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Abstract—Many applications suffer from run-time bloat:
excessive memory usage and work to accomplish simple tasks.
Bloat significantly affects scalability and performance, and
exposing it requires good diagnostic tools. We present a
novel analysis that profiles the run-time execution to help
programmers uncover potential performance problems. The
key idea of the proposed approach is to track object references,
starting from object creation statements, through assignment
statements, and eventually statements that perform useful
operations. This propagation is abstracted by a representation
we refer to as a reference propagation graph. This graph
provides path information specific to reference producers and
their run-time contexts. Several client analyses demonstrate
the use of reference propagation profiling to uncover run-
time inefficiencies. We also present a study of the properties
of reference propagation graphs produced by profiling 36
Java programs. Several cases studies discuss the inefficiencies
identified in some of the analyzed programs, as well as the
significant improvements obtained after code optimizations.

I. INTRODUCTION

Various factors can prevent software applications from

reaching their performance goals. While hardware advances

have been providing free performance benefits for years,

these opportunities are gradually getting smaller as soft-

ware functionality and size grow faster than the hardware

capabilities. The extensive use of layers of libraries and

frameworks often creates unexpected performance problems.

Sometimes there are run-time inefficiencies resulting from

common practices (such as creating APIs for general use,

and favoring method reuse without specialization).

Many applications suffer from chronic run-time bloat—

excessive memory usage and run-time work to accomplish

simple tasks—that significantly affects scalability and per-

formance. This is a serious problem for software systems, yet

their complexity and performance are not well understood

by application developers and software researchers. The

conclusion from detailed analysis of dozens of real-world

applications is that great amounts of work and memory

resources are often needed to accomplish very simple tasks

[20]. A few redundant objects, calls, and assignments may

seem insignificant, but the inefficiencies easily get magnified

across abstraction layers, causing significant system slow-

downs and soaking up excessive memory resources.

While a modern compiler (such as the just-in-time com-

piler in a virtual machine) offers sophisticated optimizations,

they often are of very limited help in removing bloat.

This is because dataflow analyses in a compiler often have

small scopes (i.e., they are intraprocedural), which makes

it impossible to tackle problems that can cross dozens of

calls and even multiple frameworks. In addition, compiler

analyses are generally unaware of the domain semantics of

the program, while bottlenecks often result from inappropri-

ate design/implementation choices. Finding and fixing these

performance problems requires human insight, and thus it is

highly desirable to develop diagnostic tools that can expose

performance bottlenecks to the developers.

Goals and Motivation. We present a novel tool that

profiles the execution to help programmers uncover poten-

tial performance problems. The key idea of the proposed

approach is to track object references, starting from their

producers (object creation statements), through assignment

statements that propagate the references, eventually reaching

statements that use the corresponding objects to perform

useful operations. This run-time propagation is abstracted

by a representation we refer to as a reference propagation

graph. This graph contains nodes that represent statements,

and edges that correspond to the flow of references between

them. The edges are annotated with run-time frequencies.

We have designed several client analyses that identify com-

mon patterns of bloat by analyzing various graph properties.

The motivation for the proposed reference profiling anal-

ysis is threefold. First, the creation and manipulation of

objects is at the core of modern object-oriented applica-

tions. In cases where the object behavior exhibits suspicious

symptoms (e.g., many objects are created by a statement, but

only few of them are ever used), it is natural to investigate

such symptoms. Second, the specific abstraction of run-

time behavior—the reference propagation graph—provides

enough information to relate the profiling information back

to the relevant source code entities; this makes it easier

for a tool user to understand the problematic behavior. Fur-

thermore, the representation maintains separate propagation

paths for different sources of object references, and for

different contexts of the producers of these references, which

allows precise identification of problematic paths. Finally, it

is important not only to identify potential performance is-

sues, but also to provide guidance on how to focus the efforts

to fix them. Our approach characterizes the complexity of



interprocedural propagation, as well as of interactions with

heap data structures, in order to identify the problems that

are likely to be easier to explain and eliminate.

Contributions. The contributions of this work are:

• A novel dynamic analysis, reference propagation profil-

ing, which tracks the propagation of object references,

and produces a reference propagation graph.

• Several client analyses demonstrating the use of refer-

ence propagation profiling to uncover inefficiencies.

• An analysis implementation in the Jikes RVM [16].

• A study of the properties of reference propagation

graphs produced by profiling 36 Java programs.

• Several cases studies showing inefficiencies identified

in some of the analyzed programs, as well as significant

improvements after code optimizations.

II. MOTIVATION

Performance inefficiency often comes from extraneous

work performed to accomplish a task. One symptom of

such inefficiency is the imbalance between the cost of

constructing and propagating an object, and the benefit the

object can bring to the progress of the application. For

example, an object may be propagated to many parts of the

code, but only a subset of this affected code actually benefits

from having access to the object.

To characterize such imbalance, and to use it to detect

potential performance problems, we track three types of

run-time events: object allocation, reference assignment, and

object usage. In Java, an object is always accessed through

references. Such references can be propagated through either

stack locations or heap locations. As a form of stack

propagation, references can also cross method boundaries

via parameter passing or method returns. By writing such

references to fields of other objects, they can become acces-

sible to large portions of the application’s code.

Such propagation greatly increases the difficulty of manu-

ally tracking and understanding the behavior of the object of

interest. An automatic reference propagation profiling tool

can provide significant value and insights needed for perfor-

mance tuning, especially for complex Java applications. The

rest of this section demonstrates through an example how

reference propagation profiling can be useful in uncovering

performance inefficiencies. The next section describes the

formulation and implementation of this dynamic analysis.

Motivating Example. Figure 1 shows a code example

simplified and adapted from the euler program of the

JavaGrande benchmark suite [15]. Class Vector represents

coordinates in a 2D space. Its sub method subtracts one

Vector from another, and returns the result in a newly-

created Vector (line 4). The method would be invoked

many times during a typical execution. A very large number

of objects of type Vector would be allocated, since the

loops in lines 22–38 would be executed many times. The cost

of calls to sub (lines 25 and 32) and the object allocations

inside sub (line 4) is very high. However, not all of this

work is necessary. Note that the object is created solely for

the purpose of storing the result of the subtraction. Once

the result is retrieved from the object, that object becomes

useless and would be deallocated by the garbage collector.

We can reuse a single Vector object across multiple

calls to sub. A variant of sub called sub_rev is shown at

lines 7–10. The new method has an extra parameter to store

the result of the subtraction, and the caller of this method is

responsible for allocating the object. In this way, the caller

would have the flexibility to reuse the object across multiple

invocations of sub_rev. Specifically, the object returned at

the call to sub at line 32 is immediately read (lines 36–37)

and discarded. A call to sub_rev at line 32, with reuse

of a single temporary object allocated before the i loop,

will eliminate the cost of frequent allocation and garbage

collection for these short-lived objects.

In cases when the resulting Vector is assigned to the

heap (line 30) and becomes part of a global data struc-

ture, we need to investigate how this heap data structure

(d[i][j] in this example) is being used. This is neces-

sary to determine whether it is safe to perform the code

transformation. We need to track how the object propagates

in the memory space through references. For example, the

object created at line 4 is propagated through the references

res, temp, and then d[i][j]. After the object is assigned

to d[i][j], which is a heap location, we need to know

whether it is ever read back from the heap. If it is not, we

can safely reuse the object; if it is, meaning that there exists

an assignment such as v=d[i][j], we have to continue

tracking how the local variable v is used. In this example, the

object is indeed read back from the heap (line 42). Thus, the

call at line 25 cannot be replaced with a call to sub_rev.

As described later, the reference propagation profiling can

provide insights into the behavior of the objects created

at line 4. In the actual euler benchmark, we observed

that a large number of objects created at this allocation

site are propagated through the call at line 32, but not

any further. In the analysis results, this propagation path

is clearly distinguished from the path through the call at

line 25, for which there do not exist easy performance

optimizations. With the code transformation outlined above,

we observed a reduction of 13.3% in running time and

73.3% in number of allocated objects for this benchmark.

Similarly to other dynamic analysis techniques, the con-

clusions drawn from the propagation graph depend on the

quality of the run-time information. In our experiments we

run well-defined benchmarks on representative inputs that

come with them. In practical use, such representative inputs

are necessary for this (or any other) profiling analysis.

III. REFERENCE PROPAGATION PROFILING

Reference Propagation Graph. The propagation of (ref-

erences to) an object during its lifetime is encoded as a



1 class Vector {

2 double x, y;

3 Vector sub(Vector v) {

4 Vector res = new Vector(x - v.x, y - v.y);

5 return res;

6 }

7 void sub_rev(Vector v, Vector res) {

8 res.x = this.x - v.x;

9 res.y = this.y - v.y;

10 }

11 Vector copy() {

12 return new Vector(x, y);

13 }

14 }

15 Vector[][] a = ...; // input data

16 Vector[][] d = ...; // intermediate result

17 Vector temp = new Vector();

18 // m, n are typically large numbers

19 int m = readInput();

20 int n = readInput();

21 void compute() {

22 for (i = 1; i < m; i++) {

23 for (j = 1; j < n; j++) {

24 if (cond1) {

25 temp = a[i+2][j].sub(a[i-1][j]);

26 } else {

27 temp = new Vector(...);

28 }

29 ... // read/write fields of temp

30 d[i][j] = temp;

31 if (cond2) {

32 temp = a[i+1][j].sub(a[i-2][j]);

33 } else {

34 temp = new Vector(...);

35 }

36 d[i][j].x += temp.x;

37 d[i][j].y += temp.y;

38 }}

39 }

40 static void main(String[] args) {

41 compute();

42 ... // access the fields of d[i][j]

43 }

Figure 1. Running example.

reference propagation graph. For illustration, the graph for

the example from the previous section is shown in Figure 2.

There are three types of nodes in the graph. A producer

node represents object allocations. Each producer node has

(1) an allocation site ID which encodes the static location of

the allocation expression in the source code, and (2) context

information obtained when this allocation occurs at run time.

The degree of context sensitivity can be tuned as a parameter

of the analysis. A reference assignment node represents the

assignment statements that propagate the objects through

references. We distinguish stack-only propagation (at object

allocations, between local variables, or due to parameter

passing and return values), and propagation between heap

and stack (caused by reading or writing instance fields, static

fields, or array elements). The nodes are uniquely determined

by their static location in the code, and the producer node

that reaches them—that is, a single statement in the code can

be represented by multiple graph nodes, one per producer

of object references. A single consumer node represents

the usage of objects. If a producer node reaches this node

through a certain path, some objects propagated through that

path are used. An object is used when (1) it is the receiver

of a method call, (2) a field of the object is read or written,

(3) it is used as a parameter in a call to a native method, or

(4) it is an operand of instanceof, ==, !=, or casting.

There are three types of edges in the graph. An alloc-

assign edge, between a producer node and a reference

assignment node, corresponds to object allocations ref =
new X . A def-use edge, connecting two reference assign-

ment nodes, represents the def-use relationship between two

reference assignment statements such as ref = . . . and

. . . = ref . A usage edge, from a reference assignment

node to the consumer node, indicates a def-use relationship

between an assignment ref = . . . and another statement in

which the value of ref is used (as described above).

Example. The subgraph related to the allocation at line

4 for the example in Figure 1 is shown in Figure 2. In this

example, a context-insensitive scheme is used to model run-

time objects. (Context sensitivity will be discussed later in

this section.) Thus, the objects created at line 4 are abstracted

solely with the line number, and a node Producer(4) is

added to the graph. Immediately after the allocation, the

object is assigned to local variable res, so there is a node

RefAssign(4,4) and an alloc-assign edge to it. This node

is then connected, via a def-use edge, to RefAssign(4,25),

which represents the return value of the call at line 25. Here

the first label on the node is the ID of the producer node

(4) that created the propagated object, and the second label

is the line number (25) of the actual statement that does the

propagation. Similarly, RefAssign(4,32) and an edge to it

are created due to the call at line 32.

In subsequent statements, fields of the object are accessed

(lines 29 and 36–37); thus, the two reference assignment

nodes are connected to the consumer node. The objects

that are propagated along the path through line 25 are later

assigned to the heap at line 30 and retrieved back at line 42,

so the path is extended accordingly. Such an extension is

not performed for the path via 32, since there is no further

propagation along that path. The graph is annotated with

run-time frequency information for graph edges, similar to

the frequencies observed in the actual euler benchmark.

This graph provides the foundation for reference propa-

gation profiling. Each edge in the graph is associated with a

counter. Whenever a statement is executed at run time, the

counter of the corresponding edge is incremented. Both the

structure of the graph as well as the edge weights can be

used to identify execution inefficiencies. For example, with

this graph, it becomes significantly easier to understand the

behavior of run-time objects created at line 4 of Figure 1.

First, all paths starting from the producer node contain nodes

that go to the consumer node, so it is not possible to simply

remove the allocation. In other words, we have to explicitly

create the object (or, perhaps, use some form of object

inlining [8]). Second, the path through line 32 is very short,
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Figure 2. Reference propagation graph for the running example.

does not contain writes to the heap (i.e., the object does not

become part of larger heap data structures), and represents

a significant volume of reference propagation. Thus, it

presents an interesting target for performance analysis and

optimization. Third, the path through line 25 is longer, spans

three methods, involves propagation through the heap, and

therefore is likely to be harder to understand and optimize.

Producer-Specific and Context-Specific Propagation.

Each reference assignment node is specific to a particular

producer node. For example, the statement at line 30 in the

example is represented by RefAssign(4,30), corresponding

to the flow of references produced at line 4. This same

statement can also propagate the references produced at

line 27. A separate node RefAssign(27,30) would represent

this propagation. Similarly, line 42 would correspond to two

separate nodes, one for each producer. Such per-producer

representation allows better precision when characterizing

the flow of references. For example, consider the flow from

line 30 to line 42. If this flow is not distinguished based on

the producer, a single frequency would be associated with

this pair of statements, making it impossible to attribute the

behavior to individual sources of run-time objects.

A producer node is an abstraction of a set of run-time

objects, and the choice of this abstraction is an important

parameter of the analysis. The simplest abstraction is to use

the ID of the allocation site that created the object. However,

it is well known that this abstraction can be refined by

considering the context of the allocation. There are various

definitions of context, and they can be easily incorporated

in our analysis. For the current implementation, we employ

the so called object-sensitive abstraction. In this approach,

a producer node corresponds to a pair (s1, s2) of allocation

site IDs. The first ID s1 is for the site that creates the object.

That site is in some method, and the receiver object of that

method (i.e., the object to which this refers to when s1

is executed) is the context of the allocation. Thus, s2 is

the ID of the allocation site that created this receiver. This

technique is appropriate for modeling of object-oriented data

structures [19] and is currently used in our implementation.

The generalization in which a node is a tuple (s1, . . . , sk+1)
(i.e., k-object-sensitivity [19]) can also be easily applied.

Intended Uses. The graph described above can pro-

vide useful information for efficient manual investigation

of application code. The patterns of reference propagation,

across method calls/returns and heap reads/writes, are easy

to discern from the structure of the graph. Direct connection

with relevant source code locations can be visualized inside

a code browsing tool. The frequency information provides

insights into the amount of work related to reference prop-

agation, and helps identify hotspots in this propagation.

The graph can also serve as the foundation for a number

of client analyses (Section V). The key feature of these

approaches is that they automatically identify “suspicious”

allocation sites, based on properties of the propagation

graph. Furthermore, the graph can provide a characterization

of the complexity of propagation patterns and the required

program transformations. As a result, programmers or per-

formance tuning experts can focus on parts of the code that

not only exhibit run-time inefficiencies, but are also likely

to be relatively easy to understand and transform.

Certain aspects of the proposed analysis are similar to

information flow analysis (e.g., [13], [25], [34], [26], [5], [4],

[2], [3], [23], [18], [3], [23]). However, we record and report

not only the source of the transitive run-time dependence, but

also the intermediate statements along the dependence chain,

as well as (an abstraction of) the actual reference value

being propagated. Furthermore, the execution frequencies

are collected per-producer-node, which allows unrelated

flows through the same statement to be separated.

IV. ANALYSIS IMPLEMENTATION

The analysis is implemented in the Jikes RVM (Research

Virtual Machine) version 3.1.1 [16]. The instrumentation is

implemented in the optimizing compiler in Jikes. During

execution, only this compiler is used, and every method is

compiled with it before being executed for the first time.

Shadow Locations. Each memory location containing

reference values is associated with a shadow location [24].

Local variables in the compiler IR are represented as sym-

bolic registers. To create shadows for locals, we assign an

ID to each symbolic register at “compile time” (actually,

at run time when the optimizing compiler is compiling the

method), and associate that ID with graph nodes created as

the program executes. Shadows of static fields are stored

in a global table, and indices into the table are determined

by the class loader. Shadows of instance fields are stored

in place with originally declared fields, and accessed by

offsets from the base objects. The offsets are also determined

during class loading. Array elements are shadowed similarly

to static fields, except that per-array tables are used.



In cases when an object is moved by a copying garbage

collector, its corresponding shadows should also be moved.

This can be done by modifying the garbage collector, but we

choose to use a non-moving GC for ease of implementation.

This decision does not affect the results of the analysis.

Abstractions for Run-time Entities. The reference

propagation graph construction has two components: (1)

“compile-time” instrumentation, which happens in the op-

timizing compiler at run time, and (2) run-time profil-

ing, which builds the graph as the program executes. The

instrumentation tags each object with its allocation site

information. Specifically, we write an allocation site ID

to the header of each object, and the ID can be used to

look up the source code location of the allocation site.

For a context-sensitive setting, the context information is

also recorded in the header. For example, when we use the

object-sensitivity representation, the allocation site ID of the

receiver object is written to the object header as well. To

introduce approximations and tune the overhead, we map the

allocation site IDs id of receiver objects into c equivalence

classes using a simple mapping function f(id , c) = id % c,

where c is a pre-defined value. To achieve full precision (i.e.,

no approximations), c can be set to the number of allocation

site IDs, in which case every equivalence class is a singleton.

Besides allocation site information, we also reserve one

extra word in the object header for uses specific to client

analyses. For example, such analyses can use one bit to

mark whether an interesting event occurs on the object (e.g.,

whether the object is ever assigned to the heap). Section V

discusses how this can be useful for implementing client

analyses. The source information of executed reference

assignment statements is maintained in a similar way.

Run-time Event Tracking. Each run-time object has a

producer node associated with it. To enable fast lookups,

producer nodes are stored in a table prods , and can be

accessed with an index i, a combination of the allocation site

IDs of the object, and the receiver object of the surrounding

method (a default value 0 is used for a context-insensitive

setting). Suppose the two IDs are allocId and recvId , and c

equivalence classes are used in the object-sensitivity encod-

ing. The index i is computed as i = allocId ×c+recvId%c.

Thus, each pair (allocId , recvId) is mapped to an index

ranging from 0 to the number of allocation sites multiplied

by c. When an object is created, we first look up the table

to see whether there is already a producer node at prods [i].
If there is one, we increase the frequency of the existing

node; otherwise, we create a new producer node, remember

it in prods [i], and write the IDs to the header of the newly-

created object. In addition, we create a reference assignment

node to be the shadow of the variable getting the new object,

and connect the producer node with it. If the producer node

already exists, the frequency of the edge is incremented.

For a reference assignment lhs = rhs, we (1) create

a new reference assignment node, (2) remember the node

in the shadow of lhs, and (3) connect the node stored in

the shadow of rhs to it. When the edge between the two

nodes already exists, its frequency is incremented instead.

Parameter passing and method returns are treated as special

forms of reference assignments. To pass the shadow infor-

mation into and retrieve it back from callees, we maintain

a per-thread scratch space to temporarily store shadows of

parameters and return variables.

As described in Section III, an object can be used at cer-

tain statements. For example, when a heap access v.fld = . . .

or . . . = v.fld is executed, we create a usage edge between

the node stored in the shadow of v, and the consumer node.

If such an edge already exists, its frequency is incremented.

V. CLIENT ANALYSES

This section describes several client analyses built on

top of the reference propagation profiling described earlier.

These analyses examine the reference propagation graph and

report to programmers a ranked list of suspicious producer

nodes that should be examined for performance tuning. The

criterion as to what producers are suspicious is defined by

individual client analyses. The reported producer nodes are

ranked based on the number of times they are instantiated.

In addition, for each reported node, several metrics are

computed and provided in the analysis output. The role of

these metrics is to estimate the ease with which the propaga-

tion starting from this producer can be understood and opti-

mized. Specifically, all reference assignment nodes reachable

from a reported suspicious producer node are examined. The

number of such reachable nodes that correspond to calls and

returns is an indication of how widely the references are

propagated throughout the calling structure. The higher this

number, the more complex the interprocedural propagation,

which means that code transformations are likely to be

difficult (or impossible). Another metric is the number

of reachable nodes that represent heap reads and writes.

A large number of such nodes indicates that the objects

created by the producer node interact in complex ways with

heap data structures, which makes their understanding and

transformation more challenging.

Not-Assigned-To-Heap (NATH) and Mostly-NATH

Analysis. The NATH client analysis detects allocation sites

that create many objects, but none of these objects are

stored into the heap (i.e., no instance field, static field, or

array element ever contains a reference to them). These

sites are promising for tuning because the objects created

at these sites may be roots of temporary data structures

that are expensive to construct. In addition, these objects are

typically short-lived, potentially leading to frequent garbage

collection. The escape analysis performed by a JIT compiler

usually cannot identify such redundancies, because many

such objects do escape the methods that created them. Using

the propagation graph, this analysis finds and reports all



producer nodes that never reach reference assignment nodes

corresponding to assignments from the stack to the heap.

If most of the objects created by a site are NATH, that

site is still a good candidate for tuning. We refer to such

sites as “mostly-NATH”. For example, Line 4 in Figure 1

is a mostly-NATH site, and refactoring it brings signifi-

cant performance improvements for the euler benchmark.

Implementing this analysis requires a small extension to

tag each object with an assigned-to-heap bit, and store a

counter of assigned-to-heap objects in the producer node.

The analysis reports any producer node for which the percent

of NATH objects exceeded a given threshold. When such

sites are reported, the propagation graph can be used to

determine the specific paths in the code along which these

objects are assigned to the heap (e.g., the path through line

25 in Figure 2). This information provides insights into the

run-time object propagation, and eases the task of refactoring

the NATH paths (i.e., the paths through which objects are

not assigned to the heap).

Analysis of Cost-Benefit Imbalance. In cases when run-

time cost is significantly higher than benefits, there could

be some redundancies; in terms of objects, there may be

excessive allocation or propagation. In general, it is ineffi-

cient to allocate a lot of objects but seldom use them. Also,

it is suspicious to write an object to the heap significantly

more times than it is being read back. This client analysis

is a framework to detect such imbalances between cost and

benefit, and can be instantiated with different definitions of

cost and benefit. For example, we can consider writing an

object to the heap as cost (because the object had to be

created and propagated), and reading it back as benefit (since

the object was needed by some method). If the ratio between

these two is very high (write-read-imbalance), it is possible

that we do not need that many objects, or the way the

program organizes data is problematic. To implement this

analysis, we can analyze the reference propagation graph.

For a producer node, the cost is the sum of node frequencies

for the reachable stack-to-heap reference assignment nodes,

and the benefit is defined similarly for the heap-to-stack

ones. The analysis reports all producer nodes for which this

ratio is greater than a certain threshold value.

Analysis of Never-Used and Rarely-Used Allocations.

One can identify never-used object allocations by finding

the producer nodes that cannot reach the consumer node;

the next section provides several examples of this situation.

Or, similarly to the mostly-NATH analysis, one can develop

an analysis of rarely-used allocations: allocation sites that

instantiate many objects, but only a small percentage of these

objects are used. As discussed later, our experimental results

indicate that never-used objects and never-used allocation

sites occur surprisingly often.

Other Potential Uses. There are other performance anal-

yses that can make use of reference propagation profil-

ing. For example, such profiling can be used to study

container-related inefficiencies. The write-read-imbalance

objects, those that are written to the heap significantly more

times than they are read back, are often written to a heap

location which is part of a container data structure. We can

locate low-utility containers (many elements are added but

only a few are retrieved) by tracking the heap locations to

which those imbalanced objects are written. This can be

done through inspection of the source code, aided by the

path information in the reference propagation graph.

VI. CASE STUDIES

To evaluate the effectiveness of reference propagation

profiling, we performed several case studies on Java ap-

plications from prior work [28], [32], [33], and found

several interesting examples of performance inefficiencies.

Due to space limitations, only some of the case studies are

discussed. All problems uncovered in these case studies are

completely new and have never been reported before. It took

us about two days to locate and fix these problems. All

programs were new to us. Most of the time was spent on

producing a correct fix rather than locating problematic data

structures. Such manual tuning is commonly used in practice

[20], and without tool support it can be very labor-intensive.

mst This program, from a Java version [17] of the Olden

benchmarks, solves the minimum spanning tree (MST)

problem [6]. The tool report shows that for an input graph

with 1024 nodes, 1047552 objects of type Integer are

created; the same number of instances is also reported

for type HashEntry. All of these objects are assigned

to the heap, but only half of the Integer objects are

read back. The large volume of object allocation and the

significant cost-benefit imbalance (recall Section V) are

highly suspicious. We inspected the code and found that

the program uses an adjacency list representation. For each

node in the graph, it uses a hash table to store the distances

to its adjacent nodes. The distance is represented by an

Integer object. Thus, for each distance value, it has to

create a new Integer object. For a graph with 1024 nodes,

it creates 1024 hash tables (the tool shows that 1024 arrays

of HashEntry are created, which corresponds to the 1024

hash tables), and each table has 1023 entries, storing the

distances to the other 1023 nodes. So, the program needs

1047552 = 1024 × 1023 objects of type Integer, and

similarly for type HashEntry. In addition, the input graphs

used by the benchmark are all complete graphs (i.e., each

node is connected to each other node).

In general, an adjacency matrix is the preferred repre-

sentation for dense graphs. Also, for undirected graphs, the

distance from node n1 to n2 is the same as that from n2 to

n1, so the way this program stores distances has unnecessary

space overheads, which is exactly why only half of the

Integer objects are read back from the heap, rendering

the other half redundant. To confirm our understating on

the tool report without too much refactoring effort, we kept



the adjacency list representation, and only slightly changed

the code to store and look up distances in an undirected

manner. Specifically, for nodes n1 and n2, we do not add

n1 to the adjacent list of n2 anymore, and when we need

the distance between them, we look up the adjacency list

of n1, the one with a smaller node ID. This simple change

alone reduced running time by 62.5%, and object creation

by 39.6% (measured with input graphs of 1024 nodes, and

large enough heap sizes). For a fixed heap size of 128MB,

the original version can only finish its execution with graphs

of at most 1731 nodes, while the modified version can

handle 2418 nodes, an input size 39.7% larger. If we refactor

the code more aggressively and use an adjacency matrix

representation instead, the performance improvement could

potentially be even higher.

euler This program is from the Java Grande bench-

mark suite [15]. The tool shows that the svect method

of the Statevector class creates a large number of

Statevector objects, while only a small percentage of

them are assigned to the heap. After inspecting the code,

we found that the program creates temporary objects to

serve as the return value of the svect method. Once the

method finishes its execution, the caller would retrieve the

computation result. Afterward, some of the returned objects

are stored in an array to be used later, but most of them

are not (recall the running example from Figure 1). Method

svect is invoked inside nested loops that iterate many

times, so it is very likely that it will degrade the performance

significantly. To solve this problem, we modify the code to

make svect share one common Statevector object to

store the result, and make a copy of the objects only when

they are to be assigned to the heap. By changing this site

alone, we achieved performance improvement of 13.3% in

running time and 73.3% in the number of allocated objects.

jflex In the report generated from running JFlex, we found

that a large number of String and StringBuffer

objects are created in the toString method of a variety of

classes. Most of the String objects created at these sites

are ultimately used to construct the parameter of the static

method Out.debug which prints out debugging messages

when certain debugging flag is turned on. The debugging

message is constructed even when the debugging flag is

turned off, making the String objects redundant. This is

confirmed by our report that the String objects created

at call sites of the Out.debug method are never used. To

eliminate such redundancies, we change the code to manu-

ally inline the calls to Out.debug so that no debugging

messages would be constructed when the debugging flag is

turned off. This modification reduced the running time by

2.9% and the number of created objects by 26.9%.

bloat The analysis of this DaCapo benchmark [7] shows that

there is excessive object allocation in method entrySet

of class NodeMap. The program uses NodeMap, an inner

class of Graph, to ensure there are no duplicate nodes in

the graph, and the NodeMap uses a HashMap for the un-

derlying storage. To implement entrySet, one can simply

return the entry set of the underlying HashMap. However,

the program instead returns a newly-created instance of a

specialized AbstractSet implementation which incor-

porates sanity checks whenever element removal is to be

performed. Specifically, it adds sanity checks to the remove

and removeAll methods of the set object. In addition,

in the set implementation, it has a specialized Iterator

implementation which has similar checks in its remove

method. These objects are not assigned to the heap, and

present an opportunity for optimizations.

The specializations introduced by these objects are useful

for debugging purposes. They are needed during the devel-

opment phase, but redundant after the correctness of the

program has been established. To eliminate the redundancy,

we removed the checks and used the entry set of the

underlying HashMap as the return value instead. After the

refactoring, we achieved reduction of 10.4% in running time

and 11.3% in the number of allocated objects.

chart As shown in the next section, 67.2% of the allocation

sites in the chart DaCapo benchmark are never-used,

meaning that all objects created at such sites are never

used. When we examined these sites, we found that the

most significant source of never-used objects was a site that

creates a large number of SeriesChangeEvent objects,

but none of them are used. The program creates these objects

to notify the listeners that the data series has been changed,

and they only contain one single field to represent the

source of the event. Since there is no concurrent access to

the listener-notification method, we can share one common

SeriesChangeEvent and update its event source field

whenever it is about to be passed to listeners. After this

code transformation, we achieved a reduction of 7.7% in

running time and 7.8% in the number of allocated objects.

VII. PROPERTIES OF PROPAGATION GRAPHS

This section presents measurements that provide insights

into the properties of reference propagation graphs. The

measurements are based on a set of 36 programs used

in prior work [28], [32], [33], including benchmarks from

SPEC JVM98 [30], Java Grande v2.0 (Section 3) [15], a

Java version [17] of the Olden benchmarks, and DaCapo

2006-MR2 [7]. The experimental results were obtained on a

machine with a 3.4GHz Quad Core Intel i7-2600 processor.

As with similar work on dynamic analysis, a threat to

external validity comes from the choice of analyzed pro-

grams and their test inputs. We have tried to ameliorate this

problem by using a large number of programs from diverse

sources, and the representative inputs included with them.

The running time overhead of the analysis is typically

around 30–50×. Such overheads are common for similar

performance analyses from existing work, and are also ac-

ceptable for performance tuning and debugging tasks (rather



Program Classes Methods
Alloc NATH Never-Used WRI Sites

Call/Ret Write/Read
Sites Sites Objs Sites Objs t = 2 t = ∞

compress 18 67 22 9 109 0 0 1 1 5.14 3.41

db 9 52 31 16 122 1 30236 1 1 6.87 4.48

jack 53 294 264 107 457449 12 34104 6 5 8.16 7.09

javac 146 779 409 88 1141931 24 254718 41 18 26.69 29.98

jess 140 445 206 36 3359830 6 2087 53 53 8.79 5.93

mpegaudio 49 225 104 7 7 5 212 16 16 5.54 5.13

mtrt 34 196 137 52 4577717 23 465747 4 1 17.6 6.26

search 6 25 3 3 3 0 0 0 0 9.67 0

euler 5 25 19 11 4789005 2 19630 1 1 3.53 18.89

moldyn 5 22 6 2 2 0 0 0 0 5.33 17

montecarlo 14 96 23 15 365202 0 0 0 0 9.48 2.04

JGraytracer 13 55 44 18 51238212 11 4753813 5 5 4.23 3.73

bh 7 49 12 5 126422990 0 0 0 0 15.17 11.33

bisort 3 14 2 1 2 0 0 0 0 14 8.5

em3d 6 16 8 2 2 0 0 0 0 5.88 4.38

health 6 18 17 8 2571333 1 21895 1 1 4.41 2.35

mst 7 31 10 4 1026 0 675444 1 0 6.8 4.8

perimeter 11 42 10 3 3 0 0 0 0 13.8 5.5

power 7 31 16 4 21 0 0 0 0 5.31 3.75

treeadd 3 5 5 3 3 0 0 0 0 4.4 1.2

tsp 3 14 3 1 1 0 4 0 0 9 34.33

voronoi 7 43 12 6 196609 0 0 0 0 19.75 5.75

antlr 109 1256 1151 796 482074 115 152949 89 66 9.05 5.03

bloat 230 1639 969 508 9439879 46 113786 40 25 28.84 10.63

chart 285 1418 1926 732 1174156 1295 578854 243 237 2.96 2.1

eclipse 1210 9558 3694 1485 1802921 688 1678586 363 285 13.08 10.04

fop 663 2661 1246 484 243275 535 42110 109 95 6.34 3.32

hsqldb 112 1012 461 243 67745 60 29735 26 20 7.02 3.66

jython 622 2775 3328 457 5579384 269 807139 1725 1368 11.36 4.82

luindex 96 529 258 141 2167954 46 17888 8 5 6.78 4

lusearch 100 508 228 89 2280855 43 2119431 16 12 7.93 4.09

pmd 377 2175 669 232 11382153 150 2187057 87 65 17.24 7.25

xalan 343 2133 778 149 367534 141 233745 151 134 14.29 7.49

JFlex 35 264 286 74 990370 70 20325 65 65 7.06 4.56

jbb2000 56 476 512 385 7693562 70 10070051 16 12 7.21 3.47

jbb2005 73 601 566 378 916103 69 1642515 22 17 6.95 2.31

Table I
PROPERTIES OF THE CONTEXT-INSENSITIVE REFERENCE PROPAGATION GRAPHS.

than for production runs). In our case, the overhead is high

because we have to track all instructions involving reference

values. The typical memory usage overhead is around 2–3×.

Still, we were able to use the tool to study real-world

programs, including large applications such as eclipse,

and to uncover interesting performance inefficiencies in

them. An intriguing possibility for future work is to consider

how to reduce the overhead. For example, static analysis can

rule out certain uninteresting sites. It may also be possible

to apply sampling to track the propagation for only some of

the objects created at an allocation site.

Table I shows measurements of the reference propagation

graphs obtained in a context-insensitive setting. The first two

columns contain the number of loaded non-library classes

and the number of executed methods in those classes. The

third column shows the number of allocation sites (in these

methods) that were executed at least once. These measure-

ments characterize the sizes of the analyzed programs.

The NATH columns show the number of NATH allocation

sites and NATH run-time objects. NATH objects are those

that are never assigned to the heap. A NATH allocation

site creates only NATH objects, but some NATH objects

may be created by non-NATH sites. These measurements

indicate the existence of objects that do not interact with

the rest of the heap. An interesting observations is that the

percentages of NATH allocation sites (the ratios between

columns 4 and 3) are typically large for almost all of the

programs. This result indicates that Java programs often

employ relatively temporary and localized data structures,

which presents opportunities for optimizations.

The next two columns report the number of never-used

allocation sites and never-used run-time objects. An alloca-

tion site is said to be never-used when all of the objects it

allocates are never used. These measurements characterize

how efficiently the allocated objects are used. If a program

creates a large number of objects, but never or seldom

uses them, it is certainly inefficient, and improvements may

be achievable after code transformations. High percentages

of never-used sites (i.e., ratios between columns 6 and 3)

provide a symptom of potential bloat, and could lead a

programmer or a performance tuning expert to uncover

performance problems.

Columns “WRI Sites” show the number of write-read-

imbalance sites under two different threshold values t. Recall

from Section V that for a producer node, a cost-benefit

ratio is taken between the sum of node frequencies for the

reachable stack-to-heap reference assignment nodes (heap

writes), and that of heap-to-stack ones (heap reads). An



Program
ctx-insen c=4 c=8 c=16 c=#AllocSites

#Nodes #Edges #Nodes #Edges #Nodes #Edges #Nodes #Edges #Nodes #Edges

compress 227 375 227 375 227 375 227 375 227 375

db 405 692 457 768 489 808 511 835 511 835

jack 4383 7793 4699 8241 4874 8468 5117 8775 6459 10332

javac 23307 26126 25632 50256 26366 51575 26706 52097 27407 53205

jess 3340 5507 3602 5933 3611 5947 3735 6148 3840 6289

mpegaudio 1232 2063 1740 2903 1813 2982 1813 2982 1813 2982

mtrt 3727 7913 8872 19447 13079 27990 13508 28654 14347 30484

search 37 73 37 73 37 73 37 73 37 73

euler 451 950 451 950 451 950 451 950 451 950

moldyn 156 277 156 277 156 277 156 277 156 277

montecarlo 312 536 312 536 330 570 333 570 333 570

JGraytracer 425 575 456 610 462 616 462 616 462 616

bh 331 654 343 671 343 671 343 671 343 671

bisort 55 137 55 137 55 137 55 137 55 137

em3d 92 151 92 151 92 151 92 151 92 151

health 146 216 146 216 146 216 146 216 146 216

mst 131 232 131 232 131 232 131 232 131 232

perimeter 214 415 214 415 214 415 214 415 214 415

power 195 287 269 387 269 387 269 387 269 387

treeadd 39 56 51 72 57 76 57 76 57 76

tsp 121 419 121 419 121 419 121 419 121 419

voronoi 327 758 327 758 327 758 327 758 327 758

antlr 18199 36137 18815 37249 19175 37696 19385 38245 19561 38409

bloat 39505 85509 47569 102695 51734 111081 53674 114273 61618 126784

chart 12646 16876 14346 19486 15314 20853 16950 23431 17664 23955

eclipse 92206 179670 106219 201934 107015 206926 109244 209218 110346 212998

fop 14305 22741 15153 23811 15787 24708 16043 24973 16528 25524

hsqldb 5873 10601 6649 11656 7104 12464 7280 12686 7973 13819

jython 58835 96797 60495 99011 61774 100825 63221 103286 67127 107407

luindex 3226 5727 3441 6024 3480 6084 3511 6096 3558 6158

lusearch 3102 5158 3469 5660 3601 5888 3607 5956 3730 6103

pmd 17469 32074 18046 32984 18126 32996 18409 33431 19288 34749

xalan 18056 32584 19645 35293 20458 36887 20437 36805 21486 38397

JFlex 3860 5887 4204 6510 4304 6668 4313 6676 4421 6861

jbb2000 6451 11596 7457 13480 7957 14491 8707 16042 8729 16287

jbb2005 6198 10577 6870 11627 7037 11830 7245 12082 7559 12526

Table II
COMPARISON OF GRAPH SIZES FOR CONTEXT-INSENSITIVE AND FOUR OBJECT-SENSITIVE SETTINGS.

allocation site is counted when the cost-benefit ratio of

its corresponding producer node is greater than the thresh-

old. The sites without any heap writes (i.e., NATH sites)

are already identified by the NATH analysis, and are not

considered for the WRI analysis. Threshold t = 2 selects

sites whose allocated objects are written to the heap at

least twice as many times as they are read back from the

heap. The special threshold value t = ∞ covers the cases

when the objects are only written to the heap but never

read back. Larger numbers of WRI sites indicate higher

degrees of wasted heap propagation, which could potentially

be eliminated by code transformations.

The last two columns show the average numbers of

(1) method invocation nodes (calls and returns), and (2)

heap propagation nodes (heap writes and reads) reachable

from a producer node. They characterize the complexity

of the reference propagation, from the perspective of inter-

procedural control-flow and heap data structure interactions.

If the number of method invocation nodes is high, objects are

propagated through large portions of the call structure, and

the propagation is likely to be more difficult to understand

and refactor. The same is true for the average number of heap

propagation nodes, which indicate points of interaction with

other heap objects. By presenting to the programmer these

two metrics for a suspicious allocation site, our analysis

can help to distinguish objects that are relatively easy

to understand from objects whose behavior may be too

complex to be worth further investigation.

Table II shows the size of the reference propagation graph

(number of nodes and number of edges) under different

context-sensitivity abstractions. The first two columns show

the measurements for the context-insensitive setting, fol-

lowed by object-sensitive settings with different numbers c

of equivalence classes in the context encoding (c = 4, 8, 16).

The last column shows the measurements under a full object-

sensitivity setting, where each receiver object ID belongs to

a separate equivalence class (Section IV).

As the degree of context-sensitivity increases, graph size

typically remains about the same or grows slightly. With

more precise context information, we can better distinguish

the run-time allocations, and more producer nodes can

be created. Such a graph presents a more precise and

detailed picture: instead of describing the “per producer”

propagation, it provides insights into the “per producer, per

context” behavior of objects. Although in principle the cost

of collecting this more precise information can be high

(in terms of running time and memory consumption), in

reality this does not appear to be the case: context-sensitive



information can be collected with little additional overhead.

For the programs we studied, the average running time

overhead when using the fully context-sensitive encoding

is 1.4% (compared to using the context-insensitive one).

For the memory usage overhead, the increase is 3.5%. This

observation indicates that future work could investigate even

more precise context-sensitivity abstractions.

VIII. RELATED WORK

Detection of Run-time Bloat. A number of tools have

been proposed to quantify various symptoms of bloat (e.g.,

[9], [14], [27], [12]), without providing insights into the

reasons why this bloat occurs. Mitchell et al. [22] consider

the transformations of logical data in order to explain

run-time behavior and to assist a programmer in deciding

whether execution inefficiencies exist. The approach in this

work is not automated. Their follow-up work [21] focuses

on deciding whether data structures have unnecessarily high

memory consumption. Work by Dufour et al. analyzes the

use and shape of temporary data structures [10], [11]. Their

approach is based on a blended analysis, where a run-time

call graph is collected and a static analysis is applied based

on this graph. JOLT [29] is a VM-based tool that uses a

new metric to quantify object churn and identify regions

that make heavy use of temporary objects, in order to guide

method inlining inside a just-in-time compiler.

In general, existing bloat detection work can be classified

into two major categories: manual tuning methods (i.e.,

mostly based on measurements of bloat) [22], [21], [10],

[11], and fully automated optimization techniques such as

the entire field of JIT technology [1] and the research

from [29]. We provide analyses to support manual tuning,

guiding programmers to code where bloat is likely to exist,

and then allowing human experts to perform the code

modification. By doing so, we hope to help the programmers

quickly get through the hardest part of the tuning process—

finding the likely bloated regions—and yet use their (human)

insights to perform application-specific optimizations.

Our previous work on dynamic analysis for bloat detection

includes techniques that focus on different bloat patterns

(such as excessive copy activities [32] and inefficient use of

data structures [31]) to help programmers identify perfor-

mance bottlenecks. The previous work closest to the tech-

nique proposed in this paper is the profiling of copy activities

from [32]. While both techniques track the flow of data,

the proposed reference propagation analysis is more general

and powerful in several aspects. First, the analysis records

much more detailed information on how objects propagate,

including information that connects the propagation with the

corresponding source code statements. This level of detail

makes it easier to explain and fix a performance problem.

Second, the abstractions used to represent the propagation

are more powerful, since they are specific to a producer

of references, while the profiling in [32] merges the flow

from multiple producers. Third, our work reports potential

problems together with indicators of the likely difficulty of

explaining and eliminating them. This approach is based on

properties of the propagation that capture the complexity of

interprocedural control-flow and of interactions with heap

data structures.

Information Flow Analysis. Dynamic taint analysis [13],

[25], [34], [26], [5] is a popular technique for tracking inputs

from untrusted sources to detect potential security attacks.

Debugging, testing, and program understanding tools track

dynamic data flow for a number of purposes (e.g., for detect-

ing illegal memory accesses [4] and for tracking the origins

of undefined values [2]). Research from [18] proposes to

measure the strength of information flows and conducts an

empirical study to better understand dynamic information

flow analysis. Work from [3], [23] describes approaches to

enforcing information flow analysis in Java virtual machines.

Our analyses combine information flow tracking and profil-

ing to efficiently form producer-specific and context-specific

execution representations that are necessary for the client

analyses to identify inefficiencies.

IX. CONCLUSIONS

This paper presents a novel reference propagation pro-

filing tool used to uncover performance problems in Java

applications. It tracks the propagation of object references

and encodes the results in a reference propagation graph.

The information stored in the graph is specific to producers

of object references (and the run-time contexts of these

producers). Several client analyses are developed to analyze

these graphs, and to report to developers a ranked list of

suspicious allocation sites, annotated with information about

the likely ease of performing transformations for them.

Interesting performance inefficiency patterns are discovered

by these clients. The properties of the reference propagation

graphs are studied on 36 Java programs. The experimental

results show that the degree of context-sensitive precision

can be increased without significant additional costs. The

running time reduction achieved by optimizing suspicious

allocation sites can be significant, as demonstrated in several

case studies. These findings suggest that our approach is a

good foundation for implementing various client analyses to

uncover reference-propagation performance problems, and

to explain these problems to the developers.
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