract info collection.
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f1 f2 f3 f4

e2 e3 e4 e5 e6e1 e7 e8 e9 e10 e11 e12

Function f1 f4 f2
C 0.9 0.85 0.65

f3
0.6

Predicate e2 e3 e1
I 0.8 0.7 0.5

0.5 0.8 0.7

Figure 4. First refinement.

P

f1 f2 f3 f4

e2 e3 e4 e5 e6e1 e7 e8 e9 e10 e11 e12

Function f1 f4 f2
C 0.9 0.85 0.65

f3
0.6

Predicate e10 e2 e3
I 0.85 0.8 0.7

0.5 0.8 0.7 0.85 0.4 0.6

Figure 5. Second refinement.

The goal of our work is to automatically prune the predi-
cate space without sacrificing diagnosis quality, and we will
achieve this through lightweight information collected for
coarse-grained entities such as functions.

Two-phase approach Our statistical debugging has a two-
phase process: an abstract information collection phase fol-
lowed by an iterative refinement phase.

In the first phase, instead of profiling predicates, our ap-
proach profiles functions, recording which function is exe-
cuted at least once in each run. This profiling is lightweight
and the resulting profiles can be analyzed to obtain the sus-
piciousness score for each function based on a new metric
C. We will discuss what is C and how it is designed in §4.
Here, we just need to keep in mind thatC is derived from the
predicate-level suspiciousness metric Importance. Given a
function f , C(f) is guaranteed to be the lowest upper bound
of all such Importance(e) that e is a predicate inside f .

The second phase conducts iterative refinement. Each it-
eration retrieves the top function f from the list L of all
not-yet-refined functions ranked by their suspiciousness val-
ues in C, and refines f by instrumenting all predicates it
contains. Note that our instrumentation is not accumulative
— the instrumentation code added in previous iterations is
all removed. The re-instrumented program is executed and,
similar to the original approach, Importance is employed to
produce a suspiciousness value for each instrumented predi-
cate. At this point, suspiciousness values have been obtained
for predicates instrumented in both the current iteration and
all previous iterations. These predicates are then sorted and
the top k predicates are identified.

At the end of each iteration, we need to decide whether
the existing top k predicates are already the top k pred-
icates the original (exhaustive) approach would have pro-
duced globally. This decision is made by comparing the low-
est suspiciousness value Importance(e) among the exist-
ing top k predicates with the highest abstract suspiciousness
value C(f ′) among the remaining unrefined functions in L:

• If Importance(e) > C(f ′), the debugging process can
be safely terminated with the guarantee that the glob-
ally top k predicates have been found. The reason is that
C(f ′), which is smaller than Importance(e), is an up-
per bound for the suspiciousness value of all the remain-
ing unrefined functions and the non-profiled predicates

within them. Consequently, all the non-profiled predi-
cates can be pruned at this point without affecting diag-
nosis quality.
• If C(f ′) ≥ Importance(e), we will enter the next refine-

ment iteration, as there might be a predicate in method
f ′ with a suspiciousness value equal or higher than
Importance(e).

Example We use an example shown in Figure 2 – 5 to
illustrate the difference between the traditional approach and
our approach. Here a program P is represented as a tree
structure where leaf nodes e represent predicates and non-
leaf nodes f represent functions.

The original statistical debugging technique (Figure 2)
profiles all predicates across the whole program through
many runs, and computes a suspiciousness value Importance
for each predicate. Predicates are ranked based on their sus-
piciousness and the top k predicates are reported. In the ex-
ample shown in Figure 2, each predicate has a hypothetical
suspiciousness measurement and the top 3 suspicious predi-
cates are shown in the bottom table.

Our debugging approach is different. Its first phase is
illustrated in Figure 3. This phase profiles every function.
The values of theC metric obtained after this phase is shown
next to the function nodes.

The second phase starts with its first refinement iteration
retrieving the top suspicious function f1 and instrumenting
e1, e2, and e3 in f1, as shown in Figure 4. The profiles col-
lected by running the re-instrumented program give rise to
the following Importance values: 0.8 (e2), 0.7 (e3), and 0.5
(e1). Suppose the goal is to find 3 predicates that are most
indicative of the bug. To know whether e2, e3, and e1 are
these three predicates, we compare Importance(e1) (i.e.,
0.5) with C(f4), because f4 has the next highest suspicious-
ness value. Since 0.85 > 0.5, f4 may contain predicates
whose Importance is higher than that of e1 (i.e., the 3-rd
predicate identified) and thus another iteration of refinement
is needed. Hence, all predicates in f4 are instrumented.

The second iteration shown in Figure 5 profiles the three
predicates in f4. Together with suspiciousness values al-
ready obtained from the previous iteration, a re-ranking
identifies the new top 3 predicates: e10, e2, and e3. Because
the next function on the list is f2 and Importance(e3) (i.e.,
0.7) is greater than C(f2) (i.e., 0.5), we are guaranteed that
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e10, e2, and e3 must be the globally top 3 predicates and the
debugging process can be safely terminated. Clearly, this
report is the same as what the exhaustive approach would
have produced, although only predicates in two of the four
functions are instrumented, profiled, and analyzed.

3.2 Problem Formulation
After the above informal description, we now present an
abstraction-refinement based formulation of our approach.

Definition 3.1 (Abstract and Concrete Entities). A pro-
gram P consists of a set of functions F , each of which is an
abstract entity for instrumentation. A function f ∈ F con-
tains a set of predicates E, each of which is a concrete en-
tity for instrumentation. An abstraction relation α : E → F
maps each predicate e ∈ E to a function f ∈ F containing
e. A concretization relation γ : F → 2E maps each f to a
set of predicates inside f .

In our definition, both the abstraction and concretization
functions are straightforward – they are determined by the
“containing” relation between functions and predicates. Al-
though this paper focuses on a two-level abstraction hierar-
chy, one can easily extend our approach to multiple levels,
for example, by incorporating other types of entities such as
loops and basic blocks. Based on the definitions of abstract
and concrete entities, we define dynamic profiles.

Definition 3.2 (Abstract and Concrete Profiles and Mea-
sures). A concrete entity profile e ∈ E is a five-tuple
〈e, p(e), n(e), pt(e), nt(e)〉, where p(e), n(e), pt(e), nt(e)
have the same meanings as introduced in §2. An abstract
entity profile f ∈ F is a triple 〈f, p(f), n(f)〉. A concrete
suspiciousness measure (CSM) Ψ of a program is a pair
(Se, Importance) defined over a set of concrete entity pro-
files Se ∈ 2E reversely ordered by Importance(p(e), n(e),
pt(e), nt(e)) for each e ∈ Se. An abstract suspiciousness
measure (ASM) Φ of a program is a pair (Sf , C) defined
over a set of abstract entity profiles Sf ∈ 2F reversely or-
dered by C (p(f), n(f)) for each f ∈ Sf .

A profile is a statistical record of an entity collected from
multiple runs of the program. A concrete profile of a tracked
predicate e contains four values p(e), n(e), pt(e), and nt(e)
that are fed to metric Importance to obtain the suspicious-
ness value for e. An abstract profile of a tracked function f
contains two values p(f) and n(f), representing the occur-
rences of f in passing and failing runs, respectively. We do
not track functions’ return values. Consequently, pt(f) and
nt(f) are not defined.

As shown in the motivating example, at the heart of our
refinement-based technique is the metric C. It takes as input
two parameters p(f) and n(f) and returns the suspicious-
ness value of function f . A CSM is essentially a list of pred-
icates ranked by their Importance values, while an ASM is a
list of functions ranked by their C values. Before describing

how C is obtained in §4, we first discuss here some impor-
tant mathematical properties we want C to have.

Definition 3.3 (Abstraction Soundness). An ASM Φ =
(Sf ,C) is a sound abstraction of a CSM Ψ=(Se,Importance)
iff ∀e ∈ Se : ∃f ∈ Sf : (1) (e, f) ∈ α∧ (2)C(p(f), n(f))≥
Importance(p(e), n(e), pt(e), nt(e)).

The second property indicates that C(p(f), n(f)) must
be an upper bound of the suspiciousness values for all pred-
icates e inside f . Clearly, the definition of C plays a central
role in the development of a sound abstraction. Given an ap-
propriately defined C, we can easily obtain a sound ASM Φ
by instrumenting all function entries and collecting function
profiles (in the first phase). The subsequent iterative refine-
ment phase is essentially a process of incrementally building
the CSM Ψ. Our hope is that with the guidance of Φ, we can
find the top k predicates without constructing the complete
Ψ.

Lemma 3.1 (Upper Bound Guarantee). Let ASM Φ =
(Sf ,C) be a sound abstraction of CSM Ψ=(Se, Importance).
Let ei = 〈e, . . .〉 and fi = 〈f, . . .〉 be the i-th concrete and
abstract entity profile in the (reversely-ordered) set Ψ and
Φ, respectively. We have the following guarantee: ∀ index
i ∈ [0, |Ψ|), j ∈ [0, |Φ|) : Importance(ei) ≥ C (fj) =⇒
∀index k ≥ j : ∀index t ∈ [0, |Ψ|) : (et.e, fk.f) ∈ α : t ≥ i.

Proof. Step (1): Importance(ei) ≥ C (fj) implies that, for
any index k ≥ j, Importance(ei) ≥ C (fk) due to C (fj) ≥
C (fk).

Step (2): Since ASM Φ = (Sf , C) is a sound abstraction
of CSM Ψ = (Se, Importance) and (et.e, fk.f) ∈ α, based
on Definition 3.3, we have C (fk) ≥ Importance(et).

From Steps (1) and (2), we have Importance(ei) ≥
Importance(et), which indicates that et must have a larger
index (i.e., t) than ei (i.e., i) in the CSM.

Informally, if the suspiciousness value of a predicate e
indexed i in the CSM (i.e., Importance(ei)

‡) is≥ the suspi-
ciousness value of a function f indexed j in the ASM (i.e.,
C (fj)), as long as Φ is a sound abstraction of Ψ, the sus-
piciousness value of any predicate e′ in f or any function
lower than f in the ASM must be ≤ that of e. Therefore, e′

must have a larger index (i.e., t) than e (i.e., i) in the CSM.

Definition 3.4 (Abstraction Refinement). Given a par-
tially constructed CSM Ψ = (Se, Importance) and an ab-
straction Φ = (Sf , C), an abstraction refinement v pro-
duces another pair of CSM Ψ′ and ASM Φ′ by (1) removing
the top function f from Φ, (2) instrumenting all predicates e
in f , (3) executing the newly instrumented program, and (4)
collecting a set of concrete entity profiles e and adding them
into Ψ.

‡ For simplicity of presentation, we use Importance(ei) and C(fi) in-
stead of their full notations (with four and two parameters, respectively).
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A refinement shrinks an existing ASM by removing its
top entry while grows an existing CSM by adding new pred-
icate profiles and re-sorting all contained profiles based on
their Importance values. It is important to note that, at any
step during the refinement, the entities in Φ and Ψ are al-
ways disjoint: for each function profile in Φ, its correspond-
ing predicate profiles must not be in Ψ. In other words, Φ
soundly abstracts the complement of Ψ. The refinement pro-
cess starts with a full Φ and an empty Ψ and gradually re-
moves abstract entries from Φ and adds concrete entries into
Ψ.

Theorem 3.1 (Termination Quality Guarantee). Sup-
pose a chain of i refinement steps results in a partial
CSM Ψ = (Se, Importance) and a partial ASM Φ =
(Sf , C). For a given integer k, if Importance(ek) > C(f0),
Importance(ek) is guaranteed to be greater than the Impor-
tance values of all predicates in the functions in Φ.

Proof. Based on Lemma 3.1, if Importance(ek) > C(f0),
then for all such et that (et.e, fq.f) ∈ α and q > 0, we have
t > k. In other words, the index of any predicate et in a
function in Φ must be greater than the index of ek (i.e., k)
in Ψ. Therefore, Importance(ek) is guaranteed to be greater
than the Importance values of all predicates in the functions
in Φ.

Suppose our goal is to find the top k predicates that are
most indicative of a bug. This theorem provides a guarantee
that if the Importance value v of the k-th predicate in the
CSM is > the C value of the first function profile in the
ASM Φ, v must be > the C value of any function profile
in Φ. Since the C value of a function is an upper bound of
the Importance values of all predicates in the function, the
theorem further guarantees that none of the functions yet to
be refined may contain a predicate that might make the top-k
list in the CSM.

4. Abstract Suspiciousness Metric Design
As we have seen, the abstract suspiciousness metric C plays
a critical role in our debugging approach. This section dis-
cusses the design and computation of this metric.

4.1 Properties and Design Goals
When processing profiles from a set of runs,C takes as input
two parameters p(f) and n(f), the number of passing runs
and failing runs that have executed function f . It returns
the suspiciousness value of f , and has to satisfy several key
properties:

• Upper bound. As discussed in §3, requiring Cf≥
Importancee for all e inside f is a necessary condition
to guarantee the correctness of our debugging process.
• Tightness. C has to be a tight upper bound in order

to effectively prune the predicate space. For example,
makingC always return∞would turn our technique into

an exhaustive approach. The tighter bound C gives, the
more efficient our debugging process is.
• Generality. C is expected to work for all types of predi-

cates, including branch predicates, return predicates, and
scalar-pair predicates discussed in §2.

Achieving these goals is challenging, as C needs to be
computed without profiling any predicates. In the following,
we first present our insights around two key design ques-
tions, before we present the algorithm of computing C.

What is the input domain of Importancee? We first dis-
cuss how to infer the input domains of Importancee based
on function profiles. As discussed in §2, Importancee takes
in four input parameters: p(e) and n(e), which denote the
numbers of passing and failing runs that have observed pred-
icate e, as well as pt(e) and nt(e), which denote the numbers
of passing and failing runs that have observed e to be true.

Answers to this question hinge upon the relationship be-
tween the number of runs x that have observed a function f
and the number of runs y that have observed a predicate e,
among a given set of runs. We only care about whether or not
f or e has been observed, not the exact number of times it
has been observed in a run as discussed in §2. Consequently,
y has to be less than or equal to x when e is inside f — if a
predicate is observed, its enclosing function must have been
observed. This holds for all types of predicates.

This simple observation allows us to infer the input do-
main of Importancee based on the profile of f , when e is
in f . That is, when function f is observed in p(f) pass-
ing runs and n(f) failing runs, the numbers of passing and
failing runs that observe e must be p(e) ∈ [0, p(f)] and
n(e) ∈ [0, n(f)], respectively. The numbers of passing and
failing runs in which e is observed to true, respectively, must
be pt(e) ∈ [0, p(e)] and nt(e) ∈ [0, n(e)].

How to compute the upper bound of Importancee? Know-
ing the above relationship, ideally, we could directly derive
the mathematical formula of C from the mathematical for-
mula of Importance e.g., by computing an equation model-
ing the area enclosed by the tangent lines of the Importance
function. However, since Importance is a complex function,
this derivation requires significant mathematical develop-
ment and may yield large over-approximations at various
points.

One might wonder if the upper bound can be computed
by setting the parameters to their bound values. The answer
is no because Importance is not a monotone function. Hence,
using bound values as its parameters does not guarantee to
generate the maximum Importance value.

Here we take a different and more practical approach.
Given a function profile 〈f, p(f), n(f)〉, we can enumerate
all valid input combinations for Importancee, where e is in
f , using the input-domain relationship discussed above. We
can then take the maximum of these Importance values as
Cf . This high-level idea allows us to compute Cf based on
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the function profiles collected in our first debugging phase
before any predicate is instrumented or monitored.

To illustrate, consider a simple example where a function
f is executed in one passing run and two failing runs (i.e.,
p(f) = 1, n(f) = 2). e is a predicate inside the function f .
Without profiling e, we do not know e is observed in how
many passing runs (i.e., p(e)) and how many failing runs
(i.e., n(e)). Fortunately, we know that e cannot be observed
in a run unless f is executed in that run. Consequently, we
can infer that e is observed in at most one passing run and
two failing runs (i.e., 0 ≤ p(e) ≤ p(f) = 1, 0 ≤ n(e) ≤
n(f) = 2). Hence, we enumerate all possible combinations
of p(e) and n(e), namely, (0, 0), (0, 1), (0, 2), (1, 0), (1, 1)
and (1, 2), and compute an Importance value for each of
these pairs. Finally, the maximum of all these Importance
values is used as the C value for function f . Obviously,
this value is an upper bound of the Importance values of
all predicates e inside f . Moreover, this upper bound is the
lowest upper bound that can be obtained.

4.2 Our Algorithm
This subsection describes our algorithm to implement this
idea. A naive algorithm would separately compute Cf for
every function, which is extremely time-consuming for large
software. Our design is much more efficient.

Our algorithm aims to produce a table that maps (i, j) to
C(i, j), where 0 ≤ i ≤ P and 0 ≤ j ≤ N with P and
N being the total number of passing runs and failing runs.
With this table, we can get the C value for every function f
through a simple table lookup using index (p(f), n(f)).

To efficiently produce this table, we leverage dynamic
programming§ and an insight that the computation ofC(i, j)
can be largely simplified leveraging that of C(i − 1, j) and
C(i, j − 1). Algorithm 1 shows the details. Following the
high-level idea discussed above, Algorithm 1 computes C(i,
j) by enumerating and getting the maximum of all such
Importance(a, b, l, k) that 0 ≤ a ≤ i, 0 ≤ b ≤ j, 0 ≤ l ≤ a,
and 0 ≤ k ≤ b. Line 10 shows the key optimization in
our algorithm: to compute C(i, j), we only need to take the
maximum of already-computed C(i− 1, j), C(i, j− 1), and
the to-be-computed maxInLastTwoD(i, j). The auxiliary
function maxInLastTwoD takes two parameters i and j,
and computes the maximum value of all Importance(i, j, l,
k) where 0 ≤ l ≤ i and 0 ≤ k ≤ j. This whole algorithm
has an O(P 2N2) time complexity.

When to run this algorithm? Algorithm 1 can be per-
formed without any knowledge of the targeting software or
function; the resulting C-table is valid for all types of soft-
ware and functions. Consequently, we can re-use theC-table
from one debugging process to another, and keep expanding
the table when facing larger numbers of passing (P ) or fail-
ing runs (N ).

§A natural and efficient way to compute a mathematical property over a
large (e.g., multi-dimensional) domain.

Algorithm 1: Computation of the abstract suspiciousness
metric C.

Input: Metric Importance , the total numbers of passing and
failing runs P and N obtained from the first phase

Output: C encoded as a table

// Base case

1 C(0, 0)← Importance(0, 0, 0, 0)

2 for i← 1 to P do
3 C(i, 0)← max{maxInLastTwoD(i, 0), C(i− 1, 0)}
4 end
5 for i← 1 to N do
6 C(0, i)← max{maxInLastTwoD(0, i), C(0, i− 1)}
7 end

// Iterative computation

8 for i← 1 to P do
9 for j ← 1 to N do

10 C(i, j)← max{maxInLastTwoD(i, j), C(i−
1, j), C(i, j − 1)}

11 end
12 end

13 Function maxInLastTwoD(i, j)
14 largest ← 0

15 for l← 0 to i do
16 for k ← 0 to j do
17 largest ← max{largest , Importance(i, j, l, k)}
18 end
19 end
20 return largest

In our debugging framework, after the abstract informa-
tion collection phase, we will use the profile of each function
f to look up the C-table and obtain the suspiciousness value
of f , and then use that to conduct further refinement.

Theorem 4.1 (Lowest Upper Bound). For each abstract
entity profile f = 〈f, a, b〉, a lookup C(a, b) in the table
computed by Algorithm 1 returns the lowest upper bound
of Importance(i, j, l, k) for all such concrete entity profile
e = 〈e, i, j, l, k〉 that (e, f) ∈ α.

Proof. This theorem can be proved by contradiction. Based
on the way C is computed in Algorithm 1, C(a, b) must be
equal to a particular Importance(i, j, l, k) where 0 ≤ i ≤
a, 0 ≤ j ≤ b, 0 ≤ l ≤ i, and 0 ≤ k ≤ j. If C(a, b) is
not the lowest upper bound, there must exist another upper
bound less than C(a, b) and the Importance(i, j, l, k) from
which C(a, b) is obtained, contradicting its upper bound
property.

The suspiciousness of a function being the lowest upper
bound of the suspiciousness of its contained predicates pro-
vides a basis for the early termination of the refinement pro-

888



cess, yielding debugging algorithms that are both precise and
efficient.

It is important to note C is computed when the entire in-
put space of Importance is considered. In practice, many
integer inputs we consider when computing C may not actu-
ally appear in a particular set of predicate profiles. For these
profiles, there may be a gap between the suspiciousness of
a function given by C and the maximum suspiciousness of
predicates in the function computed from Importance.

The amount of time and space used by Algorithm 1 is
reasonable even for large programs. Although the algorithm
has an O(P 2N2) complexity, in our experiments (§7), the
computation of the whole metric C takes less than 10 min-
utes even for the largest settings of P and N (i.e., more than
1000 for P and more than 100 for N , with the sum of P and
N shown in the Column “Tests” of Table 2). Furthermore,
this algorithm only incurs a one-time cost: invoking it once
would generate the whole metric-matrix C(0..P, 0..N). Af-
ter that, the C metric for every function can be obtained by
a constant-time matrix look-up.

4.3 Applicability
Our technique works for all types of predicates and all types
of statistical models, as long as the statistical debugging
approaches only distinguish whether a predicate has been
observed at least once or never in a run. In other words,
our technique would fail if debugging relies on the exact
number of times a predicate is observed in each run —
no mathematical relation can be established between the
parameters of Importance and C, and thus C is no longer
valid.

5. Implementation
We have implemented the proposed approach for both C and
Java. Our detailed workflow is as follows:

1. Instrument function entries, deploy the instrumented pro-
gram, and collect function profiles;

2. Compute C with the numbers of passing and failing runs
P and N using Algorithm 1;

3. Compute the abstract suspiciousness measure Φ using C
on the collected function profiles;

4. Iteratively refine functions from Φ to build the concrete
suspiciousness measure Ψ until termination.

Re-deployment No user involvement is needed in any of
these steps: program (re-)instrumentation and (re-)deployment
is completely automated. To achieve efficiency in deploy-
ment, we do not re-instrument or re-deploy the whole ap-
plication in each iteration. We only re-compile the changed
component, which is essentially one function selected in
each iteration. The component recompiled and redeployed
at each iteration is often small in size (demonstrated empiri-
cally in Table 5).

Start Profile 
Collection

Cumulative 
Profiles

Statistical 
Analysis

ResultsStable for N 
Times?End Yes

No

Figure 6. Profile collection strategy.

For a C program, the changed component (i.e., one source
file and/or header file) is re-compiled as a patch to a shared
library; while for Java, a new class file is generated. Version
update is done by utilizing a function wrapping mechanism
— we wrap a function in a special way so that calls to
this function can be intercepted and rerouted to a specific
instrumented version of the function in the library.

Note that re-deployment could be a problem for certain
systems that consider dynamic instrumentation as a secu-
rity risk. For now, we restart all re-instrumented programs
after re-deployment. Dynamic software update (DSU) tech-
niques [29, 36] can be employed in the future to avoid re-
executing the program.

Profiling sufficiency Like all statistical approaches, statis-
tical debugging relies on a large amount of data to ensure the
stability of results. In other words, given a sufficiently large
number of execution profiles, the same results (e.g., the same
ranking of functions and predictors) can be obtained even if
the individual profiles under analysis are different. In our
implementation, we need sufficient profiles from both the
coarse-grained phase (i.e., Step 1 in the workflow) and each
refinement step in the iterative phase (i.e., Step 4).

To achieve the goal, we apply an iterative, fixed point
based profile collection strategy, shown in Figure 6. Specif-
ically, we start off by collecting a small number of profiles,
on which our analysis is run to generate debugging results.
Collection of additional profiles depends on whether the re-
sults are stable enough. The arrival of new profiles triggers
the re-analysis of all (old and new) profiles and the process is
repeated until a fixed point is reached - no difference can be
found in the results (i.e., the ranking of functions and predi-
cates) generated in the last N iterations (e.g., N = 3 is used
in our experiments).

Distributed environment We have created an additional
distributed program for our Java-based implementation that
runs on a master and a set of slave nodes. The master pro-
gram simulates the developer who performs the debugging
while slave programs simulate users that run the instru-
mented program. The master instruments the program in
each iteration and sends the recompiled class files to the
slaves. The instrumentation code records traces at each slave
and sends them back to the master over the network. The
master then analyzes them and performs refinement. The
master-slave communication is done over the socket. Hav-
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ing a distributed implementation enables us to measure per-
formance factors such as profile sizes and network traffic,
which have never been evaluated in existing statistical de-
bugging techniques.

6. Discussion
This section discusses several important issues that concern
the soundness and practicality of the proposed technique.

6.1 Statistical Soundness
It is important to understand whether and under what condi-
tion the mathematical guarantees of our debugging process
hold. In theory, in order for the abstract suspiciousness to
be a sound abstraction of the concrete suspiciousness, the
coarse-grained phase and each refinement must execute on
exactly the same set of test cases. Therefore, in an in-house
debugging scenario for a deterministic system, our approach
is mathematically sound.

However, in the cooperative debugging scenario where
test cases executed at different phases may be different, our
approach cannot achieve mathematical soundness.

To mitigate this problem, our approach currently relies
on a large number of profiles to ensure the stability of re-
sults, like many other statistical approaches, as discussed
in §5. That is, we assume that, with sufficient profiles, the
Importance values and hence the ranking among functions
and predicates will become stable. This assumption matches
with our empirical results — the diagnosis results from our
approach are valid in a random distributed setting (§7.3).

A promising direction worth exploring in the future is to
turn the mathematical properties stated in §3.2 into statisti-
cal properties. For example, we can incorporate confidence
intervals in our metric design and turn suspiciousness scores
into random variables. In this way, suspiciousness compar-
isons (e.g., whether the Importance value of a predicate is
greater than aC value of a function) become hypothesis tests
and their results carry statistical meanings.

6.2 Multi-Version Deployment
As an iterative approach, our technique needs to run the
multi-iteration refinement process. Like all sampling-based
debugging or iterative debugging techniques [4, 7, 19, 23],
our technique reduces the user-side overhead of running a
heavily instrumented program, but increases the latency of
collecting debugging information. This trade-off is widely
considered to be worthwhile by previous work, considering
the stringent user-side overhead requirement. Since there are
a large number of end users, we can simultaneously deploy
programs with different instrumentations to different users
for execution. As a result, the iterative process can be “par-
allelized”, thereby reducing the waiting time for profiles.
Specifically, we can remove top n functions from Φ at a time,
refine them to obtain n versions of instrumented programs
— each version with one function refined, and deploy them

to different user sites. Consequently, developers can quickly
collect execution profiles.

6.3 Multi-Function Instrumentation
Our framework can also be extended to refine multiple func-
tions (i.e., instrumenting predicates in multiple functions) at
each iteration to reduce the number of iterations. The num-
ber of functions to be refined in each iteration essentially de-
fines a trade-off framework — more functions-per-iteration
means fewer iterations, but more overhead, less predicate
pruning, and more total debugging cost. Expanding all func-
tions in one iteration is essentially whole-program instru-
mentation. In this work, we expand one function at a time,
because reducing user-side overhead is our primary goal.

6.4 Multi-Level Abstractions
In this paper, we only consider two levels of instrumentation
in a program. However, our technique can be easily extended
to consider other types of program entities, such as basic
blocks and classes. For example, if a program has a very
large code base and a great number of functions, the cost for
running code with function-level instrumentations may not
be acceptable. In this case, we may consider class as a new
level of abstraction.

As another example, if a program has large functions
(e.g., big C programs without a modular design) , the user-
side overhead for running even one function with instru-
mented predicates may be too high. In this case, we can
reduce the overhead by adding basic blocks as a new ab-
straction layer. Before predicate instrumentation, we first ex-
amine and prune basic blocks. The refinement process has
a nested structure: the iterative refinement of basic blocks
would be nested within the refinement of functions. The al-
gorithm for a general n-level abstraction refinement can be
easily derived by recursively invoking the current algorithm
that refines on a 2-level abstraction hierarchy.

6.5 Detection of Unknown Bugs
So far our discussion has been focused on how to prune pred-
icates when failing runs are seen. To support the detection of
unknown bugs that have not yet manifested, we can always
enable function-level instrumentation on all or randomly se-
lected runs. Once failures are reported, predicate-level pro-
filing and abstraction refinement are enabled to help locate
the cause.

7. Evaluation
This section presents an empirically evaluation of our im-
plementations for both C and Java. Please refer to [1] for the
detailed artifact information.

7.1 Benchmarks
While we would like to use the same benchmark set as used
by CBI [24], their test suites are not publicly available. As a
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Subject Faulty Ver. LoC Functions Predicates Tests Lang.

space 34 6,199 136 25,449 1,248 C
sed 4 14,427 112 101,233 363 C
gzip 13 5,680 91 179,962 213 C
grep 5 10,068 129 228,498 809 C
bash 6 59,846 1,458 928,566 300 C

nanoxml 22 7,646 552 5,128 236 Java
siena 3 6,035 249 19,130 567 Java
ant 4 80,500 8,863 203,576 149 Java
derby 3 503,833 28,887 1,389,976 258 Java

Table 2. Characteristics of the chosen subject programs.

result, we had to resort to the SIR repository [14], as it con-
tains both buggy programs and test suites that were gener-
ated both manually and automatically. To select benchmarks,
we first found all programs that have at least 5,000 lines of
code and then removed those whose test suites contain less
than 100 test cases. This left us twelve programs, among
which one could not compile and two did not have failing
runs. Removing those three resulted in the selection of nine
programs, as shown in Table 2.

Each program has multiple faulty versions whose number
is reported in Column “Faulty Ver.”. Each faulty version
contains a distinct bug, which is either a real bug or manually
injected. A faulty version was excluded if the number of
test cases triggering the bug is too small — it would not be
possible to obtain any statistically meaningful results. The
three types of predicates introduced in §2 (i.e., branches,
returns, and scalar pairs) are all considered in our evaluation.
To instrument C programs, we employed the sampler-cc tool
developed by Liblit et al. [23]. For Java, we implemented
our own instrumenter named JSampler¶ based on the Soot
framework‖.

Similarly to past work [23], we chose roughly the same
numbers of passing- and failing- runs to conduct statistical
analysis. Since the goal of this work is not to increase the
precision of any debugging method, but rather to improve
performance with quality guarantees, our evaluation focuses
on understanding various performance factors, including, for
example, instrumentation effort, user-side runtime overhead,
and network traffic and latency.

To have a thorough assessment of these factors, we have
designed two sets of experiments, conducted in two different
environments. First, we experimented with both our C and
Java implementations on a single commodity desktop. This
set of experiments focuses on evaluating the instrumentation
effort and the user-side runtime overhead incurred by instru-
mentation code. Second, we ran our distributed implemen-
tation on a cluster that simulates real-world usage of statis-
tical debugging of Java programs. The goal is to understand
important performance factors such as network traffic and

¶ https://bitbucket.org/z zhiqiang/jsampler
‖ http://sable.github.io/soot/
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Figure 7. Percentage of predicates instrumented.

latency; these factors are impossible to measure on a single
machine.

7.2 Results on Single PC
Methodology The machine on which the experiments were
run has an Intel Core i5 3.30GHz CPU and 8GB main mem-
ory, running 64-bit Ubuntu 14.04. Through these experi-
ments, we would like to answer the following four research
questions.

• Q1: Compared to the traditional CBI approach where all
predicates are instrumented and tracked, how many pred-
icates does our abstraction refinement based bug isolation
(ARBI) approach need to instrument and track?
• Q2: How well does our approach perform for different

types of predicates?
• Q3: What is the user-side overhead of our approach? How

does it compare to the overhead of CBI, with and without
sampling [24]?
• Q4: How does ARBI compare to adaptive bug isolation

(ABI) [7]?

Q1: Predicates Instrumented We used the traditional CBI
as the baseline (that instruments all predicates) and ran it
with the entire test suite for each program. For our technique,
we first obtained abstract suspiciousness information and
then performed iterative refinements by running the same
test suite for each iteration until termination. During the pro-
cess, we measured the percentage of predicates instrumented
to obtain the same top k predictors. We assume the test suite
is large enough with sufficient failing test cases to make both
CBI and ARBI reach the fixed points (i.e., statistically mean-
ingful results).

Figure 7 shows the percentages of predicates instru-
mented by our approach to find the top k predictors for each
program (averaged across all faulty versions), with k being
1, 3, 5, and 10. Note that the baseline always instruments
100% of predicates. Our approach yields an overall 68% re-
duction in the number of predicates instrumented, without
requiring any manual effort. Observe that our approach per-
forms better for larger programs. For very large programs
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Branch Return Scalar-pair

Subject Iter Pred(%) Iter Pred(%) Iter Pred(%)

space 75.8 65.8 73.3 77.7 70.2 58.4
sed 59.5 80.9 57.3 82.0 53.3 86.2
gzip 28.0 39.8 27.2 53.4 25.2 32.0
grep 24.8 35.4 20.8 38.9 22.0 31.5
bash 175.7 20.4 164.3 17.7 173.7 24.2

nanoxml 37.3 42.6 39.1 53.6 17.3 76.4
siena 30.7 31.4 20.3 32.0 26.3 36.8
ant 193.0 10.1 145.5 9.0 71.3 7.1
derby 1328.7 13.0 1281.7 13.6 712.7 10.1

GeoMean - 33.1 - 33.2 - 30.8

Table 3. Average numbers of iterations needed for each type
of predicate to find the top 5 predicates, as well as average
percentages of predicates instrumented during the process.

such as ant and derby, more than 90% of predicates were
pruned away.

Although the quality of ranking metric is not a concern of
this paper, we manually inspected the top predicates reported
for each program. We found that when k = 5, the predicates
reported do include those truly correlated with the bugs.

Q2: Effectiveness on Different Predicate Types We ran
ARBI over the entire test suite by instrumenting one of the
three types of predicates (branches, returns, scalar-pairs) at
each time. We compared the numbers of refinement steps
needed by each type of predicate to reach termination.

Table 3 shows, for each program, the average number of
iterations required (Column “Iter”) to find the top 5 predi-
cates and the average percentage of predicates instrumented
(“Pred(%)”) across multiple faulty versions of the program.

Clearly, our approach can effectively prune the predicate
space for all the three types. Nevertheless, the effectiveness
of our approach for different types of predicates does not dif-
fer much. In some large programs, such as ant and derby,
the number of iterations needed for scalar-pair predicates is
much smaller than that for the other types. This is potentially
because scalar-pair predicates are much more dense than the
other types of predicates. If such a predicate is highly corre-
lated with a bug, it can quickly distinguish itself by gaining
high suspiciousness.

Q3: User-side Overhead To answer this question, we com-
pared the running time of each program instrumented under
ARBI and under CBI with three different sampling rates:
1/1, 1/100, and 1/10000; 1/1 means no sampling.

Recall that our ARBI is iteration-based and each itera-
tion instruments predicates in only one function. In practice,
the program instrumented in different iterations would likely
be executed at different user machines and thus each user
only needs to pay the overhead of heavy predicate instru-
mentation in one function. To assess this overhead, we mea-
sured the average execution time of the instrumented pro-
gram across iterations (phase 2), as well as the time spent on

phase 1 for executing the program with only function entries
instrumented.

To precisely measure running time, we ran each faulty
version of each program four times and took the average
of the execution times of the last three runs. Our results
are shown in Table 4. The overhead is measured as the
ratio between the execution time of the instrumented run
and original run without any instrumentation. Phase 1 and
phase 2 under “ARBI” report, respectively, the overhead
of the function-entry instrumentation in phase 1 and the
average overhead of the predicate instrumentation in phase
2 across iterations. The numbers reported in this table may
look different from those reported in [24] and [35] for several
common programs used, because we considered three types
of predicates in our evaluation while [24] and [35] evaluated
performance only with branch predicates instrumented.

CBI ARBI

Subject 1/1 1/100 1/10000 Phase 1 Phase 2

space 2.617 2.517 2.460 1.294 1.384
sed 5.759 4.411 4.179 1.173 1.458
gzip 5.815 3.413 2.783 1.018 1.063
grep 22.228 15.531 12.098 1.215 1.317
bash 2.633 2.486 2.424 1.374 1.362

nanoxml 1.340 1.254 1.252 1.116 1.098
siena 1.247 1.054 1.038 1.021 1.018
ant 11.782 1.591 1.078 1.001 1.026
derby 5.176 1.358 1.204 1.159 1.001

Table 4. User-side slowdown in times (×).

Overall, our iterative refinement (Column “Phase 2”) suf-
fers a much lower overhead than sampling even with the low-
est 1/10000 rate. This is especially the case for C programs,
because they typically have many more scalar-type variables
and thus their numbers of scalar-pair predicates are much
larger than that of a Java program. For each program, the
average Phase 1 overhead is also very low, and often lower
than that of Phase 2.

Q4: Quality Comparison with ABI ABI [7] prunes the
predicate space using heuristics. In [7], the authors pro-
posed two ABI analyses: a forward analysis that traverses
forward the control dependence graph (CDG) from the main
entry of the program and a backward analysis that traverses
backward the CDG from the buggy point. At every control
branch, the suspiciousness of the related branch predicates
is used to determine the path to explore. Both approaches
may likely run very long if wrong guidance is given by the
heuristics. Hence, ABI requires the developer to determine
when to terminate, making it difficult for us to come up with
a fair comparison with ARBI. To answer question Q4, we
design an experiment that compares the Importance value
of the top predicate found between ABI and ARBI as their
predicate instrumentation progresses.
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Figure 8. Top Importance value comparisons for program
space between ARBI and two state-of-art ABI approaches.
The forward analysis uses T-Test as the heuristic and the
backward analysis uses Importance as the heuristic.

Figure 8 plots three curves for the program space, one
for ARBI and two for ABI. Each curve represents how the
Importance value of the top predicate changes as more itera-
tions are executed and more predicates get instrumented. For
ABI, we consider two heuristics, T-Test and Importance,
as they are the top performed heuristics according to [7].
We ran the ABI forward analysis with T-Test and its back-
ward analysis with Importance. These heuristics determine
which control flow path to explore at each branching point.

This figure clearly shows that ARBI can quickly reach a
much higher Importance value (beyond 0.8) while the two
ABI approaches constantly stay below 0.6. Since heuristics
do not provide guarantees, they may likely give wrong guid-
ance, making an ABI analysis choose to explore paths that
have nothing to do with the bug.

7.3 Results on Distributed Environment
Methodology Our distributed environment is a local 12-
node cluster, each node with two Intel Xeon E5 2.60GHz
CPUs and 32GB RAM, running CentOS 6.6; nodes are con-
nected by an InfiniBand network. We explore the following
question.

• Q5: How much data transferred over the network can be
saved by ARBI compared to CBI, and how much is the
network latency?

Different from the experiments on a single PC where
both CBI and ARBI ran the entire test suite for each bench-
mark, here we employed the fixed-point-based strategy as
discussed in §5 — we kept feeding randomly selected test
cases to the instrumented program in each iteration until
their results became stable. This is because the goal of this
set of experiments is to simulate a real-world usage scenario
in which tests are run at many different users and no profiles
collected are exactly the same. A technique that can quickly
reach the fixed point needs to collect less profiles and thus

has lower communication overhead and debugging latency.
Since we would like to compare the size of data transferred
over the network before reaching the fixed points between
different approaches, running the whole test suite in each it-
eration would defeat this purpose.

In order to answer Q5, we measured the total size of data
transferred over the network. We would also like to under-
stand the latency of ABI. However, since ABI cannot termi-
nate automatically, manual inspection is needed in every it-
eration, making it incomparable with CBI and ARBI, which
are completely automated. Work from [7] evaluates ABI us-
ing known bugs as “oracles”. While we can also use oracles,
we decided not to in the experiments because oracles do not
exist in real settings and yet the goal of this experiment is to
understand ARBI’s real-world impact.

Trace (#/MB) Binary (MB)

CBI ARBI CBI ARBI Reduction

Subject Num. Size Num. Size Size Size Total Size

nanoxml 5640 32.5 2520 0.8 0.3 0.4 96.3%
siena 13602 321.3 5773 1.9 0.3 0.4 99.3%
ant 12516 3144.7 10782 5.6 6.2 6.1 99.6%
derby 9288 15350.4 6078 12.1 53.2 43.9 99.6%

Table 5. Data transferred over the network for CBI un-
der the 1/100 sampling rate and ARBI; Reduction reports
ARBI’s reduction in the total data size (i.e., Trace + Binary).

Q5: Network Traffic and Latency Table 5 compares the
numbers of profiles (runs) needed and the total sizes of data
transferred over the network for each Java program for CBI
under the 1/100 sampling rate and ARBI. 1/100 was used
to sample predicates because much existing work [24, 35]
has reported that this rate achieves a balance between the
number of profiles needed (i.e., latency) and the user-side
overhead. Column Trace reports the numbers and total sizes
of profiles collected (i.e., “upstream” data that flows from
slaves to the master), while Column Binary reports the size
of “downstream” data flowing from the master to slaves. The
upstream and downstream data consist primarily of traces
and recompiled class files, respectively.

Compared to CBI, ARBI requires 40.3% less profiles
(runs). When taking into account the size of profiles, our sav-
ings become huge – the amount of data transferred over the
network by ARBI is on average 1.3% of that by CBI. This is
because CBI instruments all predicates while ARBI instru-
ments only predicates in one function at a time. Hence, a pro-
file collected by ARBI is orders-of-magnitude smaller than
that collected by CBI. Note that, we can configure ARBI
to produce more amount of data per profile in exchange of
fewer profiles (runs), by refining more than one function in
one run as discussed in Section 6.

We did not measure the network latency, because it would
vary a lot depending on network types and configurations.
We believe ARBI will have much smaller network latency
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than CBI in practical settings, where users and the develop-
ers are in different networks.

7.4 Threats to Validity
Threats to external validity arise when the results of the ex-
periment are unable to be generalized to other situations. In
this experiment, we evaluated the performance benefit of us-
ing our two-phase statistical debugging approach on simu-
lated environments, and thus we are unable to definitively
state that our findings will hold for programs in general. For
example, the single machine environment is not where the
technique is intended to be used. While the distributed en-
vironment is based on multiple machines, it uses a very fast
network, which a real-world deployment usually does not
have.

However, we are confident that these results are indica-
tive of the real-world impacts of our approach. First, we only
used the single machine to evaluate how many predicates get
instrumented and the user-side instrumentation overhead.
Our results should not depend on the execution environment
and thus would not change much when our approach is used
in a real setting. Second, although the distributed environ-
ment uses a fast network, we reported both the total number
and the total size of traces needed to complete the debugging
process. These numbers would not change in a real setting.
In a slower network, much more significant latency reduc-
tion should be expected as communication and data transfer
is often a bottleneck.

Another potential concern is the limited number of tests
used to simulate real user inputs. The statistical soundness
of a debugging technique relies on the assumption that there
are sufficient failure and success runs collected from users,
and they achieve sufficient code coverage. While our test
suites are reasonably large and they were generated to cover
different behaviors of the program, we cannot guarantee that
they are sufficient. Hence, the fixed points reached in our
iterative process may potentially be “local” fixed points and
thus the correlation between our function/predicate ranking
and their true suspiciousness may be spurious.

However, we are reasonably confident that our fixed
points reflect truly stable results, because our validation that
runs each debugging task for each program 100 times shows
that more than 80 times ARBI and CBI produced the exactly
same top predictors. For the remaining times, the predictors
reported were slightly different but still had large overlaps.

Threats to construct validity arise when the metrics used
for evaluation do not accurately capture the concepts that
they are meant to evaluate. Our experiments measured the
costs involved in running instrumented programs and per-
forming the debugging process in terms of computational
time and trace numbers/sizes. Although our results give an
indication of the degree of such costs, our implementation
can be greatly optimized in both regards. For example, our
tracing information is verbose and our implementation is not
optimized. However, this limitation does not affect the over-

all result, as this same implementation was used for both
treatment techniques; i.e., the direction and magnitude of
the difference between the results should not significantly
change when these factors are optimized.

8. Related Work
While there exists a large body of existing work, this section
focuses on the discussion of work that is most closely related
to our technique.

8.1 Statistical Debugging
Statistical debugging contains a family of approaches at-
tempting to locate the failure root causes by analyzing the
discriminative behavior between passing and failing exe-
cutions. The rationale is that program entities that are fre-
quently executed by failing executions and rarely executed
by passing executions are likely to be faulty. We already dis-
cussed CBI [23, 24] and its related heuristic-guided sam-
pling approaches [7, 10] intensively. Here we discuss other
statistical debugging work that has not been covered.

In addition to the three types of predicates presented in
§2, other types of program entities have also been consid-
ered in statistical debugging, such as statement coverage
[2, 3, 20, 21], and interleaving patterns [19]. In addition to
the Importance metric, other metrics have also been used to
measure suspiciousness [5, 26]. Our framework should still
work for those predicates, and can work for different sus-
piciousness metrics, as long as the metric is related to how
many passing/failure runs a predicate has appeared in.

Recently, researchers also aim to improve statistical de-
bugging by providing richer failure-predicting information,
referred to as a bug signature, than a singleton predicate
or statement. Identifying these signatures often requires a
more sophisticated statistical approach, such as sequence
mining and itemset mining [9, 17, 18, 37]. Each bug sig-
nature produced by these techniques often contains a set of
statements/predicates.

Among the bug signature research, the most related one is
[43] that uses a hierarchical instrumentation based approach
to improve the efficiency of bug signature mining for in-
house debugging. Similarly to our approach, it divides the
debugging process into two phases — one that instruments
function entries and profiles them to get function suspicious-
ness measurements and a second that uses these measure-
ments to instrument predicates.

Our approach differs significantly from their approach in
two aspects. First, their second phase is not iterative: the
predicate pruning is done only once using their function
suspiciousness; as a result, for almost every program they
studied, the percentage of predicates instrumented is very
high (60–80%). This immediately disqualifies their approach
from being used for cooperative debugging where high over-
head cannot be tolerated by users. Second, their function sus-
piciousness metric is manually derived and specific to the
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type of predicates and the ranking metric they used for bug
signature mining, whereas one core contribution of this work
is the automated derivation of metric C that is applicable to
various types of statistical models and predicates.

8.2 Other Automated Debugging Approaches
Program slicing [28, 38, 41] is a commonly-used technique
for debugging. Zeller et al. propose delta debugging to iso-
late the failure-inducing difference in source code [39], in-
puts [40], and program states [13] between one failing and
one passing run. Techniques have been proposed to improve
delta debugging by combining it with dynamic slicing [16]
and by better selecting the pair of passing run and failing
run [33, 34]. Similarly to delta debugging for program states,
Zhang et al. [42] forcibly switch the branch predicate’s out-
come in a failing run and localize the bug by examining the
predicates whose switching produces correct result.

Much of the recent debugging techniques focus on find-
ing concurrency bugs in multi-threaded programs. Aviso [27]
is a system for avoiding schedule-dependent failures in
multi-threaded programs. It uses a statistical model to de-
termine which schedule constraints most effectively avoid
failures. Falcon [30] and its follow-up work Unicorn [31] are
pattern-based dynamic analysis techniques for fault localiza-
tion in concurrent programs. They combine pattern identi-
fication with statistical suspiciousness ranking of memory
access patterns.

RaceMob [22] is a crowdsourced data race detection tool
that reduces the overhead and improves the precision by
combining real-user crowdsourcing with on-demand race
validation. Pacer [8] is a low-overhead sampling-based data
race detector that provides a statistical guarantee: it detects
races at a rate equal to the sampling rate. The resulting
system provides a “get what you pay for” approach that
can be tuned by the developer to find races in production
systems.

9. Conclusion
This paper proposes a systematic abstraction refinement
based technique to debug field failures efficiently. At the
abstract level, functions are instrumented to capture abstract
suspiciousness information, which will be then exploited
to guide the iterative refinement of predicate instrumenta-
tion. Different from the existing approaches, our technique
provides a mathematically rigorous guarantee of debugging
effectiveness without the need of any developers’ interven-
tion. The paper also presents a distributed system based im-
plementation of statistical debugging. An evaluation on a
12-node cluster demonstrates that the proposed technique
effectively eliminates user involvement, and reduces anal-
ysis costs, user-side execution overhead, as well as com-
munication overhead, thereby fully unleashing the power
of statistical debugging and making the technique ready for
industrial adoption.
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