
Resurrector: A Tunable Object Lifetime Profiling

Technique for Optimizing Real-World Programs

Guoqing Xu

University of California, Irvine

guoqingx@ics.uci.edu

Abstract

Modern object-oriented applications commonly suffer from

severe performance problems that need to be optimized

away for increased efficiency and user satisfaction. Many

existing optimization techniques (such as object pooling

and pretenuring) require precise identification of object life-

times. However, it is particularly challenging to obtain ob-

ject lifetimes both precisely and efficiently: precise profiling

techniques such as Merlin introduce several hundred times

slowdown even for small programs while efficient approxi-

mation techniques often sacrifice precision and produce less

useful lifetime information. This paper presents a tunable

profiling technique, called Resurrector, that explores the

middle ground between high precision and high efficiency to

find the precision-efficiency sweetspot for various liveness-

based optimization techniques. Our evaluation shows that

Resurrector is both more precise and more efficient than

the GC-based approximation, and it is orders-of-magnitude

faster than Merlin. To demonstrate Resurrector’s usefulness,

we have developed client analyses to find allocation sites

that create large data structures with disjoint lifetimes. By

inspecting program source code and reusing data structures

created from these allocation sites, we have achieved signif-

icant performance gains. We have also improved the preci-

sion of an existing optimization technique using the lifetime

information collected by Resurrector.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—Memory management, optimiza-

tion, run-time environments; F.3.2 [Logics and Meaning

of Programs]: Semantics of Programming Languages—

Program analysis
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1. Introduction

Large-scale object-oriented programs commonly suffer from

systemic performance problems that have significant impact

on their scalability and real-world usefulness. Evidence sug-

gests that these problems stem from a combination of the

performance-oblivious design/implementation principles as

well as large amounts of input data that need to be quickly

processed [37, 55]. Runtime bloat exists throughout the ex-

ecution, making it difficult for the compiler to find and re-

move its performance penalty. To attack the problem, vari-

ous techniques [7, 7, 13, 15, 16, 21, 23, 25, 32, 35, 36, 43,

44, 48, 50, 58] have been developed to help programmers

detect and fix performance problems.

Motivation One major category of these techniques

(e.g., [7, 13, 16, 21, 25, 32, 48, 50, 58]) concerns the reduc-

tion of objects and data structures. Because object-oriented

applications typically create and destroy large numbers of

objects, creating, initializing, and destroying them consumes

much execution time and memory space. For example, in the

white paper “WebSphere Application Server Development

Best Practices for Performance and Scalability” [1], four of

the eighteen best practices are instructions to avoid repeated

creation of identical objects. One important observation that

motivates these techniques is that in large-scale applications,

objects created for different tasks (e.g., iterations of an event

loop, database transactions, etc.) often have disjoint lifetimes

and can never be used simultaneously. Reusing existing ob-

jects and data structures in the heap can often lead to sub-

stantial reductions of time and memory footprint.

Key to any technique that attempts to reduce numbers

of objects and their related computation is the precise un-

derstanding of object lifetimes. For example, object equality

profiling (OEP) [32] needs object lifetimes to find merge-

able objects and our recent work from [50] can reuse data

structures only if their lifetimes do not overlap. Of particular

interest is to know precisely the lifetimes of objects created

by the same allocation site, because optimizations are of-



ten performed at the allocation site level. For example, if the

lifetimes of the objects created by an allocation site are com-

pletely disjoint, one single object will be sufficient through-

out the execution; if the allocation site is in a loop, it may

be hoistable [58], or at least a singleton pattern can be ap-

plied to improve performance [7, 50]. In addition, existing

pretenuring techniques [10, 12, 14, 33] often rely on precise

allocation-site-based lifetime profiles to allocate likely long-

lived objects into an infrequently or never collected region.

Recent work on Headroom-based pretenuring [42] has found

that pretenuring can benefit more from finer-grained lifetime

information than from the simple estimation of “long-lived”

objects.

Problems While such precise information about object

lifetimes is highly desirable, there does not exist any algo-

rithm that can compute it efficiently. A number of static

analyses (such as [13, 16, 21, 22, 25, 48, 58]) have been

developed to approximate object lifetimes. However, static

analysis usually does not perform well in the presence of

large numbers of heap accesses that commonly exist in large-

scale programs. In addition, it often falls short in answering

queries that require dynamic information, such as how many

run-time objects can be simultaneously live for an allocation

site, which is important for many optimization techniques.

Merlin [26] is by far the most precise dynamic object

lifetime profiling (OLP) technique. It generates an object

event trace and uses a backward pass to transitively re-

cover object death points. While Merlin can precisely com-

pute object lifetime information, it suffers from tremendous

run-time overhead that significantly reduces its real-world

practicality. For example, our experiments show that Ele-

phant Tracks—a recent implementation of the Merlin algo-

rithm [41]—incurs an average 752.4× slowdown during the

execution of the DaCapo benchmarks [9] under small work-

loads. To improve scalability, approximations have been em-

ployed to estimate object lifetimes. A common approxima-

tion is to use the GC point at which an object is collected as

its death point. However, GC may occur far behind the ac-

tual point at which the object becomes unreachable. Hence,

significant imprecision may result, leading to reduced use-

fulness of the client analysis. Other work such as [50] devel-

ops metrics to approximate lifetime information, which can

also cause rather imprecise handling. For example, all false

positives reported by the reusable object analysis in [50] are

due to the imprecise approximation of object lifetimes.

Our Proposal In this paper, we present a novel dy-

namic technique, called Resurrector, that explores the mid-

dle ground between high precision and high efficiency to

find the precision-scalability sweetspot for various optimiza-

tion techniques. Resurrector’s design is motivated by an im-

portant observation that the scalability bottleneck of a tra-

ditional OLP algorithm (such as Merlin) lies in the need to

compute transitive closures on the dead objects (e.g., Mer-

lin’s backward pass). Resurrector improves efficiency by

completely eliminating this need. Similarly to Merlin, Res-

urrector first identifies the root dead objects whose refer-

ence counts are zero. Instead of computing transitive clo-

sures from them, Resurrector exploits object caching and

reusing to find dead objects (transitively reachable from the

roots) that have non-zero reference counts.

Resurrector caches and reuses objects based on their al-

location sites. Upon the execution of an allocation site, the

Resurrector allocator first attempts to find an object that was

previously created from the allocation site and that is cur-

rently unreachable. If the attempt fails, the regular object

allocator is invoked to create a new object and Resurrector

caches it into a list for this allocation site. If such a dead ob-

ject o is found, Resurrector records its death and returns it to

the application. Resurrecting o will cause it to be reinitial-

ized (by the object initializer), which automatically forces

the dead objects pointed to by o to lose references and be-

come unreachable. Hence, their death points can be detected

by Resurrector as if they were root dead objects. These ob-

jects will be subsequently resurrected when their allocation

sites are executed. The resurrection process is repeated un-

til all transitively dead objects under o in the object graph

have zero references. In other words, Resurrector resurrects

dead objects and leverages the mutator execution to compute

transitive closures, leading to elimination of an additional

reachability analysis to identify dead objects. Information

regarding the maximal number of objects whose lifetimes

can overlap for an allocation site, as required by many of the

aforementioned techniques, can be closely approximated by

identifying the maximal length of the cache list for the allo-

cation site during execution.

The Resurrector algorithm requires precise identification

of the point at which an object becomes unreachable in or-

der to determine whether this object is resurrectable. Count-

ing only heap references does not suffice, because the object

may still be referenced by stack variables even if the number

of its heap references is zero. Tracking every stack and reg-

ister update can be very expensive. To solve the problem, we

develop an efficient timestamp-based algorithm that enables

Resurrector to identify a dead object soon after it becomes

unreachable without relying on GC.

Precision and Scalability Comparison A graphical

comparison among the precision and efficiency of Merlin,

Resurrector, and the GC-based approximation is shown in

Figure 1. In general, Resurrector is much more precise than

the GC-based approximation. For both Resurrector and the

GC-based approximation, there is a delay between the death

point of an object and the point at which its death is de-

tected. The delay incurred by Resurrector is often much

shorter—the death of the object is detected within a very

small number of executions of its allocation site, while, us-

ing the GC-based approximation, the object’s death cannot

be detected until the next GC. In a large-scale application,

the execution frequency of an allocation site can be orders
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Figure 1. A precision-efficiency comparison among Merlin,

Resurrector, and the GC-based approximation.

of magnitude higher than that of GC. Figure 2 uses a simple

example to compare the object lifetimes collected by Resur-

rector and by the GC-based approach. We use Oi to denote

the i-th object created by the allocation site, and A : Oi and

D : Oi to denote the creation and death events of the object.

For Resurrector, the death of object Oi (created in the i-th
iteration of the loop) is detected upon the next execution of

the allocation site (i.e., in the (i + 1)-th iteration), while the

GC-based approach has to wait until the next GC occurs.

During our experiments, we found that Resurrector is

much more efficient than Merlin and, in most cases, even

more efficient than the GC-based approach. Resurrector

does not need the heap reachability analysis used by Mer-

lin to identify dead objects; this task is being performed

along with the mutator execution. It is less obvious to

see why Resurrector has better performance than the GC-

based approach—the primary reason is that the GC-based

approach needs to find all unreachable objects from the

heap and record their death during each GC, which incurs

a heavy running time overhead; Resurrector, however, iden-

tifies death points for most objects during the Mutator exe-

cution, and does not rely on GC to find unreachable objects

and report death events.

To further improve Resurrector’s practicality, we use the

number of objects cached for each allocation site as a tun-

ing parameter to adjust Resurrector’s precision and scala-

bility. The more objects an allocation site caches, the more

precise lifetime information Resurrector may produce and

the higher overhead Resurrector may incur. We demonstrate,

using experiments on real-world applications, that Resur-

rector is precise in finding optimization opportunities even

when the threshold parameter is small, and yet it is efficient

enough to be able to scale to large applications.

Resurrector has immediate benefit for all the existing op-

timization techniques that require precise understandings of

object lifetimes. To demonstrate this benefit, we have imple-

mented a client analysis that uses the Resurrector-collected

lifetime information to find large data structures that have

disjoint lifetimes. By inspecting and reusing the reported

for (int i = 0; i < N; i++) {O o = new O(); …}

A:O0 A:O1
D:O0

A:O2
D:O1

A:O3
D:O2

A:O4
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D:O4

…

Iter#0 Iter#1 Iter#5Iter#2 Iter#3 Iter#4 Iter # …

Resurrector
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… A:Oi

Iter#0 Iter#1 Iter#iIter#2 Iter#3 GC

GC based

Approximation

D:O0
D:O1

D:Oi

…

Figure 2. A graphical comparison between the lifetime in-

formation collected by Resurrector and by the GC-based ap-

proach.

data structures, we have achieved significant performance

gains (e.g., speed up a large program by 5×). This experi-

ence is described in the 4 case studies in Section 5. Resurrec-

tor has also been used to improve the optimization technique

in our previous work [50]. The results show that the Resur-

rector profiles can significantly reduce numbers of false pos-

itives.

We have implemented Resurrector in Jikes RVM 3.1.3, a

high performance research virtual machine written in Java,

and successfully applied it to real-world applications. An

evaluation of Resurrector on a set of 10 DaCapo programs

(i.e., in its 2006 release) is described in Section 5. Vary-

ing the tuning parameter in the range [1, 500] results in

an overall 1.3×–6.0× space overhead and 2.3×–13× time

overhead (under the DaCapo large workloads). Resurrec-

tor is publicly available at the Jikes RVM Research Archive

(http://jikesrvm.org/Research+Archive).

The contributions of this paper are:

• A novel lifetime profiling algorithm that supports user-

tunable precision and scalability;

• an implementation of this algorithm in the Jikes RVM

that provides compiler and runtime system support to

reuse objects and collect their lifetimes;

• two client analyses that use this technique to identify

lifetime-disjoint data structures;

• an evaluation on a set of large-scale, real-world applica-

tions showing that the precision of Resurrector is close

to that of Merlin while it is orders of magnitude more

efficient than Merlin;

• four case studies demonstrating that the Resurrector life-

time information can help programmers quickly identify

reuse opportunities and fix problems for large perfor-

mance gains.

2. Overview

This section presents an overview of the Resurrector OLP

technique. Figure 3 (a) shows a simple program that keeps

http://jikesrvm.org/Research+Archive
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set:40
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IC List:

foo: 1

bar: 4

set:80
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… …

rc:1

ts:1

m:bar

…

O22
1

…

1 class A{

2 Object data;

3 A() { data = null; }

4 Object get()

5 { Object r = this.data;

6 return r; }

7 void set(Object o)

8 { this.data = o; }

9 }

10 void foo() {

11 for(int j = 0; j < 5; j++) {

12 A a = bar(0);

13 String s = a.get();

14 print(s);

15 }

16 }

17 A bar(int index){

18 A[] arr = new A[20];

19 for(int i = 0; i < 20; i++){

20 arr[i] = new A();

21 arr[i].set

22 (new String(“RES”));

23 }

24 return arr[index];

25 }

(a) A simple program that uses data structures

Figure 3. A simple program and graphical illustrations of its run-time heap.

creating and using data structures. Despite the simplicity of

the program, these data structures have multiple layers of

objects; profiling their lifetimes using a traditional approach

(such as Merlin) would require a reachability analysis that

transitively identifies the death point for each object from

the root (e.g., the array of type A created at line 18). In

this section, we show how Resurrector eliminates the need

to perform such a reachability analysis. As our focus is on

the illustration of the basic idea, we assume the number of

objects an allocation site can cache is unbounded.

Figure 3 (b) and (c) illustrate the two heap snapshots right

before the first and the second invocation of method bar

finishes, respectively. Each run-time object is represented by

O
j
i , where i is the ID of its allocation site and j indicates

that the object is the j-th object created by allocation site

i. In this example, the line number of an allocation site is

used as its ID. Each solid arrow represents a reference edge

and each dashed line represents an object cache list for an

allocation site. For simplicity, we assume this example has

only one thread running, and thus, there is one cache list per

allocation site.

Tracking Information As discussed in Section 1, when

an allocation site is executed, Resurrector needs to know

whether there exists a cached object that is dead and resur-

rectable. To precisely track the death point for each object,

we associate with the object four pieces of tracking informa-

tion: its allocation site ID (alloc), its reference count (rc),

the ID of the method where the object may be captured (m),

and a timestamp that records the invocation count (which

will be discussed shortly) of m at the moment the object

flows into m (ts). Following the escape analysis terminol-

ogy [13, 16, 21, 48], an object is captured in a method if it

does not escape the method boundary. Reference count rc is

used to identify when the object becomes unreachable in the

heap, while the method-related information (i.e., m and ts)

is used to find when the object loses all its stack references.

Because tracking the updates of stack variables can be very

expensive, we take an efficient approach—Resurrector con-

siders the return point of the object’s capturing method as

the point at which the object loses all its stack references.

While the object may actually become unreachable from the

stack earlier (e.g., when the execution leaves the control flow

region in which its pointer variable is declared), this return

point is often not far away and yet is easy to detect. Future

work may consider to perform a precise static liveness anal-

ysis to identify the liveness scope for each object, which can

then be fed to the runtime system for improved lifetime pre-

cision.

Determining Object Lifetimes rc is incremented every

time a reference of the object is assigned to a heap loca-

tion and is decremented every time its reference is removed

from a heap location. This can be easily done by instrument-

ing heap loads and stores. To correctly identify the return

point of the object’s capturing method, Resurrector main-

tains an invocation count (IC) for each method in the pro-

gram. In particular, the IC of a method is incremented twice

for each invocation of the method, once at the beginning of

the invocation and once at the end. Each method has its own

counting system, and ICs of different methods are counted

independently of each other. For example, within the first

execution of method bar, its IC is 1; during the period af-

ter this invocation finishes and before the next invocation

starts, its IC is 2. In this section, we focus our discussion on

recursion-free programs; the handling of recursion and other

advanced language features will be discussed shortly in Sec-

tion 3. Clearly, the IC of a method is always an odd number

if it is on the call stack, and it is always an even number

otherwise.

Object o may flow to a method on the stack and be cap-

tured there in the following three cases. First, o is created and

its reference is immediately written into a stack variable. In

this case, o’s m and ts are assigned the ID of its creating

method and the current IC of the method, respectively. Sec-

ond, o is returned from a callee to a caller. In this case, m
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Figure 4. A Resurrector object in the heap.

and ts may be updated with the method and IC information

of the caller. Finally, a reference of the object is assigned

to a stack variable through a heap load. In this case, m and

ts may be updated with the corresponding information of

the method invocation in which this load occurs. Note that

o can be captured in a method only if none of the callers of

the method on the stack have a reference to it. Therefore,

our goal is to keep track of the “lowest” method on the call

stack where the object is referenced. To do this, before Res-

urrector updates o.m and o.ts, it always verifies whether the

(old) method recorded in o.m has returned. For a recursion-

free program, this verification can be easily done by checking

whether o.m’s current IC is greater than o.ts. If o.m’s cur-

rent IC is equal to o.ts (indicating that o.m is still on the call

stack), o.m and o.ts do not need to be updated, because o.m
must be “lower” than (i.e., a caller of) the current method.

Note that parameter passing is not tracked in Resurrector,

because an object passed from a caller to a callee can never

be captured in the callee. Figure 4 illustrates a typical object

in the Resurrector execution. For each method on the stack,

its current (per-method) IC is shown in the parentheses. The

object is referenced by three heap locations, and thus, its

rc is 3. While it is referenced in four methods, its m and

ts record the invocation information of m1, which is the

lowest method on the stack among them1. After the current

invocation of m1 returns, m1’s IC must be at least 8, which

will be greater than the object’s ts (7). It is easy to see that

an object o is ready to be resurrected if o.m’s IC is greater

than o.ts and o.rc is 0.

Example To illustrate, consider the first invocation of

method bar. The initial m and ts for all objects created in

bar are bar and 1, respectively. Allocation site 20 is executed

20 times. At each time, the Resurrector allocator attempts

to find a dead object from the cache list (for allocation site

20), that is, an object such that its reference count is 0 and

its capturing method m’s current IC is greater than its ts .

Obviously, such an attempt fails because all the existing A

objects created at line 20 have non-zero reference counts

and their capturing method (bar)’s IC is equal to their ts ,

indicating that the method has not returned yet. Hence, a

1 For clarity of presentation, we use the name of a method as its ID in the

paper.

fresh A object is created and stored in line 20’s cache list.

At the end of this invocation, the cache lists for both line 20

and line 22 have 20 objects, as shown in Figure 3 (a). Note

that although O1
22 is passed into set, its m and ts are not

updated because bar is lower than set.

Right before the the first invocation of bar finishes, bar’s

IC becomes 2. Resurrector finds the return object (O1
20) and

attempts to update its m and ts with, respectively, the ID of

the caller (foo) and the current IC of the caller (1). Before

the update, it checks whether the method recorded in O1
20.m

has finished. The attempt succeeds because bar’s IC (2) is

now greater than O1
20.ts (1). Note that the objects reachable

from O1
20 (e.g., O1

22) are not updated at this moment because

they do not flow to the stack. O1
22 is updated later when line

13 is invoked—its m is changed to foo (due to the return at

line 6) and its ts is changed to 1 (i.e., foo’s IC), as shown in

Figure 3 (b).

During bar’s second invocation, the array (O1
18) cre-

ated in the previous invocation of bar is resurrected by

Resurrector—it is the only object on line 18’s cache list,

its rc is 0, and its capturing method (bar)’s current IC is 3,

which is greater than its ts (1). Resurrector determines it is

a dead object, and resurrects it by cleaning up its contents

and returning it to the application. This resurrection point

is recognized as the death point of the old O1
18 and the cre-

ation point of the new O1
18. The two events are recorded in

a trace if Resurrector’s trace generation option is enabled.

This point can be much earlier than the GC point at which

the old O1
18 is collected (in a non-Resurrector execution),

which explains Resurrector’s high precision over the GC-

based approach in most cases.

Cleaning up O1
18’s contents includes three steps: decre-

menting rc of each object it directly references, zeroing the

array, and reinitializing its tracking information. Its m and

ts now become bar and 3, respectively. After O1
18 is res-

urrected, rc of all the 20 cached A objects (O1
20—O20

20) be-

comes 0. Upon the execution of line 20, Resurrector inspects

object O1
20, which is the first cached object on the list. O1

20 is

not resurrectable—although its rc is 0, its capturing method

(foo)’s current IC is equal to its ts . However, O2
20 is resur-

rectable, because it was captured in a finished invocation of

bar. This can be seen from the fact that bar’s current IC (3)

is greater than O2
20’s ts (1).

Subsequently, the resurrection of O2
20 decrements the ref-

erence count of O2
22, making it resurrectable. It is resurrected

when line 22 is executed. In the second invocation of bar,

when the loop at line 19 terminates, 19 A objects created in

the previous invocation of bar have been reused and one new

A object (O21
20) has been created. Hence, line 20’s cache list

now contains 21 objects, as shown in Figure 3 (b). Before

bar’s second invocation finishes, O2
20 is about to be returned,

and its m and ts are updated with foo and 1, respectively

(similarly to the update of O1
20 in the previous invocation).



It is easy to calculate that at the moment the loop at line

11 terminates, there are totally 24 objects on line 20’s cache

list. This is very close to the actual number of objects that

are needed simultaneously for allocation site 20 (which is

20). The difference is due to the use of the return point

of an object’s capturing method as the point at which the

object loses all stack references. For example, even if object

O1
20 escapes to foo, it will never be used after the first

iteration of the loop (at line 11) finishes. Hence, it is actually

resurrectable in the second invocation of bar. Understanding

that O1
20’s lifetime is within the first iteration of the loop

requires a precise static liveness analysis, such as the one

proposed in [28]. It is worth investigating, in the future work,

how this technique can be incorporated into Resurrector and

how much precision improvement may result from it. Note

that if the GC-based approximation is used to compute this

number, it is very likely that we will get 100 (if GC occurs

after method foo returns).

3. The Resurrector Profiling Technique

This section presents the core technique of Resurrector. Res-

urrector supports precise handling of all important features

of Java, including multithreading, reflection, recursion, and

exception handling. We first describe our baseline algorithm

(for programs without recursive methods and exceptions),

and then we gradually modify the baseline algorithm to con-

sider more advanced language features.

3.1 Preliminaries

We begin by formalizing notions of operations, events, and

execution traces. A program consists of a number of con-

currently executing threads, each with a thread identifier

t ∈ Tid , and these threads call methods m ∈ Mid , which

manipulate (reference-typed) variables x ∈ Var . A method

contains allocation sites a ∈ Alloc, which create run-time

objects o ∈ Obj . An object o has a set of fields f ∈ F , each

of which specifies the offset of a location in o. An environ-

ment ρ ∈ Var → Obj ∪ {null} maps each variable to the

object it points to or a null value. Each o is associated with a

6-tuple tracking information 〈gid , rc,m, t , ts, dm〉: a global

object ID gid ∈ Nat , a heap reference count rc ∈ Nat , a

method ID m ∈ Mid , a thread ID t ∈ Tid , a timestamp

ts ∈ Nat , and a death mark dm ∈ {T, F}. gid uniquely

identifies the object during the whole execution. In a multi-

threaded program, we use m and t to identify the capturing

method of the object. The death mark dm is a boolean flag,

indicating whether the death point of the object has already

been recorded. Note that this tuple includes all the informa-

tion needed by a client analysis. Various optimizations can

be performed to reduce the unnecessary information to save

space.

Each method m has an invocation count vector IV :
Tid → Nat , which records m’s invocation count in each

thread in the system. The set of operations that a thread t
can perform includes:

• new (t, a), which creates an object at allocation site a;

• store(t, x1.f , x2) and load(t, x2, x1.f ), which, respec-

tively, writes the (reference) value of x2 into and reads it

from field f of the object referenced by x1;

• enter(t, m) and exit(t, m), which enters and exits method

m;

• return (t, x), which returns the object pointed to by x to

the caller;

Note that an exit operation must be followed immedi-

ately by a return operation, which may or may not return

any value. A thread t has a method stack S : Nat → Mid .

A method m is pushed onto the stack when thread t enters

it and is popped out when t exits it. Each allocation site a
has an object cache list L : Nat → Obj per thread t. In

other words, a maintains a cache list vector LV : Tid → L.

Caching objects on a per-thread basis allows the concurrent

execution of the dead object retrieval and resurrection; oth-

erwise, heavy synchronization has to be performed at each

allocation site to guarantee thread safety. An object event

e ∈ Eve is generated when an object is created or when

Resurrector determines the object is dead. In Resurrector, e
is a triple 〈gts , gid ,′A′|′D′〉, where gts ∈ Nat is a global

timestamp indicating when this event occurs. In the memory

management literature, bytes of allocation is often used as

a metric to measure time. gid is the global ID of the object

and ′A′ (′D′) indicates that the event is an allocation (death)

event. Resurrector eventually collects a trace α of events, in

which the timestamp distance between the ′D′ event and the
′A′ event of the same object determines the lifetime of the

object.

3.2 The Baseline Algorithm

This subsection describes the core Resurrector OLP algo-

rithm. Resurrector’s analysis state includes:

Invocation count map I : Mid → IV

Method stack map T : Tid → S

Alloc site cache map C : Alloc → LV

Object event trace α : e, α | ǫ

Resurrector’s instrumentation semantics at the seven op-

erations are shown in Algorithm 1–7, each of which reads

and/or updates the analysis state. Algorithm 1 (that handles

allocation sites) first retrieves the current method on the call

stack of thread t (line 2), which will be used later to up-

date m and ts of the newly created object. As described in

Section 2, Resurrector iterates through a’s cache list in t (de-

noted as C(a)(t)) to find a dead object created previously by

a (line 3–22). The condition in line 6 shows Resurrector’s

criterion of selecting dead objects—an object o is dead and

resurrectable if o.rc is 0 and the invocation count of its cap-

turing method o.m in thread o.t (denoted as I(o.m)(o.t)) is



Algorithm 1: The modified semantics of new (t, a).
Input: Thread t, Allocation site a
Output: New object ret

1 Object ret ← null

2 Method currMet ← T (t)0
3 foreach index i ∈ [0, |C(a)(t)|) do

4 /*Iterate through a’s cache list in t*/

5 Object o← C(a)(t)i

6 if o.rc = 0 ∧ I(o.m)(o.t) > o.ts∧ (¬isArray(o) ∨ length(o) =

requestedLength(a)) then

7 /*Found a dead object*/

8 ret ← o

9 if o.dm = F then

10 α←append(α, 〈globalTS(), o.gid , ′D′〉)

11 else

12 o.dm ← F

13 o.gid ← newGID()

14 o.rc ← 0

15 o.m← currMet

16 o.t← t

17 o.ts ← I(currMet)(t)

18 foreach reference-typed field f in o do

19 Object o′ ← o.f

20 if o′ 6= null then

21 o′.rc ← o′.rc − 1

22 break

23 if ret = null /*No object has been resurrected*/ then

24 ret ←allocNew()

25 ret.gid ← newGID()

26 ret.rc ← 0

27 ret.dm ← F

28 ret.m← currMet

29 ret.t ← t

30 ret.ts ← I(currMet)(t)

31 Cache list l← C (a)(t)

32 l← append(l, ret)

33 else

34 /*move object ret to the end of the list C(a)(t)*/

35 α←append(α, 〈globalTS(), ret.gid , ′A′〉)

36 zeroMemory(ret)

37 return ret

Algorithm 2: Instrumentation before store (t, x1.f , x2).
Input: Thread t, Field dereference expression x1.f , variable x2

1 Object o1 ← ρ(x1)

2 Object o2 ← ρ(x2)

3 Object o′ ← o1.f

4 if o′ 6= null /*Update rc of o′*/ then

5 o′.rc ← o′.rc − 1

6 if o2 6= null /*Update rc of o2*/ then

7 o2.rc ← o2.rc + 1

greater than o.ts. In addition, if the allocation site creates an

array, the requested array length must be equal to o’s length.

Other than what has been described in Section 2, this algo-

rithm records an ’A’ event (line 35), indicating that a new

object is created (regardless of whether it is a fresh new ob-

ject or it is a resurrected object). If a dead object is found and

its death has not yet been recorded, a ’D’ event is appended

to the trace (line 10). Resurrector allows the user to spec-

ify whether a trace is needed, because many client analyses

Algorithm 3: Instrumentation before load (t, x2, x1.f ).
Input: Thread t, Field dereference expression x1.f , variable x2

1 Object o1 ← ρ(x1)

2 Object o2 ← o1.f

3 if o2 6= null then

4 if o2.t 6= t ∧ I(o2.m)(o2.t) = o2.ts then

5 untrack(o2)

6 return

7 if I(o2.m)(t) > o2.ts then

8 Method currMet ← T (t)0
9 o2.t← t

10 o2.m ← currMet

11 o2.ts ← I(currMet)(t)

Algorithm 4: Instrumentation before enter(t, m).
Input: Thread t, Method m

1 Stack s← T (t)

2 s← push(s, m)

3 I(m)(t)← I(m)(t) + 1

4 /*Invariant: I(m)(t) must be an odd number*/

Algorithm 5: Instrumentation before exit(t, m).
Input: Thread t, Method m

1 Stack s← T (t)

2 s← pop(s)

3 I(m)(t)← I(m)(t) + 1

4 /*Invariant: I(m)(t) must be an even number*/

Algorithm 6: Instrumentation before return(t, x).
Input: Thread t, Return variable x

1 Object o← ρ(x)

2 if o 6= null ∧ I(o.m)(o.t) > o.ts then

3 /*Update o’s method info with the caller’s info*/

4 Method caller ← T (t)0
5 o.ts ← I(caller)(t)

6 o.m ← caller

(such as those discussed in Section 4) can be implemented

without a trace. If the trace generation option is not selected,

these events do not need to be recorded. After an object is

resurrected, we move it to the end of the cache list (lines 34)

to improve the performance of the next search. This is based

on the observation that objects’ death order is often consis-

tent with their creation order.

Resurrector’s instrumentation at each store (shown in Al-

gorithm 2) updates reference counts in expected ways. At

each load (shown in Algorithm 3), Resurrector first checks

whether the retrieved object has stack references in differ-

ent threads (line 4–6). The death point for an object refer-

enced simultaneously from stacks of multiple threads can-

not be precisely determined unless the object maintains per-

thread tracking information, which can be prohibitively ex-

pensive in large systems. Hence, Resurrector stops tracking

the object (i.e., removes its tracking information) and re-



Algorithm 7: The modified garbage collection seman-

tics.
Input: Heap h

1 foreach Object o ∈ h do

2 if ¬reachable(o) ∨ (o.rc = 0 ∧ I(o.m)(o.t) > o.ts) then

3 /*Record death for o*/

4 if o.dm = F then

5 α←append(α, 〈globalTS(), o.gid , ′D′〉)

6 if reachable(o) then

7 o.dm← T

lies on GC to detect its death point. Note that this handling

does not lead to significant precision loss because (1) most

heap objects are thread-local [19], and (2) none of the exist-

ing object-reduction-based optimization techniques (such as

[7, 32, 50]) can optimize shared objects. If o2 is not refer-

enced by multiple thread stacks, Resurrector updates its m
and ts with the information of the current method invocation

(line 8–11).

Algorithm 4 and Algorithm 5 pushes and pops method

m onto and out of t’s method stack, respectively. Both al-

gorithms increment m’s IC. Algorithm 6 inspects the return

object, and updates its m and ts with the corresponding in-

formation of the caller (if its old m has returned). Note that

because the return of a method always comes after the exit

of the method (that increments the method’s IC and pops the

stack, as shown in Algorithm 5), when the return object is

inspected by Algorithm 6, the callee is treated as “already

returned” (i.e., that is why the caller is retrieved by T (t)0 ).

Algorithm 7 shows our modification of a tracing col-

lector. It is important to note that the modified collector

records death points not only for unreachable objects but

also for cached objects that are ready to reuse. As such,

an object’s death point can be recorded either (1) when it

is reused, or (2) when a GC occurs and the object is ready

to reuse, or (3) when a GC occurs and the object is un-

reachable, whichever event comes first. This guarantees that

the Resurrector-collected lifetime information can never be

worse than the lifetime information obtained from a GC.

When the object’s death point is recorded, its death mark

is set to T, which will prevent Resurrector from recording its

death again (upon its reuse). Its death mark is set back to F

after it is reused (line 11 in Algorithm 1).

3.3 Algorithm Correctness

In this subsection, we demonstrate the correctness of the

Resurrector algorithm by showing that it preserves the se-

mantics of the original program. We first show that any ob-

ject resurrected by Resurrector is guaranteed to be a dead

object that will no longer be used in the forward execution.

PROPOSITION 1. (Heap Unreachability). If rc of an object

is 0, there must not exist any heap location that contains a

reference to the object.

This proposition is straightforward to see.

PROPOSITION 2. (Correctness of the Return Point Detec-

tion). For each object o tracked by Resurrector, if I(o.m)(o.t) >
o.ts, the method invocation o.m in which o is referenced

must have returned.

This is because o.ts captures the IC of the method o.m at the

moment o is referenced in o.m. Because IC can change only

at the entry or the exit, I(o.m)(o.t) > o.ts implies that at

least an exit operation has occurred on o.m in o.t (if o.m is

not a recursive method).

PROPOSITION 3. (Lowest Method on the Stack). For each

object o tracked by Resurrector, there must not exist any

method that is lower than o.m on o.t’s call stack and that

contains a variable referencing o.

We prove this by contradiction. Suppose there exists a

method n that is a caller of o.m and that has a reference

to o. The reference of o can flow to n only in three cases:

(1) o is created in n, (2) o is returned to n from a callee

(such as o.m), or (3) a load retrieves o from a heap location.

In case (1), o.m should be initialized with n. Since n has

not returned, o.m can never be updated to a callee of n; in

case (2) and (3), similarly, o.m would have already been up-

dated to n (at the return operation and the load operation,

respectively).

LEMMA 1. (Resurrection Soundness). An object chosen by

Algorithm 1 for reuse must be a dead object.

To prove the lemma, we consider heap and stack reach-

ability separately. At the moment object o is chosen by Al-

gorithm 1, o.rc must be 0, which implies that there does not

exist any heap location that contains a reference to o (Propo-

sition 1). On the other hand, condition I(o.m)(o.t) > o.ts
implies that the lowest method invocation (on the call stack)

in which o is referenced has finished (Propositions 2 and

3). o must be captured in this method invocation because

it escapes neither to the heap (otherwise o.rc would not have

been 0) nor to the caller of this method (otherwise this lowest

method would have been the caller).

THEOREM 1. (Semantics Preservation). The Resurrector ex-

ecution preserves the semantics of a program.

From Lemma 1, we know that an object resurrected by

Resurrector will never be used in the forward execution.

If the allocation site creates an array, Resurrector returns a

dead array with exactly the same length. Since the contents

of a dead object are removed before it is reused (line 32 in

Algorithm 1), the application sees the object as if it were a

freshly created object.

3.4 Defining a Tradeoff Framework

The size of the cache list for each allocation site can be nat-

urally used as a tuning parameter to define a tradeoff frame-



Algorithm 8: Instrumentation before enter(t, m) that

handles recursion.
Input: Thread t, Method m

1 Stack s← T (t)

2 s← push(s, m)

3 depth ← D(m)(t)

4 if depth = 0 then

5 I(m)(t)← I(m)(t) + 1

6 D(m)(t)← depth + 1

7 /*Invariant: I(m)(t) must be an odd number*/

Algorithm 9: Instrumentation before exit(t, m) that

handles recursion.
Input: Thread t, Method m

1 Stack s← T (t)

2 s← pop(s)

3 D(m)(t)←D(m)(t) - 1

4 if D(m)(t) = 0 then

5 I(m)(t)← I(m)(t) + 1

6 /*Invariant: I(m)(t) must be an even number*/

work between precision and scalability. This framework al-

lows for the tuning of Resurrector for different client anal-

yses that have different precision/scalability requirements.

For example, supporting longer cache lists at allocation sites

would allow Resurrector to find more reusable objects and

thus produce more precise lifetime information. However,

certain allocation sites can create great numbers of lifetime-

overlapping objects; caching all of them may lead to signifi-

cant time and space overheads. Furthermore, these allocation

sites are not likely to be optimizable; precisely tracking life-

times for all of their objects may not produce much benefit

for a client optimization technique.

When the number of objects on a cache list exceeds a

user-specified threshold parameter, we release the whole list

so that the cached objects can be garbage collected. Their

collection points will be recognized as their death points.

Note that if the threshold is 0, the lifetime information com-

puted by Resurrector is exactly the same as that approxi-

mated using GC. On the other hand, if the length of a cache

list is unbounded, all objects created by the allocation site

would be cached and thus, the precision of our lifetime in-

formation can be very close to (but still lower than) that of

Merlin’s lifetime information. Of course, doing this suffers

from the same scalability problem as Merlin does and thus

would not work for real-world programs.

Because most optimization techniques target allocation

sites that create small numbers of lifetime-overlapping ob-

jects, running Resurrector with a small threshold can of-

ten provide sufficiently precise information for these tech-

niques. During our experiments, we have evaluated Resur-

rector with several different threshold parameters; our re-

sults demonstrate that large optimization opportunities can

be found even when the threshold value is very small.

3.5 Handling of Advanced Language Features

This subsection discusses how we revise our baseline algo-

rithm to deal with advanced language features.

3.5.1 Recursion

The current IC-based scheme does not function properly in

the presence of recursion. Naively incrementing the IC of a

method at its entry and exit can inappropriately direct Resur-

rector to resurrect live objects created by a recursive method

invocation. To solve the problem, we maintain a recursion

depth vector DV : Tid → Nat for each method, which

records the recursion depth (RD) for the method in each

thread. Suppose D maps each method m to its DV . Al-

gorithms 8 and 9 describe, respectively, our modified algo-

rithms at the method entry and exit to properly handle re-

cursive invocations. Every time an enter(t, m) operation is

encountered, Resurrector first checks if m’s recursion depth

count (denoted as D(m)(t)) is 0. m’s IC (i.e., I(m)(t)) is

incremented only if this is the first time m is pushed onto t’s
stack. Similarly, at an exit, m’s IC is incremented only if the

current invocation is the last invocation of m on t’s stack. All

the recursive invocations of the same method share the same

IC. D(m)(t) is incremented at each enter and decremented

at each exit.

Note that the other four algorithms are still correct af-

ter the instrumentation at enter and exit is modified. This is

because an object created in any invocation of a recursive

method cannot be resurrected until the first invocation of the

method returns. However, this would increase the delay (be-

tween an object’s actual death point and the point at which

Resurrector detects its death) and prevent Resurrector from

quickly reusing a dead object. To solve the problem, we add

one additional field rd in the tracking data of each object to

record the recursion depth of its capturing method m. When-

ever an object’s method-related information (i.e., m, t, and

ts) needs to be updated, its rd is updated (to D(m)(t)) as

well. Hence, whether its m has returned can be verified by

checking the following relaxed condition C1:

I(o.m)(o.t) > o.ts ∨D(o.m)(o.t) < o.rd (C1)

This condition would allow Resurrector to quickly identify

a dead object created in a finished recursive invocation.

3.5.2 Exception handling

Resurrector modifies an existing exception delivery algo-

rithm in Jikes RVM to appropriately update the IC and RD

of each method involved in the exception delivery. Particu-

larly, when an exception is thrown, this existing algorithm

walks the call stack to find the most recent method invoca-

tion that has an handler for the exception. When this algo-

rithm is about to exit an invocation on the stack, Resurrector

treats it as an exit event and performs the updates as shown

in Algorithm 9. In the method that catches the exception,



Resurrector performs a return operation (Algorithm 6) with

the exception object being treated as the returned object.

3.5.3 Object cloning

In Java, the clone method can be invoked on an object o
to create a new object o′ of the same type and perform a

shallow copy of o’s data fields into o′. Resurrector treats a

call site that invokes clone as a special allocation site. At

the end of the cloning process, Resurrector inspects each

reference-typed field in o′; if the field contains a non-null

reference value, Resurrector retrieves the referenced object

and increments its reference count.

3.5.4 Handling of multi-dimensional arrays

Different JVMs may have different implementations of

multi-dimensional arrays. In Jikes RVM, each i-dimensional

array of the form A[]. . .[] is implemented by maintain-

ing and connecting a number of one-dimensional arrays of

type java.lang.Object and type A. Resurrector assigns

the same allocation site ID to all of the arrays upon their

creation and caches them into the same cache line. Their ref-

erence counts are initialized appropriately based on the ref-

erence relationships among them. When the allocation site

is executed again to create a new multi-dimensional array,

Resurrector inspects all the cached one-dimensional arrays

to find dead ones in order to assemble this new array.

3.5.5 Handling of arraycopy

Since method arraycopy is implemented via native code,

Resurrector needs to explicitly account for its side effects.

When objects in array a are copied into array b using

arraycopy, Resurrector increments their reference counts

so that these objects cannot be mistakenly resurrected. How-

ever, a user-defined native method may also write or read

heap references; failing to model these effects may crash a

program or introduce arbitrary behaviors. Future work may

address this issue by developing low-level support (e.g., at

the virtual memory level) to detect reads and writes per-

formed in native code.

3.5.6 Reflection and recursive data structures

Resurrector detects calls to method newInstance during

compilation and treats them as allocation sites.

As with any other reference-counting-based algorithm,

Resurrector cannot appropriately handle recursive data struc-

tures. Their reference counts are always non-zero, prevent-

ing Resurrector from correctly identifying their death points.

In the current implementation, Resurrector leaves them to

the garbage collector. Because they are always unreusable,

their allocation sites’ cache lists will keep growing. When

the number of objects on a cache list exceeds the threshold

parameter, the whole list will be released and garbage col-

lected. Future work needs to investigate how to incorporate

techniques such as trial deletion [4, 6, 46] into Resurrector to

precisely handle recursive data structures. It is also interest-

ing to measure, in the future work, how much precision loss

is due to Resurrector’s inability of handling recursive data

structures; in the current implementation, we do not have

any information regarding whether or not the discarding of

a cache list is caused by cycles.

4. Implementation and Clients

We have implemented Resurrector on Jikes RVM 3.1.3 [27],

a Java-in-Java Virtual Machine. To demonstrate its useful-

ness for optimizing programs, we have implemented two

client analyses: one that finds allocation sites creating very

few lifetime-overlapping objects and second that approxi-

mates the sizes of run-time data structures. These two analy-

ses are then used to find optimization opportunities in large-

scale, real-world programs.

4.1 Implementation and Optimization

For each tracked object o in Resurrector, we create an ad-

ditional metadata object o′ to store its tracking information.

o′ is implicitly referenced by o (in its header space) while o
is explicitly referenced by o′ (in a field). Resurrector caches

o by adding o′ onto the cache list. This will prevent o from

being garbage collected (after it becomes unreachable). Yet,

if o′ is removed from the list (e.g., when Resurrector decides

to untrack o) and o becomes unreachable, both o and o′ will

be appropriately garbage collected.

We have modified both the baseline compiler and the op-

timizing compiler of the Jikes RVM to perform the instru-

mentation. Instrumentation code is added at each allocation

site, each store, each load, and the entry, exit and return point

of each method. The invocation count vector and the recur-

sion depth vector for each method are created as two new

fields of RVMMethod. The method stack S on each thread

is implemented as an integer array and kept in a field of

RVMThread. Cache lists for allocation sites are implemented

as a list array and kept in a field of RVMThread.

As described in Algorithm 7, the garbage collector is

modified in such a way that it records a death event when

(1) a resurrectable (live) object is traversed during the reach-

ability analysis or (2) an untracked object is collected. While

this modification has been done only in the Mark-and-Sweep

GC, the algorithm can be easily implemented in all the other

GCs.

Optimizations Two major optimizations have been per-

formed to reduce the time and space costs. First, since each

thread may actually execute only a small portion of alloca-

tion sites, it is not necessary to create cache lists for all al-

location sites in each thread. To optimize this case, Resur-

rector creates a cache list for an allocation site in a thread

only when the allocation site is executed by the thread. Res-

urrector maintains a global index array for each allocation

site a that records, for each thread, the index of a’s cache

list in the thread. This optimization significantly reduces the

number of cache lists that need to be created. Second, for



each object, its tracking fields t and m can be combined into

one single field addr i, that directly records the address of

I(m)(t). Similarly, we use another field addr d to record the

address of D(m)(t). As I(m)(t) and D(m)(t) are the most

frequently accessed tracking data, this combination leads to

more efficient retrieval of IC and RD.

4.2 Client Analyses

Detecting Allocation Site Optimizability One common

piece of information required by many optimizations is the

maximal number of lifetime-overlapping objects needed by

an allocation site. We develop a client analysis that computes

this information by keeping track of the maximal length of

each cache list. Specifically, we maintain a max-length count

for each allocation site; this count is checked every time a

cache list for this allocation site (in a thread) grows and it is

updated when its value is smaller than the current list length.

For an allocation site whose cache list has been released

(because its size has exceeded the threshold), its max-length

is assigned a very large number (e.g., the maximal value of

integer). While the max-length for an allocation site is an

(over-)approximation of its maximal number of overlapping

objects, these two numbers can be very close if the allocation

site is frequently executed.

Data Structure Size Approximation An important op-

timizability measurement used in many optimization tech-

niques is the size of a data structure (i.e., the number of ob-

jects reachable from its root). For example, if an allocation

site always has one live object and the data structure rooted

at the object has a large size, significant performance gain

may result from optimizing this allocation site (e.g., cache

the whole data structure so that the effort of recomputing its

contents can be saved). We have implemented another client

analysis in Resurrector to approximate the size of the data

structure rooted at an object when the object is allocated/res-

urrected. As it is a common practice that most objects in a

data structure are created and initialized in the constructor

of its root object, we augment Resurrector to instrument the

entry and exit of each constructor to calculate the number of

objects created in the constructor. Specifically, we maintain

an object stack in each thread; an object on the stack indi-

cates that its constructor is currently being executed. Upon

the creation/resurrection of an object o, we first retrieve each

object r already on the object stack and increment its data

structure size. In other words, o is considered to be part of

the data structure rooted at each such r. Next, we push o onto

the stack. Upon the exit of its constructor, o is popped out of

the stack.

The reports of these two client analyses are generated and

used to understand the precision and usefulness of the in-

formation collected by Resurrector. In particular, allocation

sites are first sorted in ascending order of their max-length

counts. The top 100 allocation sites on this list are re-sorted

in descending order of the multiplication of their frequen-

cies and their (approximated) data structure sizes. We have

manually inspected the final list to find optimization oppor-

tunities.

5. Evaluation

Our benchmarks (shown in Table 1) include 10 programs

from the 2006 release of the DaCapo benchmark set. Res-

urrector encounters an error when running eclipse, which is

thus not included in our subjects. All experiments are ex-

ecuted on a quadcore machine with an Intel Xeon E5620

2.40GHz processor, running Linux 2.6.18. The maximal

heap size specified for each program run is 2GB. The Jikes

RVM configuration for the experiments is FastAdaptive-

MarkSweep, which specifies the use of the optimizing com-

piler and the Mark-and-Sweep garbage collector. Our imple-

mentation distinguishes objects created in the VM code and

those created in the regular Java code; objects created by the

VM are not tracked.

5.1 Resurrector Performance

Time Overhead on DaCapo-small Table 1 reports var-

ious running time statistics collected from the executions

of DaCapo small workloads. To compare Resurrector with

existing techniques, we have obtained and run Elephant

Tracks [40, 41], which is the only publicly available tool

implementing the Merlin algorithm [26]. We have also im-

plemented a GC-based lifetime approximation technique on

Jikes RVM 3.1.3. Instead of finding every single dead object

from the heap and reporting its death during each GC (which

may incur a significant time overhead), our implementation

of the GC-based approximation records the address of each

tracked object upon its creation in a list, and traverses the list

to check the reachability of each object at the end of each

GC. Hence, our implementation would incur higher space

overhead but lower time overhead than the naive implemen-

tation (that needs to find all dead objects from heap blocks).

We choose to report the running times of the small work-

loads in order to enable the comparison among Resurrec-

tor, Elephant Tracks, and the GC-based approximation. The

Merlin algorithm implemented in Elephant Tracks is very

slow and generates extremely large trace files (e.g., at the

scale of dozens to hundreds of Gigabytes). We could not

finish running most of the benchmarks for even default

workloads within a reasonable amount of time and space.

Sections (a), (b), and (c) in Table 1 report, respectively,

the execution time information of Elephant Tracks, Jikes

RVM without instrumentation, and the GC-based approxi-

mation. Elephant Tracks is implemented based on JVMTI,

a native interface currently not supported by Jikes RVM.

Hence, we have to run Elephant Tracks on HotSpot (version

1.6.0 27); the running times of the original HotSpot and

Elephant Tracks are shown in columns TH and TET , respec-

tively. Elephant Tracks crashes during the running of bloat

and chart; the numbers annotated with ∗ are obtained from

the experimental results in [40].



Bench (a) ET (HotSpot) (b) R (c) GCA (d) Resurrector (ml = 1, 10, 100, 200, 500, and∞)
TH TET TR TG T1 T10 T100 T200 T500 T∞

antlr 0.48 169.8 (352.3) 0.41 1.79 (4.4) 1.15 (2.9) 1.45 (3.6) 1.26 (3.1) 1.08 (2.7) 1.16 (2.9) 1.83 (4.5)
bloat 2.87∗ 17336.2 (6036)∗ 1.03 12.33 (12.0) 3.53 (3.4) 4.46 (4.3) 3.60 (3.5) 3.45 (3.3) 3.63 (3.5) 98.3 (95.3
chart 2.96∗ 19425.9 (6565)∗ 2.12 6.90 (3.3) 6.96 (3.3) 7.60 (3.6) 7.06 (3.3) 8.72 (4.1) 7.8 (3.7) 137.3 (64.8)
fop 1.81 182.2 (100.6) 1.04 4.97 (4.8) 2.13 (2.0) 2.08 (2.0) 1.94 (1.9) 2.00 (1.9) 2.34 (2.3) 12.35 (11.9)
hsqldb 0.87 261.9 (300.3) 0.66 3.51 (5.3) 2.09 (3.2) 2.61 (3.9) 2.20 (3.3) 2.14 (3.2) 2.16 (3.3) 106.2 (160.4)
jython 0.32 1283.1 (4061.1) 0.70 9.23 (13.2) 4.96 (7.1) 4.86 (7.0) 6.04 (8.7) 6.03 (8.7) 6.07 (8.7) 271.5 (389.5)
luindex 0.75 367.8 (487.2) 0.55 2.23 (4.1) 1.19 (2.2) 2.73 (5.0) 2.46 (4.5) 2.67 (4.9) 2.69 (4.9) 22.59 (41.3)
lusearch 0.74 1334.1(1805.1) 0.79 12.3 (15.4) 4.03 (5.1) 4.46 (5.6) 4.40 (5.5) 4.16 (5.2) 3.82 (4.8) 32.63 (41.3)
pmd 1.19 37.9 (31.8) 0.52 2.62 (5.0) 1.15 (2.2) 2.39 (4.6) 1.07 (2.1) 1.21 (2.3) 1.20 (2.3) 4.52 (8.7)
xalan 1.3 1578.6(1214.3) 0.47 3.55 (7.5) 1.49 (3.1) 1.72 (3.6) 1.71 (3.6) 1.91 (4.0) 1.87 (4.0) 2.80 (5.9)

GeoMean 752.4× 6.7× 3.2× 4.4× 3.6× 3.7× 3.7× 40.2×

Table 1. Running time statistics for DaCapo-small: Section (a) reports the original HotSpot (TH) and the Elephant Tracks

(TET ) running times; Section (b) reports the original Jikes RVM running time; Section (c) reports the running time of the

GC-based approximation; Sections (d) reports Resurrector’s running times for different cache list size thresholds; running time

is measured in seconds; overhead is measured in slowdown ratios shown in parentheses. ∗ Those numbers are taken from the

experimental results reported in [40].

We have run Resurrector with six different max-length

parameters, including 1, 10, 100, 200, 500, and ∞. ml =
∞ means that the length of a cache list is unbounded and

cache lists are never discarded. The slowdown information

(in parentheses) under column Ti is obtained by calculating

the ratios between the numbers in Ti and their correspond-

ing numbers in TR. Similarly, the slowdowns reported under

column TET are obtained by calculating the ratios between

the numbers in TET and those in TH . Although Elephant

Tracks and Resurrector are executed on two different JVMs,

it is clear to see that Elephant Tracks is orders of magni-

tude slower than both Resurrector and the GC-based approx-

imation. The first five configurations of Resurrector all have

better performance than the GC-based approximation. How-

ever, when the length of a cache list goes unbounded, the

overhead increases dramatically.

Time and Space Overhead on DaCapo-large To have

a better understanding of Resurrector’s scalability, we have

also conducted an experiment on the large workloads of Da-

Capo. The results are summarized in Figure 5, Figure 6, and

Figure 7, which show, respectively, the overall running time

overheads, space overheads, and GC overheads for the GC-

based approximation and the first five Resurrector config-

urations. Note that Elephant Tracks and Resurrector with

ml = ∞ are not included in this experiment due to the

unreasonably long executions (e.g., more than five hours

for most applications); they are not practical enough to be

used to profile real-world long-running applications. Resur-

rector encounters out-of-virtual-space errors2 when running

chart, lusearch, and xalan with ml = 500; thus, the re-

sults for these three applications under ml = 500 are miss-

ing in the figures.

In each of the three figures, bars represent overheads in

times. The space overhead is measured as the ratio between

the peak heap consumption of the Resurrector execution

and that of the regular execution, while the GC overhead

2 This may be because Jikes RVM cannot handle a virtual address space

larger than 1.1 GB.

ml Time OH (times) Space OH GC OH

GC-based 17.0 2.1 7.2

1 4.9 1.7 2.0

10 5.1 2.6 2.9

100 5.4 3.7 3.3

200 5.7 3.3 3.2

500* 6.5 3.9 3.4

Table 2. The geometric means of the time, space, and GC

overheads for the GC-based approximation and five Res-

urrector configurations. ∗ The overheads under ml = 500
are computed on seven applications (all except chart,

lusearch, and xalan).

is measured as the ratio between the total GC times of the

two executions. It is clear to see from Figure 5 and Figure 7

that the GC-based approximation has the largest overall time

overhead and GC time overhead. This is primarily because

it needs to traverse all created objects during each GC to

identify dead objects and report death events. Table 2 reports

the geometric means of the time, space, and GC overheads

for these different configurations. Clearly, Resurrector is

more efficient than the GC-based approximation; in addition,

the higher the max-length parameter is, the more costly the

execution is. When we compare the performance of the

five configurations, we find that, in many cases, there is

no significant performance difference between them. This

may be because most allocation sites in large applications

have very small numbers of lifetime-overlapping objects (as

demonstrated shortly in this section), and thus, increasing

ml does not significantly affect the overall running time of

an application.

5.2 Resurrector Precision

Deallocation Difference Ratio (DDR) We first define a

precision metric, called deallocation difference ratio (DDR),

that we have used to assess the precision of various OLP

techniques. Because Merlin is the most precise OLP tech-

nique, the goal of this experiment is to understand the pre-
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Figure 6. Resurrector space overhead on DaCapo-large.

cision gap between Resurrector and Merlin. However, Ele-

phant Tracks, the only publicly available implementation of

Merlin, does not support Jikes RVM, and thus, lifetimes

collected from Elephant Tracks and from Resurrector are

not directly comparable—the standard Java libraries used by

HotSpot and by Jikes RVM are completely different, making

a direct comparison meaningless. To mitigate the problem,

we use the lifetime information collected from Resurrector’s
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Figure 7. Resurrector GC overhead on DaCapo-large.

Bench DDRGC DDR1 DDR10 DDR100 DDR200 DDR500 #Itv

antlr 90.0 74.4 72.1 46.9 28 20.9 16

bloat 99.2 54.0 43.3 24.2 21.6 14.6 49

chart 98.5 69.9 58.0 27.7 27.9 28.2 54

fop 94.6 44.4 24.8 27.4 12.3 5.5 6

hsqldb 124.7 76.0 59.2 53.1 54.9 8.6 16

jython 96.3 72.1 70.0 60.0 56.1 43.6 62

luindex 100 93.8 93.6 93.5 93.1 92.7 17

lusearch 98.4 56.2 31.4 26.6 26.7 21.0 400

pmd 80.1 90.2 70.7 84.3 57.9 14.7 3

xalan 102.9 76.0 57.2 55.4 48.9 58.9 134

GeoMean 97.9 69.1 54.3 44.7 36.8 22.3

Table 3. Resurrector’s precision measurements; column #Itv reports the number of 1MB allocation intervals during the

execution of each application; other columns show the deallocation difference ratios (DDRs) collected for the GC-based

approximation and the five Resurrector configurations.

ml = ∞ configuration as an approximation of Merlin’s life-

time information. Although the former is still less precise

than the latter, their precision should be very close.

We run each application under its small workload (in or-

der to obtain results for ml = ∞) and divide an execution

into a sequence of 1MB allocation intervals. We collect the

number of objects that are reported as dead in each interval

for the GC-based approach and each Resurrector configura-

tion. For a configuration ml = c, suppose sc is an array such

that each element sc[i] contains the number of dead objects

reported in interval i; s∞ is the corresponding array for con-

figuration ml = ∞. The precision measurement DDRc for

configuration c is defined as

DDRc = Σi∈[0,|s∞|)|sc[i]− s∞[i]| ∗ 100/Σi∈[0,|s∞|)s∞[i]

In other words, DDRc is used to measure the overall dif-

ference in the numbers of dead objects reported between

configuration c and configuration ∞. The smaller DDRc is,

the more precise lifetime information configuration c pro-

duces. Note that DDRc may not necessarily be smaller than

100. We often see DDRs greater than 100 if the differences

between the two reports are very big. Table 3 reports the

DDRs for the GC-based approximation and the five config-



urations of Resurrector. In general, Resurrector is more pre-

cise than the GC-based approach even under ml = 1, and

the greater ml is, the smaller its DDR is. For luindex, all

the five Resurrector configurations cannot produce precise

lifetime information. This is primarily because luindex is a

text indexing tool. During execution, it keeps adding books

into its (in-memory) dictionary and then does text index-

ing, which causes most of its allocation sites to have large

numbers of lifetime-overlapping objects. It appears that even

ml =500 is not big enough for most of the cache lists to hold

objects until they can be resurrected.

Unitary Allocation Site Statistics Unitary allocation

sites are those such that the lifetimes of the objects they

create are completely disjoint [22, 50]. Detecting such al-

location sites is important for many optimization tasks be-

cause objects created by them can be pre-allocated or easily

reused. To demonstrate Resurrector’s ability of finding uni-

tary allocation sites, we compare the numbers of unitary al-

location sites reported by the GC-based approach and Resur-

rector under configuration ml = 1. The results are shown in

Figure 8. Resurrector has identified that an overall 72.7% of

the total allocation sites executed are unitary while the cor-

responding percentage reported by the GC-based approach

is only 12.0%.

We also use the Resurrector lifetime information to gen-

erate a histogram of allocation sites (shown in Figure 9),

which gives an overview of the optimization opportunities

that may exist in each program. The histogram is obtained

from the configuration ml = 100. On average, the percent-

ages of the allocation sites that fall into categories ml = 1,

ml ≤ 5, and ml > 5 are 72.6%, 8.8%, and 11.1%, respec-

tively. The rest (9.5%) of the allocation sites have more than

100 lifetime-overlapping objects, and thus, their cache lists

are discarded by Resurrector. These numbers clearly indicate

that large opportunities exist in real-world applications; Res-

urrector can help either human experts or automated tools

quickly find these opportunities.

5.3 Case Studies

We have inspected the reports generated by the two client

analyses discussed in Section 4 for 4 DaCapo applications.

In fact, we have looked at only a few top allocation sites

whose max-length is 1 in each report, and modified the

source code to cache and reuse their created objects. We

add a reset method in some classes—when their objects are

reused, reset (rather than the constructor) is called to reset

their data content without reconstructing them. It takes us

about 2 days to find the problems and implement the fixes

for these applications. More opportunities could have been

found if we had had more time. Performance statistics be-

fore and after the problem fixes are collected under a fast

(FastAdaptiveImmix) configuration of Jikes RVM (where

all compiler optimizations are enabled) with a 1G maximal

heap size. Hence, the performance improvements achieved

are beyond the JIT’s best effort. In order to avoid the com-

pilation cost and the execution noise, each application has

been run 5 times and the median of the running times is re-

ported.

The DaCapo pmd benchmark The first (most fre-

quently executed) allocation site in our report is located in

line 73 of class org.jaxen.expr. IdentitySet. This class im-

plements an IdentitySet (in which two objects a and b are

considered equal only if a == b) by maintaining an inter-

nal Java HashSet and wrapping each element object into a

wrapper object. Two wrapper objects are equal when their

wrapped objects are the same. Adding wrapper objects into

the HashSet prevents two different element objects from be-

ing recognized as equal even if calling their “equals” method

returns true. This first allocation site creates a wrapper object

in method contains, which is used only to check whether a

given object exits in the set. Because this set is often very

large, a great number of wrapper objects have to be created

and garbage collected. In fact, only this one allocation site

(in one of the many methods in this class) has created a

total of 31,039,097 objects. We fix the problem by simply

employing the JDK-provided IdentityHashMap, which uses

identity equality when adding/retrieving elements. Fixing

only this one problem has led to a 5.4% total time reduction

(from 11189 to 10589 msec), a 19.6% reduction on the num-

ber of objects (from 778744363 to 626260549), and a 6.7%

space reduction (from 153136 to 144412KB). The number

of GCs has been reduced from 90 to 82.

The DaCapo xalan benchmark We implement sin-

gleton patterns for a few top allocation sites in xalan’s re-

ports to reuse NumberFormatStringTokenizer, XPathParser,

and Compiler objects. These objects are data processors as

apposed to data to be processed; it is thus unnecessary to

create them every time a new data item arrives. After these

fixes, the program’s running time has been reduced by 8.7%

(from 13073 to 11933 msec). The peak memory consump-

tion and the number of objects have been reduced by 15.4%

(from 244756 to 207064KB) and by 5.5% (from 317406559

to 299943157), respectively.

The DaCapo luindex benchmark The first allocation

site reported is in line 165 of class org.apache.lucene.index.

SegmentTermEnum. This allocation site takes a TermInfo

object as input and clones a new one. Resurrector indicates

that this allocation site creates a great number of objects

whose lifetimes are all disjoint, we simply make all cloned

objects share one single instance throughout the execution.

Note that the method containing the allocation site is invoked

in a variety of contexts, and it would be very difficult for a

developer to obtain this information without Resurrector’s

precise object lifetime profiles. This fix has led to a 9.9%

space reduction (from 50428 to 45888KB) and a 3.9% object

reduction (from 84780111 to 81487862). The number of GC

runs has been reduced from 78 to 72. No clear time reduction

has been found.
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The DaCapo bloat benchmark Among the top 20 re-

ported allocation sites, 12 create String and StringBuffer ob-

jects in the toString method of various classes, such as Ex-

pression, Label, Block, etc. Previous work [53] has already

found that this method is invoked only to provide messages

for assertions (for debugging purposes). The messages are

generated regardless of whether these assertions succeed or

fail. The rest of the report are allocation sites that create ob-

jects to implement visitor patterns (e.g., to traverse various

graphs). We modify the source code to implement two fixes.

First, toString is called to generate a message only when an

assertion fails. Second, singleton patterns are employed to

create graph visitors. These fixes have led to a 5 × (from

45099 to 8372 msec) running time reduction, a 3.9 × (from



1016816 to 257716KB) reduction on the peak memory con-

sumption, and a 4.8 × (from 929345410 to 192934784) ob-

ject reduction. This is by far the largest performance im-

provement that has been achieved by fixing performance

problems in bloat.

Summary and Discussion The amount of effort we have

spent on the report inspection and problem fixes is relatively

small—the performance gains are obtained from fixing only

a few allocation sites, work that just scratches the surface.

During the inspection of reports and development of fixes,

we have classified three categories of allocation sites that of-

ten create disjoint objects. These objects can be easily reused

to improve performance. The first category of allocation sites

creates event objects that are used only to notify listeners cer-

tain events have occurred. For example, the No.1 allocation

site in the report of chart creates SeriesChangeEvent objects,

and their lifetimes never overlap. In an event-driven system,

there is often a great number of event objects and reusing

them can sometimes significantly reduce the allocation and

garbage collection effort. The second category contains al-

location sites that create processor objects (as apposed to

data objects to be processed). The allocation sites that cre-

ate tokenizer and parser objects in xalan as well as those

that create visitor objects in bloat are examples of this cate-

gory. In many cases, one single processor object is sufficient

to process a number of different data objects. In addition,

a processor object often holds a complicated data structure

to do the processing, and thus, creating and constructing the

data structure many times is undesirable and can cause sig-

nificant performance problems. The third category of alloca-

tion sites create StringBuffer objects. In Java, at each occur-

rence of string concatenation (e.g., using operator “+” ), the

compiler automatically translates it into the use of String-

Buffer (i.e., creates StringBuffer objects and calls its append

method). StringBuffer objects created at different string con-

catenations can never be simultaneously used. In fact, the fu-

ture design of the Java compiler should consider to employ

singleton patterns when it compiles string concatenations.

5.4 Improving an Existing Technique

Our previous work [50] develops a dynamic analysis to help

programmers detect reusable data structures based on their

allocation sites. [50] gives a three-level reusability defini-

tion: if an allocation site creates all disjoint objects, the

object instances can be reused; among the allocation sites

whose instances are reusable, the second reusability level

concerns whether the shapes of the created data structures

are always the same; the highest reusability level is data

reusability that corresponds to allocation sites whose in-

stances are disjoint, and whose shapes and data contents

are the same. Key to the success of this work is the pre-

cise identification of allocation sites whose instances are

reusable, which provides a basis for the other two (higher-

level) reusability detectors—it is impossible to reuse data

structures that have the same data contents unless their life-

bloat 3 pmd 12 luindex 8 xalan 4

Table 4. False positives of the object lifetime approximation

used in [50].

times are disjoint. [50] approximates instance reusability by

computing, for each allocation site, a ratio between the num-

ber of its dead objects and the number of its live objects at

each GC (i.e., DL ratio). The higher this ratio is, the more

likely it is that the lifetimes of its objects are disjoint. This

approximation is rather imprecise and is the cause of all false

positives (reported in Section 4.1 of [50]).

We run the tool on the 4 benchmarks we have studied. For

each benchmark, we carefully inspect the top 20 reported al-

location sites, and Table 4 shows the number of false pos-

itives we have found. An allocation site is considered as a

false positive if either it is clearly not a problem or we could

not develop a solution to reuse its objects. For example, luin-

dex creates a great number of Token objects during the pars-

ing of expressions. These objects are linked through their

next field and any regular operation of the list can break a

link and make many such objects become unreachable. The

allocation sites creating them often have big DL ratios while

their objects are not truly reusable. We modify the tool to

force it to use the Resurrector object lifetime information.

This has led to the elimination of all false positives. All of

the 20 allocation sites in each of the new reports are sin-

gleton allocation sites, which can be easily understood and

optimized by the developer.

6. Related Work

While there exists a large body of related work in dynamic

analysis and memory management, this section focuses on

work that is closest to Resurrector.

Reference Counting Reference counting (RC) is used

widely in the design of GC algorithms. A RC collector keeps

track of the number of incoming references for each object;

when its reference count becomes 0, the object can be col-

lected [4–6, 17]. Because it is expensive to track stack and

register updates, modern RC collectors introduce deferred

reference counting [11, 18] that computes reference counts

periodically. When a RC collector collects the heap, it must

enumerate the stacks and registers. Different from all RC

collectors, Resurrector takes an object-centric design, which

identifies dead objects based on the method invocation in-

formation recorded in each object and, hence, Resurrector

does not rely on a reachability analysis to compute object

liveness.

As with other RC algorithms, Resurrector cannot find

dead cycles [47]. Modern GC collectors add periodic trac-

ing collection or perform trial deletion [4, 6, 46] to collect

dead cycles. Trial deletion maintains a candidate set contain-

ing objects that lost a pointer, but whose count did not reach

zero. The algorithm then iteratively performs trial deletions



on the objects in this set and those reachable from them.

When all the reference counts become zero, the objects form

a dead cycle and can be reclaimed. The current implemen-

tation of Resurrector leaves the detection of dead cycles to

GC, while it is worth investigating in the future work how to

incorporate trial deletion into Resurrector to detect and reuse

dead objects in cycles.

Efficient implementation of a non-deferred RC algorithm

in a modern object-oriented language such as C# has been

extensively studied in recent work such as [28–30]. This

work relies on a dataflow analysis performed in the optimiz-

ing compiler to insert updates to reference counts, so that

redundant RC updates can be eliminated and dead objects

can quickly reclaimed. Unlike this line of work that uses

static analysis to track stack references, Resurrector exploits

a novel counting algorithm, which treats the method return

as the point at which an object loses its stack references,

trading off the immediacy of detecting dead objects for effi-

ciency.

GC-Related Techniques Pretenuring long-lived and im-

mortal objects [10, 12, 14, 33] into infrequently or never col-

lected regions reduces garbage collection costs significantly.

Other techniques such as [31, 45, 49] propose to use object

lifetime profiles to improve GC performance in various as-

pects.

Optimization of Runtime Bloat Software bloat analy-

sis [3, 36–39, 44, 50–58] attempts to find, remove, and pre-

vent performance problems due to inefficiencies in the code

execution and the use of memory. Prior work [38, 39] pro-

poses metrics to provide performance assessment of use of

data structures. Their observation that a large portion of the

heap is not used to store data is also confirmed in our study.

In addition to measure memory usage, our work proposes

optimizations specifically targeting the problems we found

and our experimental results show that these optimizations

are very effective.

Work by Dufour et al. [20] uses a blended escape analysis

to characterize and find excessive use of temporary data

structures. By approximating object lifetimes, the analysis

has been shown to be useful in classifying the usage of

newly created objects in the problematic areas. Shankar et al.

propose Jolt [44], an approach that makes aggressive method

inlining decisions based on the identification of regions that

make extensive use of temporary objects. Work by Xu et

al. [53] detects memory bloat by profiling copy activities,

and their later work [52] looks for high-cost-low-benefit data

structures to detect execution bloat.

Escape analysis [13, 16, 21, 48] detects objects whose

lifetimes are within the lifetime of the method (or its caller)

that create the objects. Such objects can be allocated on the

stack instead of on the heap. Gheorghioiu et al. propose a

static analysis [22] to identify unitary allocation sites whose

instances are completely disjoint so that these instances can

be pre-allocated and reused. Free-me [25] is a static tech-

nique that identifies when objects become unreachable and

inserts calls to free them. Recent work such as [7, 58] uses

static analysis to identify reusable data structures created in

a loop. Object equality profiling (OEP) [32] is a technique

that discovers opportunities for replacing a set of equiva-

lent object instances with a single representative object to

save space. Hash consing [2, 24] and memoization [8, 34]

are major techniques for reusing existing objects. They have

been widely used in functional languages, such as LISP and

ML. JOLT [44] is a dynamic technique that makes aggres-

sive method inlining decisions based on the identification of

regions that contain the entire lifetimes of many temporary

objects (i.e., they are created and captured). Work by Dufour

et al. [20] uses a blended escape analysis to characterize and

find excessive use of temporary data structures. Their major

motivation of designing a “blended” analysis is that a pure

dynamic analysis that can detect lifetimes of short-lived tem-

porary objects is too expensive. Resurrector solves this scal-

ability problem by caching and reusing dead objects. Note

that all these dynamic optimization techniques require pre-

cise identification of object lifetimes, and thus, all of them

may benefit from the information profiled by Resurrector.

7. Conclusions

This paper presents a tunable object lifetime profiling tech-

nique, called Resurrector, that attempts to find the sweetspot

between precision and scalability by detecting and reusing

dead objects during the mutator execution. It is much more

precise than a GC-based approximation and much more effi-

cient than Merlin. Using the number of objects cached for

each allocation site as a parameter, Resurrector defines a

tradeoff framework that allows the designer of a client anal-

ysis to tune the precision of the lifetime information and

the efficiency of computing it specifically for the require-

ment of the analysis. We have implemented Resurrector in

JikesRVM and successfully run it on a set of large-scale,

real-world applications. Our experimental results demon-

strate that the overhead incurred by Resurrector is reasonable

and large optimization opportunities can be found using the

Resurrector-collected object lifetime information.
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