
AJANA: A General Framework for Source-Code-Level
Interprocedural Dataflow Analysis of AspectJ Software∗

Guoqing Xu Atanas Rountev
Ohio State University

{xug,rountev}@cse.ohio-state.edu

Abstract
Aspect-oriented software presents new challenges for the design-
ers of static analyses. Our work aims to establish systematic foun-
dations for dataflow analysis of AspectJ software. We propose a
control- and data-flow program representation for AspectJ pro-
grams, as basis for subsequent interprocedural dataflow analyses.
The representation is built at the source code level and captures
the semantic intricacies of various pointcut designators,multiple
applicable advices per joint point, dynamic advices, and general
flow of data to, from, and between advices. We also propose two
dataflow analyses for AspectJ software: (1) a novel object effect
analysis based on a flow- and context-sensitive must-alias analy-
sis, and (2) a dependence analysis used for constructing thesys-
tem dependence graph for slicing, refactoring, change impact anal-
ysis, etc. Both analyses are representative of a general category of
dataflow analyses referred to as interprocedural distributed envi-
ronment (IDE) problems. The two analyses are built on top of the
proposed representation, and take into account the complexflow
of control and data due to aspect-oriented features. We present a
study of the proposed techniques on 37 program versions, using
our AJANA analysis framework which is based on theabc AspectJ
compiler. The results show that the representation can be built effi-
ciently, that it is superior to an approach based on the wovenbyte-
code, and that it enables analyses that are both faster and more pre-
cise. These findings strongly indicate that the proposed approach is
a promising candidate for a foundation upon which various inter-
procedural analyses for AspectJ can be designed and built.

Categories and Subject Descriptors F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Program
Analysis

General Terms Algorithms, Languages

Keywords Dataflow analysis, interprocedural analysis, AspectJ

1. Introduction
Interprocedural dataflow analysis is a form of static analysis that
plays an important role in various software tools. Hundredsof

∗ This material is based upon work supported by the National Science
Foundation under grant CCF-0546040.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AOSD ’08 March 31–April 4, 2008, Brussels, Belgium.
Copyright c© 2008 ACM 978-1-60558-044-9/08/0003. . . $5.00

different analyses have been used for software understanding and
maintenance (e.g., for program comprehension, slicing, change im-
pact analysis, automatic transformations, etc.). The semantic infor-
mation produced by dataflow analysis is also used as an essential
component of tools for software verification and testing. Inaddi-
tion, dataflow analysis plays an important role for performance im-
provements through compiler optimizations. A large body ofex-
isting work has considered the theoretical foundations fordataflow
analysis (e.g., [27, 22, 26]) as well as specific analyses forimpera-
tive languages, and more recently, for object-oriented languages.

The increasing popularity of aspect-oriented programming
presents two serious challenges to the designers of dataflowanal-
yses. First, how should existing analyses be generalized tohandle
aspect-oriented features? Second, what kinds of new analyses can
contribute to better understanding, maintenance, testing, verifica-
tion, and optimization of aspect-oriented software? A critical step
in attacking these challenges is the definition of systematic general
foundations for dataflow analysis of aspect-oriented languages. The
goal of our work is to make novel advances towards achieving this
goal for AspectJ software.

A key component of dataflow analyses is the program’s inter-
procedural control-flow graph (ICFG) and the dataflow functions
associated with edges in this graph [27, 22]. In previous work [34]
we proposed an approach for building the ICFG of an AspectJ pro-
gram. This effort focused on control-flow semantics, and didnot
answer a critical question: how should thedata-manipulating ef-
fectsof ICFG nodes be represented and modeled in dataflow analy-
ses? In this paper we propose a solution to this problem. Thissolu-
tion, for the first time, makes it possible to define explicitly the lat-
tice and functions for dataflow problems for AspectJ software. The
proposed approach can serve as the starting point for a largebody
of work on adapting existing analyses to AspectJ and on defining
new analyses for AspectJ-specific problems.

Since the executable code of an AspectJ program (produced by
an AspectJ compiler) is pure Java bytecode, an obvious approach
is to directly apply existing analysis techniques for Java to the
bytecode. Of course, this approach requires an analysis to build and
preserve a map that associates the data-flow effects of each entity in
the bytecode back to those of its corresponding entity in thesource
code. However, as pointed out by our previous work [34], there is
significant discrepancy between the Java/AspectJ source code and
the woven Java bytecode. This makes it extremely hard to establish
such a map. For example, calls toproceed in around-advices can
be interpreted as calls to different methods at different join point
shadows, and can sometimes even be interpreted as the inlining
of the body of the crosscut method when that body is sufficiently
simple. Furthermore, the correspondence between source-level and
bytecode-level entities is specific to the weaving compilerbeing
used; different compilers (or even different version of thesame
compiler) can create completely different mappings.

An alternative approach is to perform dataflow analysis on the
source code or some suitable intermediate form derived fromthe
source code; this is the approach taken in our work. Such source-
code-level (SCL) analysis has several advantages over bytecode-
level (BCL) analysis. First, SCL analysis produces more relevant
results that can be more easily understood and interpreted by hu-
man programmers. For example, given a particular variable in an
advice, clients of a points-to analysis are interested onlyin the ob-
jectsin the source codethat this variable may point to. BCL anal-
ysis would return a set of objects including those introduced by
the compiler, which creates significant comprehension obstacles
for programmers. Second, SCL analysis can be performed before
weaving and therefore can produce information about the effects of
advices on the base code. The information may include, for exam-
ple, the purity of an advice (absence of side effects), the write/read
effects of advices on objects that flows from/to the base program,
the sequence of methods invoked by advices on a particular re-
ceiver object, etc. This information allows a software verification
tool to statically check certain properties, such as typestate-based
object protocols or specifications. BCL analysis, on the other hand,
must be performed after code is woven, and therefore is incapable
of providing such information. Finally, SCL analysis is, inmost
cases, faster than BCL analysis on large aspect-oriented programs.
For example, in our experiments, SCL slicing is faster than BCL
slicing for 9 out of the 10 experimental data points.

SCL dataflow analysis is complicated by the semantic complex-
ity of the various pointcut types, by situations where multiple ad-
vices may apply at the same join point, and by the existence ofdy-
namic advices which match a join point statically, but may ormay
not match it at run time. At present, there does not exist a general
and complete treatment of these issues. We propose a programrep-
resentation which makes explicit the data that is exposed during the
interactions between advices and the base code, and associates this
data with the appropriate ICFG nodes and edges. The representa-
tion considers cases where multiple advices apply at the same join
point, as well as the presence of dynamic advices. It precisely repre-
sents the interactions occurring in join points that can be described
by 15 types of pointcut designators, out of a total of 17 defined in
the AspectJ language (except forcflow andcflowbelow).

We illustrate the uses of the representation by designing two
dataflow analyses: (1) a novelobject effect analysisbased on a
flow- and context-sensitive must-alias analysis, and (2) adepen-
dence analysisused for constructing the system dependence graph
for slicing, refactoring, change impact analysis, etc. Both analyses
are representative of interprocedural distributed environment (IDE)
dataflow analysis problems [26]. The IDE class is a general cate-
gory of problems, examples of which are copy-constant propaga-
tion and linear-constant propagation [26], object naming analysis
[25], 0-CFA type analysis [14, 31, 15], and all IFDS (interpro-
cedural, finite, distributive, subset) problems [26] such as reach-
ing definitions, available expressions, live variables, truly-live vari-
ables, possibly-uninitialized variables, flow-sensitiveside-effects
[7], some forms of may-alias and must-alias analysis [23], and in-
terprocedural slicing [16]. Through our approach, this rich set of
existing interprocedural dataflow analyses becomes possible to ap-
ply to AspectJ software.

The effect analysis is used to build regular expressions foreach
shadow (i.e., base code corresponding to a join point) to summarize
the effects that the combination of advices applicable at the shadow
can have on the objects that flow to the advices from the base
code. Given a set of objects passed into advices at a shadow, the
effect information includes a sequence of read and write operations
on fields of these objects, and a sequence of methods invoked on
them. The regular expressions produced by this analysis canbe
directly used to analyze the interactions between the base code and

the advices, as well as inter-advice interactions. For example, the
analysis can be employed to verify the interactions of advices with
the the base code against properties considered harmful in aspect-
oriented software development, such as the writing, in an advice, of
an object that is read in the base code. As another example, object
protocols and typestate properties can be directly inferred and/or
verified from the analysis output. The proposed analysis techniques
are novel contributions for static analysis of AspectJ software for
program understanding and verification.

The system dependence graph [16] has traditionally been used
for program slicing and other techniques that require interprocedu-
ral dependence information. As a second example of an interpro-
cedural dataflow analysis, we define a form of dependence analysis
and the corresponding slicing algorithm. Slicing of aspect-oriented
programs should not be done on the woven code, because otherwise
the resulting slices could contain a lot of code that is not human
understandable, which in turn would complicate, rather than sim-
plify, program understanding tasks. Earlier approaches for slicing
of aspect-oriented software [36, 38, 17] have various limitations —
these analyses were built upon simplified program representations
that did not capture the full complexity of the problem. Our work
defines a more general solution and provides new insights based on
an extensive experimental evaluation.

The proposed representation and the two dataflow analyses have
been implemented in our AJANA (AspectJ analysis) framework,
built as an extension of theabc AspectJ compiler [1]. We per-
formed an experimental evaluation of the proposed techniques. Our
study indicates that, compared to the BCL analysis (1) the effects
of multiple advices (applying at a shadow) on the incoming objects
can be precisely computed; (2) the program representation and the
SDG have significantly smaller sizes, especially for programs that
contain around-advices; (3) more precise slices can be computed
using our SDG; and (4) significant reduction in analysis running
time can be achieved with our approach.

The key contribution of this work are:

• Program representation. We propose a technique for build-
ing a program representation for AspectJ programs, as basisfor
subsequent interprocedural dataflow analyses. The representa-
tion is built at the source-code level and captures the semantic
intricacies of pointcut designators in the presence of multiple
applicable advices per joint point, dynamic advices, and gen-
eral flow of data to, from, and between advices.

• Effect analysis and summary generation.At the core of the
object effect analysis is a must-alias analysis used to identify
variables that definitely refer to the objects of interest. Based
on the must-alias information, we generate regular expressions
for each object passed into an advice from the base code, to
summarize the effects that the advice can have on the object.

• Dependence analysis and slicing.We present an approach for
dependence analysis, SDG construction, and slicing of AspectJ
programs. The approach is built on top of the proposed repre-
sentation, and takes into account the complex flow of data due
to aspect-oriented features.

• Experimental evaluation. We present an experimental study
on 37 program versions drawn from 8 base programs, using our
AJANA framework. The results show that an effects summary
can be efficiently computed, that the cost of building the rep-
resentation and running the analysis is practical, that ICFG and
SDG sizes are reduced compared to analysis of woven byte-
code, and that slicing is both faster and more precise. These
findings strongly indicate that our approach is a promising can-
didate for a foundation upon which a rich variety of interproce-
dural dataflow analyses for AspectJ can be designed and built.

1 class Point {
2 int x = 0, y = 0;
3 int getX() { return x; }
4 int getY() { return y; }
5 void setRectangular(int nX, int nY) {
6 setX(nX); setY(nY);
7 }
8 void setX(int nX) { x = nX; }
9 void setY(int nY) { y = nY; }
10 void reset() {x = 0; y = 0;}
11 String toString() { println("X=" + x + ", Y=" + y); }
12 }
13 class Demo implements PropertyChangeListener {
14 void propertyChange(PropertyChangeEvent e) { ... }
15 static void main(String[] args) {
16 Point p = new Point();
17 p.addPropertyChangeListener(new Demo());
18 p.setRectangular(5,2); println("p = " + p);
19 p.setX(6); p.setY(3); println("p = " + p);
20 }
21 }

Figure 1. Running example, classesPoint andDemo

JP category PC designator PC category

initialization JP selector
initialization preinitialization JP selector

staticinitialization JP selector
call JP selector

call/execution execution JP selector
adviceexecution JP selector

field get/set get JP selector
set JP selector

excpt handling handler JP selector

within condition specifier
withincode condition specifier
this condition specifier
target data exposer,

condition specifier
args data exposer,

condition specifier
if condition specifier
cflow condition specifier
cflowbelow condition specifier

Table 1. Classification of join points and pointcuts

2. Example and Background
For illustration, we will use a modified version of thebean
example from the AspectJ distribution. Figure 1 shows classes
Point and Demo. AspectBoundPoint, shown in Figure 2,
is used to implement an event firing mechanism by invoking
propertyChangewhen a change event is fired. A fieldsupport
and a methodaddPropertyChangeListener are introduced
in Point by BoundPoint at lines 3–7 in Figure 2. Helper class
PropertyChangeSupport is not shown.

2.1 AspectJ Semantics

A join point in AspectJ is a well-defined point in the execution that
can be monitored. We classify the join point types in AspectJinto
four categories: (1) initialization, including both object initializa-
tion and class initialization, (2) method/constructor call and execu-
tion, (3) field getting and setting, and (4) exception handling. For a
particular join point, the textual part of the program executed during
the time span of the join point is theshadowof the join point [5].
There are two categories of shadows:statement shadows, for which
the program entity that is advised is a statement (e.g., a call), and
body shadows, where the advised entity is the body of a method.

A pointcutselects (“picks out” [18]) one or more join points by
imposing run-time restrictions on the basic join point types, and op-

1 aspect BoundPoint {
2 // add a field ’support’ to class Point
3 PropertyChangeSupport Point.support =
4 new PropertyChangeSupport(this);
5 void Point.addPropertyChangeListener
6 (PropertyChangeListener l)
7 { support.addPropertyChangeListener(l); }
8 void firePropertyChange(Point p, String property,
9 double oldv, double newv) {
10 p.support.firePropertyChange(property,
11 new Double(oldv),new Double(newv));
12 }
13 // ====== pointcuts ======
14 pointcut setter(Point p):
15 call(void Point.set*(*)) && target(p);
16 pointcut getterX(Point p):
17 execution(void Point.getX(*)) && target(p);
18 // ====== advices for pointcut ’setter’ ======
19 before(int x, Point p)
20 : setter(p) && args(x) { // before1
21 if (x < 0){ println("Bad set*"); p.reset();}
22 }
23 after(Point p) : setter(p) { // after1
24 println("Return from set*");
25 }
26 void around(Point p) : setter(p) { // around1
27 int oldX = p.getX(); Point q = p; proceed(q);
28 firePropertyChange(q,"setX",oldX,p.getX());
29 }
30 void around(Point p) : setter(p) { // around2
31 Point p1 = new Point(); proceed(p1);
32 firePropertyChange(p,"setobj",p.getX(),p1.getX());
33 }
34 // ====== advices for pointcut ’getterX’ ======
35 before(Point p) : getterX(p) { // before2
36 println("Start getX");
37 }
38 after(Point p) returning (int x)
39 : getterX(p) { // afterReturning1
40 println("Return from getX: " + x);
41 }
42 }

Figure 2. Running example, aspectBoundPoint

tionally exposes some of the values from the execution context. As-
pectJ defines 17 types of primitive pointcut designators. Weclassify
them into three categories:join point selector, run-time condition
specifier, anddata exposer. Table 1 shows the classifications of join
point types and pointcut designator types. A pointcut is dynamic if
it is a run-time condition specifier; otherwise, the pointcut is static.
A combined pointcut is dynamic if at least one of its component
pointcuts is dynamic.

◮ Example. AspectBoundPoint from Figure 2 defines two
pointcuts:setter andgetterX. The shadows of the join points
picked out bysetter are the five call sites at lines 6, 18, and 19
in Figure 1. The shadow of the join point picked out bygetterX
is the body of methodgetX. Both pointcuts are dynamic because
they includetarget(p), which picks out only run-time objects
that are instances ofPoint. ◭

An advice declarationconsists of an advice kind (before, after,
etc.), a pointcut, and a body of code forming anadvice. Whenever
multiple advices apply at the same join point, precedence rules
determine the order in which they execute [2]. We refer to an advice
associated with a dynamic pointcut as adynamic advice.

◮ Example. In Figure 2before1, after1, around1, and
around2 may apply at the same join point. Similarly,before2
andafterReturning1 may apply at the same join point. The
execution order of the first four advices is

before1,around1[around2[cs,after1]]

wherecs denotes the actual advised call site, and a pair of brackets
[] encloses advices that are invoked by the call toproceed in
the preceding around-advice.◭

Figure 3. Advice nesting tree and partial interaction graph for shadow p.setX(6)

2.2 Control-Flow Representation

In previous work [34] we considered the problem of regression
test selection for AspectJ software, and proposed a control-flow
representation for identifying the differences between two versions
of the same program. Using essentially the same approach, one
could construct the interprocedural control-flow graph (ICFG) of
an AspectJ program. The rest of this subsection describes some of
the details of the ICFG control-flow representation. Figure3 shows
a subset of the ICFG for the example from Figures 1 and 2.

An ICFG contains (1) standard CFGs that model the control
flow within Java classes, within aspects, and between aspects
and classes through non-advice method calls, and (2)interaction
graphs(IGs) that model the interactions between methods and ad-
vices at join points. The ICFG specifically addresses the situation
where multiple advices apply at the same join point, and the exis-
tence of dynamic advices. An IG is built for each statement shadow.

◮ Example. Consider shadowp.setX(6) at line 19 in Fig-
ure 1. In the absence of aspect-oriented features, this callwould
be represented by two ICFG nodes: acall-sitenode and areturn-
site node. Interprocedural edges would connect the call-site node
with the start node ofsetX, and the exit node ofsetX with the
return-site node. For this example, advicesbefore1, around1,
around2, andafter1 apply at the corresponding join point. In
the ICFG the call is represented by an artificial methodph root
(ph stands for “placeholder”) which represents the top-level logic
associated with the run-time processing of the join point.◭

Handling of multiple advices.The precedence rules of AspectJ
can be used to build a helper data structure, theadvice nesting tree,
which represents the run-time advice nesting relationship. Each tree
level contains at most one around-advice, which is the root of all
advices in the lower levels of this tree. With each around-advice A
the tree associates (1) a possibly-empty set of before-advices and
after-advices, (2) zero or one around-advices, and potentially (3)
the actual crosscut call site that could be invoked by the call to
proceed in A. These advices and the call site appear as if they
were nested withinA. The advice nesting tree forBoundPoint
at shadowp.setX(6) is shown in Figure 3.

Nodes at one level of the tree are invoked by the call to
proceed in the around-advice in the upper level of the tree. A
placeholder methodph proceed is used to represent the pro-
ceed call in an around-advice. This method contains calls toall
children advices, including the crosscut call site. For example,
ph proceed1, which represents the proceed call inaround1,

contains a call toaround2, whose proceed call is in turn repre-
sented byph proceed2, which then callssetX (the shadow)
andafter1. The top-levelph root method corresponds to the
root of the advice nesting tree.

Handling of dynamic advices.For dynamic advices that may
or may not be invoked at the join point, the ICFG uses an artifi-
cial ph decision node. The ”true” edge leaving this node goes
directly to its call-site node — that is, if the run-time condition
evaluates to true, the advice will be invoked. For a non-around-
advice, the ”false” edge goes to the call-site node for the next ad-
vice that could be invoked in the current method. For an around-
advice, the ”false” edge goes to a call-site node for its correspond-
ing ph proceed method, meaning that if this advice is not in-
voked, the advices that are nested within it will still be invoked.

3. Data-Flow Representation
In order to apply any dataflow analysis techniques, the key prob-
lem becomes:what data can flow in the interaction graph at a join
point, and how can it be represented?This section describes our
technique that builds an ICFG-based data-flow representation by
associating data with related ICFG nodes and edges. Our goals are
(1) making variables that are defined or used during the interac-
tion explicit for the placeholder methods that will reference them;
(2) associating withph decision nodes the variables that con-
tribute to making run-time decision about invocation of dynamic
advices; (3) exposing a minimum set of variables, without intro-
ducing any unnecessary variables or extra helper variablesin IGs;
and (4) keeping a single CFG for each advice declaration, without
replicating graphs for different advice applications. Figure 4 shows
pseudo-code which is equivalent to the representation for the ex-
ample from Figures 1, 2, and 3. This representation is the starting
point for the interprocedural dataflow analyses described later.

This section describes the handling of call join points and exe-
cution join points (see Table 1), which are the most common and
useful join point types in AspectJ practice. Due to space limitations,
we do not discuss the other three types of join points, although our
implementation handles them. In the ICFG, for an execution join
point of methodm, a new methodm$internal is created, and all
CFG nodes and edges fromm are moved tom$internal. A call
to m$internal is added inm, so that the execution join point of
m is converted to a call join point ofm$internal. Thus, without
loss of generality, the discussion covers only call join points. Our
goal is to make explicit the flow of data by creating formal parame-

class Demo implements PropertyChangeListener {
static void main(String[] args) {

...
ph_root1(p,6); // for shadow p.setX(6)
...

}
}
aspect BoundPoint {
static void ph_root1(Point arg0, int arg1) {

/* call site for before1 */
if (...) before1(arg1,arg0);
/* call sites for around1 */
if (...) ph_proceed1(arg0,arg1);
else around1(arg0,arg1,null,0,0,arg0,0);

}
static void around1(Point arg0, int arg1, Point arg2,

int arg3, int arg4, Point p, int dv) {
int oldX = p.getX(); Point q = p;
switch (dv) {
/* for shadow p.setX */
case 0: ph_proceed1(q,arg1);
/* for shadow p.setRectangular */
case 1: ph_proceed1_2(q,arg3,arg4);

}
firePropertyChange(q,"setX",oldX,p.getX());

}
static void ph_proceed1(Point arg0, int arg1) {

/* call sites for around2 */
if (...) ph_proceed2(arg0,arg1);
else around2(arg0,arg1,null,0,0,arg0,0);

}
static void around2(Point arg0, int arg1, Point arg2,

int arg3, int arg4, Point p, int dv) {
Point p1 = new Point();
switch (dv){
/* for shadow p.setX */
case 0: ph_proceed2(p1,arg1);
/* for shadow p.setRectangular */
case 1: ph_proceed2_2(p1,arg3,arg4);

}
firePropertyChange(p,"setobj",p.getX(),p1.getX());

}
static void ph_proceed2(Point arg0, int arg1) {

/* the original call site */
arg0.setX(arg1);
/* call site for after1 */
if (...) after1(arg0);

}
static void before1(int arg0, Point arg1) {...}
static void after1(Point arg0) {...}
...

}

Figure 4. Pseudocode for the IG shown in Figure 3.

ters and actual parameters associated with ICFG nodes, in order to
enable analysis based on this data-flow representation.

3.1 Declarations for Placeholder Methods and
Non-Around-Advices

For a method call join point, the variables that can be referenced are
limited to the actuals〈a1, a2, . . . , an〉 at the call site, as well as the
receiver object referencea0 if the crosscut call site is an instance
invocation. Given an IG, each placeholder method is conserva-
tively parameterized with a list of formals〈f0, f1, f2, . . . , fn〉 that
matches the actuals of the shadow call site. Each such methodis
static and has the same return type as the return type of the method
called at the shadow call site; if the shadow does not have/use a
return value, the method is declaredvoid. For example, consider
ph root in Figure 3. The signature of this placeholder method is

void ph root (Point arg0, int arg1)

wherearg0 corresponds to the receiver object reference at shadow
p.setX(6), andarg1 corresponds to the actual at this call site.

A non-around-advice that is called by a placeholder method is
declared as static with avoid return type. The formal parameters

are its original declared parameters, because a non-around-advice
will execute only its own body without affecting the invocation of
other advices and the crosscut call site. For example, the signature
for advicebefore1 in Figure 2 is

void before1(int arg0, Point arg1)

An after-returning-advice has one last formal parameter corre-
sponding to the returned value specified in the advice declaration.
For example, the signature forafterReturning1 is

void afterReturning1(Point arg0,int retval)

For an around-advice, the control and data flow are more com-
plicated, because it could invoke other advices and the crosscut
method. The handling of around-advices is discussed in detail later.

3.2 Call Sites for Non-Around-Advices

The IG contains call sites that invoke non-around advices; to en-
able any dataflow analysis, the appropriate actual parameters must
be associated with these call site. For an advice that has declared
parameters, there have to be one or more data exposer pointcut des-
ignators associated with it. There are two kinds of such designators:
target andargs (recall Table 1). One can build a formal-to-
actual mapping functionf a map for the parameters in the advice
declaration that are specified byargs. For each such parameter,
f a map maps its position in the advice’s formal list to the posi-
tion of its corresponding actual in the actual list of the shadow call
site. Based on this map, a helper functionfpos (short for “formal
position”) can be defined as follows:

fpos(i, pcd) =

8

>

<

>

:

0 pcd = target

f a map(i) + 1 pcd = args ∧ cs is instance
f a map(i) pcd = args ∧ cs is static

wherepcd denotes the type of pointcut designator, andcs denotes
the shadow call site.

For each before-advice and after-advice,fpos is applied for
each parameterpi in its declaration. As a result, one can obtain
the position of the corresponding formal of its caller placeholder
method. This formal should be used as the actual forpi in the
created call site. Specifically, for an advice declaration

ad(t , p1 , ..., pn) : target(t) && args(p1 , ..., pn) && ...

a call site of the form

ad(F (fpos(0, target)), F (fpos(1, args)), .., F (fpos(n, args)))

is created, whereF (j) is thej-th formal parameter of the place-
holder method that contains the call site.

◮ Example. Consider advicebefore1, called byph root
in Figure 3. Since parameterx is specified by theargs pointcut
designator (line 20 in Figure 2), we need to determine its corre-
sponding actual at the shadow call site — in this case, the constant
6. Since the position ofx in the parameter list ofbefore1 is 0,
and the position of6 in the actual list ofp.setX(6) is 0, the pair
(0, 0) is included inf a map. Functionfpos is then applied for
before1’s formal parametersx andp. Forp, fpos(1, target) =
0 and the corresponding formal ofph root is arg0. For x,
fpos(0, args) = f a map(0) + 1 = 1, and the corresponding
formal of ph root is arg1. Thus, the call site forbefore1
insideph root is of the formbefore1(arg1,arg0). ◭

The IG also contains a call site for the original shadow. The
formals of the caller placeholder method are used as actuals(or
receiver) of this call site. If the original shadow is an assignment,
a return$value local variable in the placeholder method is
assigned the return value at the newly created call site. Forexample,
consider the call tosetX contained inph proceed2 in Figure 3.
The created call site is of the formarg0.setX(arg1), where
arg0 andarg1 are the formals ofph proceed2.

For each after-returning-advice, an additional actual parame-
ter is needed for the last formal parameter. In the caller place-
holder method, thereturn$value local should have already
been created and assigned the return value of a call to the cross-
cut method (or to anotherph proceed method). This local is
used as the last actual at the call site. For example, consider ad-
viceafterReturning1 defined at lines 38–41 in Figure 2. The
execution join point forgetX is converted to a call join point
for getX$internal, and the shadow becomes the call site for
getX$internal(). The IG for the shadow contains a call to the
crosscut methodgetX$internal(), followed by a call to ad-
viceafterReturning1. Conceptually, the pseudocode for this
IG is as the follows:

int ph_root(Point arg0) {
int return$value = arg0.getX$internal();
afterReturning1(arg0,return$value);
return return$value;

}

3.3 Handling of Around-Advices

Handling of an around-advice is more complicated because its
formal parameters are dependent on the crosscut method and on
other advices that are invoked within it. Similarly to a place-
holder method, an around-advice must have all necessary parame-
ters of the shadow call site (including the receiver for an instance
method), in order to call the crosscut method or aph proceed
method. For example, considerph proceed2 in Figure 3, which
is called from withinaround2. Because the formal parameter list
for ph proceed2 is (Point arg0,int arg1), around2
has to take at least these two kinds of formal parameters in order to
provide the actuals for the call site, althougharound2 itself has
only one declared formal parameter (line 26 in Figure 2).

An even more significant problem is that the formal param-
eters needed by an around-advice could be different for differ-
ent shadows that the advice matches, because different shad-
ows may call different methods due to the use of wild cards
(*) in the pointcut definition. To illustrate, consider again advice
around2 defined in Figure 2. Thesetter pointcut associated
with around2 statically matches five statement shadows. Thus,
around2 can crosscut bothsetX andsetRectangular calls.
For shadows that callsetX, the formal parameter types needed
by around2 are(Point,int), whereas for shadows that call
setRectangular the types needed are(Point,int,int).

One possible approach is to replicate the CFG of an around-
advice for each shadow that the advice matches, and to createthe
method declaration and the call site for the advice on per-shadow
basis. Hence, one can have shadow-specific placeholder methods
and around-advices, and globally unique non-around-advices. In
fact, this approach is being used by theabc compiler [1]. However,
this violates the fourth goal that was stated at the beginning of this
section — the goal to keep one CFG per advice, without replicating
the CFG per advice application. Such replication could result in
an explosion in the number of ICFG nodes, and therefore may
introduce significant overhead for subsequent dataflow analysis. In
fact, our experiments showed that for some benchmarks containing
around-advices that match every call site, the size of the program
is doubled after it is compiled by theabc compiler.

3.3.1 Declarations and Call Sites for Around-Advices

We propose a different approach which does not require the replica-
tion of around-advices. For each such advice, our approach consid-
ers all shadows that the advice matches, and constructs a globally-
valid list global params that includes parameters which are re-
quired at each shadow. A companion mapspos (short for “shadow

position”) maps each shadow to the starting position of its corre-
sponding parameters inglobal params .

◮ Example.Consideraround2 and two of the shadows it ap-
plies to:p.setX(6) andp.setRectangular(5,2) at lines
19 and 18 in Figure 1. The actual parameters required at theseshad-
ows have types(Point,int) and(Point,int,int) respec-
tively. Hence,global params is (Point arg0, int arg1,
Point arg2, int arg3, int arg4). For p.setX(6)
the starting position of its parameters inglobal params is 0, and
for p.setRectangular(5,2) the starting position is 2. These
positions are encoded in mapspos . Note that there are three more
shadows at which this advice applies; to simplify the discussion,
for the rest of this subsection we omit the details related tothese
three shadows.◭

List global params together with the originally declared pa-
rameters of the around-advice are used to build the list of formal
parameters for this advice. An additional parameter is alsoadded
as the last formal; this parameter is adecision valueindicating the
shadow where the advice is currently applied. For example, the
parameter list foraround2 is (Point arg0, int arg1,
Point arg2, int arg3, int arg4, Point p, int
dv), wherearg0 througharg4 come fromglobal params , p is
the original declared parameter (line 30 in Figure 2), anddv is the
decision value.

The purpose of includingglobal params in the parameter list
is to propagate the data from different shadows, in order to use
that data to call aph proceed method, or the crosscut method,
for that shadow. Parameterdv is used to select among the calls to
differentph proceed methods.

In each placeholder method where an around-advice is called,
the call site for that advice has non-trivial actuals only for (1)
formal parameters corresponding to the currently-active shadow,
as defined by the positions in mapspos , (2) the advice’s original
formal parameters, and (3) the last formal parameterdv. For formal
parameters corresponding to the shadow, the formals of the caller
placeholder method are used as actuals. For the advice’s original
formal parameters, the actual are constructed similarly tocalls to
non-around-advices (as described in Section 3.2). A uniqueshadow
ID is used as the actual for formal parameterdv. For example, for
shadowp.setX(6), the call site foraround2 is

around2(arg0,arg1,null,0,0,arg0,0)

wherearg0 andarg1 are the formals of methodph proceed1
which contains the call site. The first two actuals correspond
to the shadow’s parameters, while the next-to-last actual cor-
responds to the declared formalp of around2. Similarly, for
p.setRectangular(5,2), the call site is

around2(null,0,arg0,arg1,arg2,arg0,1)

Note that the last actuals in these two call sites (0 and1) are unique
IDs for the corresponding shadows.

3.3.2 Call Sites for Placeholder Methods Inside an
Around-Advice

Because there is a single CFG for an around-advice, the advice
should be able to call differentph proceed methods for differ-
ent shadows. A pair of call-site and return-site nodes is created for
each placeholder method the advice could call. The originalcall
to proceed in the body of the after-advice is replaced with this
group of calls. A special placeholder decision node is created to
represent the selection of a placeholder method to be called, and
formal parameterdv is associated with this decision node. Essen-
tially, this representation is equivalent to a switch statement.

The actual parameters for the calls to the placeholder methods
can be defined similarly to the actuals for calls to around advices
(as described in Section 3.3.1) — the formals correspondingto the

shadow are identified in the around-advice’s list of formals, and are
used as actual parameters at the call site. However, additional trans-
formations are necessary: actuals that correspond to the originally
declared parameters of the around-advice must be replaced with
the actuals for the original call toproceed in this around-advice.
This is necessary for cases whenproceed is called with values
other than the formals of the around-advice, in which case the new
values need to be propagated to theph proceedmethods as well.

◮ Example. Consider the earlier example, wherearound2
needs to callph proceed2 at shadowp.setX(6), and to
call another placeholder method (e.g., namedph proceed2 2)
at shadowp.setRectangular(5,2). The following pseu-
docode illustrates the control- and data-flow representation:

void around2(Point arg0, int arg1, Point arg2,
int arg3, int arg4, Point p, int dv) {
Point p1 = new Point();
switch (dv) {
// used to be ph_proceed2(arg0,arg1)
case 0: ph_proceed2(p1,arg1);
// used to be ph_proceed2_2(arg2,arg3,arg4)
case 1: ph_proceed2_2(p1,arg3,arg4);

}
}

The “used to be” comments show the call sites before taking into
account the fact that the original call toproceed (line 31 in
Figure 2) usesp1 and notp as an actual parameter.◭

After creating the call sites, redundant formal parametersthat
are not used by the advice can be cleaned up. For example, after
this redundancy removal, the parameter list foraround2 is (int
arg1, int arg3, int arg4, Point p, int dv).

3.4 Data for Placeholder Decision Nodes

For a placeholder decision node that guards a call-site nodefor an
advice, we need to associate the data that contributes to thedeci-
sion making. This, of course, is essential for subsequent dataflow
analysis. There are two kinds of placeholder decision nodes: (1)
a shadow-based selection decision node in an around-advice(e.g.,
switch(dv) in the example from above), and (2) a decision node
that guards a dynamic advice. For the first kind of node, the associ-
ated data is the decision-value formal parameterdv. For the second
kind, there has to be a run-time condition specifier pointcutassoci-
ated with the dynamic advice that the node guards. The discussion
below considers each pointcut designator that defines a run-time
condition, and the data that should be associated with the corre-
sponding placeholder decision node.

As shown in Table 1, there are eight kinds of condition-specifier
pointcut designators in AspectJ. Forwithin andwithincode,
one can statically determine if the pointcut matches. Hence, they
do not contribute to making the run-time decision of whetheror
not an advice executes. Fortarget andargs, which are also
data-exposer designators, the needed data are the parameters that
the pointcut specifies. Athis pointcut designator indicates that
the receiver object at the shadow call site must be an instance of
the type specified by the pointcut; the data that is needed forthe
decision is a reference to this receiver object. Theif pointcut can
only reference parameters which are introduced by one or more
data-exposer pointcuts. Hence, the data for the decision are again
the parameters specified bytarget and/orargs pointcuts. For
cflow andcflowbelow, there does not exist an explicit value
that affects decision making. Our tool currently ignores these two
kinds of pointcuts; future work will have to develop static analysis
techniques for handling such pointcuts. Finally, for a composite
pointcut, the needed data is the union of the data for its component
primitive pointcut designators.

◮ Example. Consider the decision node inph root that
guards the call toaround1 (shown in Figure 3). The run-time
condition specifier inaround1’s setter pointcut (line 15 in
Figure 2) istarget. Therefore, the data that should be associated
with this decision is the formal ofph root that corresponds to the
receiver object — that is, formal parameterarg0. ◭

4. Object Effect Analysis
The proposed program representation enables a variety of interpro-
cedural static analyses. Based on this representation, we propose
a novel object effect analysis that computes regular expressions to
summarize, for each shadow, the field access and method invoca-
tion effects of the corresponding interaction graph upon the objects
that are passed into the advices from the based code.

◮ Example. For shadowp.setX(6) at line 19 in Figure 1,
there is only one reference-typed parameterarg0 passed to its
ph root placeholder method. Hence, for this shadow, we gener-
ate regular expressions only forarg0. Our analysis computes two
regular expressions for the corresponding object:

(reset |ǫ)((setX |ǫ)|(getX ((setX |ǫ)|(setRectangular |ǫ))))

((wxwy)|ǫ)(((wx|ǫ)|(rx((wx|ǫ)|((wxwy)|ǫ)))))

The first expression summarizes the method invocation sequence
on the object referred to byarg0, and the second one summarizes
the field read/write sequence (i.e., theaccess path) onarg0 (wfld

andrfld represent a write effect and a read effect on a fieldfld).
These regular expressions encode the paths along which all poten-
tial states of the object in this IG can be reached. This information
can be used directly to check certain temporal properties, such as
typestate-based object protocols (e.g., similarly to [11,10, 13] for
non-aspect-oriented languages).◭

4.1 Dataflow Problem

At the core of the effect analysis is a context-sensitive, flow-
sensitive must-alias analysis that identifies, for each reference-
typed formal parameter of aph root method, a set of variables
in the corresponding interaction graph thatmustpoint to the same
object as the formal parameter does. The must-alias information
provided by the analysis enables strong updates at assignments and
operations via pointers, and therefore can be used to verifymany
typestate properties that cannot be verified using may-alias infor-
mation. The regular expressions produced by our analysis may
miss effects that could occur on an object of interest. However,
using must-occurring events contained in the expressions can elim-
inate false positives, and thus improve the precision and real-world
usefulness of error detection. In fact, similar approachesbased on
must-alias information have been used in reverse engineering tools
[25] and in verification tools [11, 10, 13].

Lattice and transfer functions. We define a lattice of values
to state the dataflow problem. Each reference-typed formalf of a
ph root method corresponds to a distinct lattice elementlf ; this
lattice element represents the value off upon entry toph root.
The lattice also contains a top element⊤ and a bottom element
⊥. The lattice for shadowp.setX(6) (i.e., for ph root1 in
Figure 4) is{⊤, larg0 ,⊥}. The goal of the analysis is to associate
lattice elements with different variables in the corresponding IG.

If ⊥ is associated with some variablev, this means thatv could
refer to more than one object, or to an object that is not passed in
atph root. In Figure 4,p1 in around2 has this property:⊥ is
associated with this variable, which shows thatp1 is not included
in the must-alias set ofarg0.

The partial order in the lattice is⊥ ≤ li ≤ ⊤, and the meet op-
eration∧ is defined as follows:x∧⊥ = ⊥, x∧⊤ = x, x∧x = x,

andx ∧ y = ⊥ for x 6= y. The meet operation is used by the anal-
ysis to merge information about values that are propagated along
different execution paths. In particular, consider the last rule. If a
variable may refer to one object along one execution path, and to
another object along a different execution path, the variable is asso-
ciated with⊥. This resembles constant propagation analysis, which
determines expressions that definitely have the same value along all
execution paths; similarly, our analysis determines variables that
are guaranteed, along all execution paths, to refer to the object that
a particular formal parameter referred to at the entry ofph root.

We associate a mapSn : V → L with each ICFG noden; here
V is the set of variables in the IG, andL is the lattice described
earlier. If Sn(v) is some lattice element other than⊤ and⊥, the
value of v immediately before the execution ofn is guaranteed
to be the unique object corresponding to that element. A value
Sn(v) = ⊥ shows that the analysis could not determine thatv
refers only to a particular object represented by a single lattice
element. In the beginning of the analysisSn(v) = ⊤ for all n
andv , indicating that no alias information is currently known.

The effects of ICFG nodes on the solution can be represented by
dataflow transfer functions. For each noden, the analysis defines a
functionfn : (V → L) → (V → L). If S provides information
about the values of variables immediately beforen, fn(S) shows
the values immediately after n. For anyS : V → L, we will use
the notationS[v 7→ l] to denote a new map that is the same asS
except for the value associated withv ∈ V , which is changed to
l ∈ L. The key transfer functions are as follows:

• for v1 = v2: fn(S) = S[v1 7→ S(v2)]

• for v1 = v2.fld : fn(S) = S[v1 7→ ⊥]

• for v1.fld = v2: fn(S) = S

• for v1 = new X : fn(S) = S[v1 7→ ⊥]

• for calls and returns: discussed below
• for other nodes:fn(S) = S

For an assignmentv1 = v2, the analysis propagates the current
value of v2 to v1. When the value is obtained through an object
field in v1 = v2.fld , a conservative assumption is made that any
object reference could be assigned tov1, and therefore⊥ is propa-
gated. More precise treatment of field reads and writes is also im-
plemented in our analysis, by iteratively creating additional lattice
elements for field dereferences (e.g., lattice elementslarg0 .fld1 .fld2).
Due to space limitations, we do not provide the details of this en-
hancement. Conceptually, ifv2 can be decided to point to a unique
object at a nodev1 = v2.fld , we create a lattice element forv2.fld
and propagate this lattice element to subsequent CFG nodes.The
standardk-limiting approach is used in our implementation (with
k = 3 used for the experimental study) to limit the level of field
dereferences to be analyzed.

The transfer functionfp for a pathp in the ICFG is the compo-
sition of the functions for the nodes and the interprocedural edges
on the path. Not all ICFG paths represent possible executions. A
valid path has interprocedural edges that are properly matched:
each (exit, return-site) edge is matched correctly with thelast un-
matched (call-site, entry) edge on the path, in the sense that both
edges correspond to the same call site. The precise solutionof the
dataflow problem is defined with respect to the set of all validpaths.

The meet-over-all-valid-paths solutionMVPn for noden de-
scribes the variable values immediately before the execution of n.
This solution is defined as

MVPn =
^

p∈VP(n)

fp(MVPentry)

whereentry is the entry node ofph root, andVP(n) is the set
of all valid pathsp leading fromentry to n. For any reference-

typed formalf of ph root with a corresponding lattice element
lf , MVPentry(f) = lf . For all otherv ∈ V , MVPentry(v) = ⊤
indicating that currently there is no information aboutv.

4.2 Analysis Algorithm

The dataflow problem presented in the previous subsection isan ex-
ample of an interprocedural distributive environment (IDE) prob-
lem. In IDE problems, the information at a program point is rep-
resented by a map from symbols to lattice elements. Sagiv et al.
[26] define a general approach for solving such problems precisely.
We have instantiated their approach to apply to the problem under
consideration. The resulting flow- and context-sensitive algorithm,
described in this section, is provably precise in the sense of com-
puting the meet-over-all-valid-paths solution for each node.

Phase 1: Relate formals to variables.The first phase of the
analysis computes, for each method reachable from aph root
method, information that relates the values of local variables to
the values of the formal parameters of this method. For each node
n and local variablev, the analysis computes a setFn(v) that
contains formal parameters ofn’s method thatv maybe aliased to
immediately aftern. These sets are propagated along ICFG paths
in the method. If atn variablev is assigned values that cannot
alias a formal parameter,Fn(v) = {⊥}. The meet operation is
performed at control-flow joint point: if noden does not assign
a value tov, and any incomingFni

(v) contains⊥, the resulting
Fn(v) must contain only⊥; if none of the incoming setsFni

(v)
contains⊥, the resultingFn(v) =

S

ni
Fni

(v). Here at noden we
have to preserve all possible formal parameters thatv may alias at
predecessor nodesni, because at this time there is no knowledge
of the potential aliasing relationships among formal parameters of
this method.

If n is a return statement,v is the value that is returned, and
Fn(v) does not contain⊥, Fn(v) is added to a setSF (short for
“summary function”) for this method. This set encodes a dataflow
summary function in the classical sense of the functional approach
for interprocedural analysis by Sharir and Pnueli [27]. In this phase,
the analysis considers the strongly-connected-components (SCC)
in the call graph and performs a bottom-up processing of the SCC-
DAG. If n is a call site of the formv = o.m(a1, a2, . . . , an), we
consult the setsSF of the possible target methods that could be
called by this site, and find a set of actual parametersAP that
correspond to the formals contained in theseSF sets. For each
actualai ∈ AP , Fn(v) is updated with setFn(ai). Again, if any
Fn(ai) contains⊥, the resultingFn(v) contains only⊥.

Phase 2: Propagation of lattice elements.This phase of the al-
gorithm propagates information from callers to callees. Let Sn(v)
be the lattice element associated withv immediately before node
n. If n is a call node at whichv is used as an actual, the value of
Sn(v) is propagated to the corresponding formal(s) of the callee
method(s). When a method is processed, for each noden and vari-
ablev, we replace the formal parameter(s) inFn(v) with the corre-
sponding lattice element(s). If eventuallyFn(v) contains more than
one lattice elements, the meet operation is performed on theentire
set and the resulting lattice element is used to updateSn(v).

Phase 3: Effect graph building and summary generation.
This phase of the analysis performs a depth-first traversal of the
ICFG starting from eachph rootmethod, and removes nodes that
do not read/write a field or invoke a method on a local variable
with which a non-⊥ lattice element is associated. The resulting
pruned ICFG is aneffect graph. This graph is essentially a finite
state automaton that encodes all reachable states of the objects that
flow into this interaction graph. By computing SCCs and bottom-
up traversing the SCC-DAGs in an effect graph, we are able to
generate regular expressions (as shown in the earlier example) for
each incoming object.

1:entry

around2

p1 = new Point
2:ph_decision

3:ph_proceed2

4:ph_proceed2_2

act1_in act2_in

return

return

act1_out
act2_out

arg1

arg3

arg4
p

dv

5:entry

ph_proceed2

f1_in
f2_in 6:setX

receiver_in act1_in

return

receiver_out act1_out

7:ph_decision

8:after1

act1-in

arg1_out

arg3_out

arg4_out p_out

dv_out

exit

around2

exit

ph_proceed2

f1_out f2_out

return

1. static void around2(int arg1,

 int arg3, int arg4, Point p, int dv)

2. associated data: dv 6. call f1_in.setX(f2_in)

3. call ph_proceed2(p1,arg1) 7. associated data: f1_in

 for shadow p.setX(6) 8. call after1(f1_in)

4. call ph_proceed2_2(p1,arg3,arg4)

 for shadow p.setRectangular(5,2)

5. static void ph_proceed2(Point f1_in, int f2_in)

control dependence

act1-out

data dependence

parameter flow

call/return

summary edge

Figure 5. Partial SDG foraround2

5. Slicing AspectJ Programs
This section outlines a program slicing technique for AspectJ pro-
gram, as a second proof-of-concept analysis. The dependence anal-
ysis used in this technique is another representative of flow- and
context-sensitive dataflow analysis algorithms; all such algorithms
require the information described in Section 3. Our goal is not to
define a complete slicer for AspectJ, but rather to show that the pro-
posed representation contains all necessary information to perform
interprocedural dependence analysis. Thus, the analysis is simpli-
fied in two ways: (1) it uses a field-based approach that treatsall oc-
currences of the same instance field as aliases, without considering
the base object in which the field is contained, and (2) it doesnot
take into consideration the effects of library calls. Call and return
edges are determined using class hierarchy analysis. A conservative
intraprocedural points-to analysis is used to refine the resolution of
virtual calls and to eliminate certain spurious data dependencies.

Building the system dependence graph (SDG).Given the
control- and data-flow representation, the SDG of an AspectJpro-
gram can be constructed relatively easily. The SDG containsdata-
dependence and control-dependence edges between ICFG nodes,
together with special nodes and edges to represent the effects of
calls. We use the standard algorithm by Horwitz et al. [16] tobuild
the SDG. A key feature of this algorithm is the computation of
summary edgesthat represent transitive dependencies along same-
level valid ICFG paths [26]. Such edges are constructed through a
bottom-up traversal of the call graph, using the dependenceinfor-
mation for a callee to construct the summary edges in a caller.

A decision node is created for each virtual call site; each
control-dependence edge leaving this node goes to a call-site node
for a possible method that could be invoked at run time. For these
and other placeholder decision nodes, the variable associated with
the node is considered used (i.e., read).

Program #LOC #Versions #Methods #Shadows

bean 296 7 40 11
tracing 1059 7 44 32
telecom 870 7 96 19
quicksort 111 3 18 15
nullcheck 2991 5 196 146
lod 3075 3 220 1103
dcm 3423 4 249 359
spacewar 3053 1 288 369

Table 2. Analyzed programs

◮ Example. Figure 5 illustrates a partial SDG for the running
example, again with focus on shadowp.setX(6). Since relevant
data is associated with placeholder decision nodes, the algorithm
can take into account the data dependencies between such nodes
and the nodes that define the data. For example, the proceed-
selection decision node 2 in the SDG is data dependent on the
formaldv. Similarly, decision node 7 is data dependent on formal
f1 in, which is a reference to the receiver object of the crosscut
call site, because this node represents thetarget pointcut that
guards the execution of adviceafter1. ◭

Slicing AspectJ Software.Standard graph-reachbility-based
slicing [16] can be directly applied to the SDG. Each statement in
the source code of an AspectJ program, except calls toproceed,
corresponds to a unique node in the ICFG. Therefore, for comput-
ing a forward or backward slice for any non-proceed statement,
the slicing algorithm is executed starting from the corresponding
ICFG node. A call toproceed in an around-advice may corre-
spond to a group of call-site nodes in the ICFG, each of which calls
aph proceedmethod for one shadow. In this case a slice is com-
puted for each call-site node, and the slice union is taken.

6. Experimental Evaluation
To evaluate the proposed techniques, we performed a study which
focused on the following research questions:

• What are the ICFG and SDG sizes observed for our approach,
compared to using the woven bytecode?

• What is the cost of building the representation?
• How many IG variables are determined to refer to objects flow-

ing to advices, and what is the cost of the effect analysis?
• What is the effect of our approach on slice size and computation

time, compared to slicing on the woven bytecode?

Implementation. We have implemented the analyses in our
AJANA analysis framework, built on top of theabc AspectJ com-
piler [1]; details on the weaving performed byabc can be found
in [4]. A JANA uses the Jimple intermediate representation pro-
duced by the static weaving component of the compiler, before the
actual advice weaving process starts. At this point the inter-type
fields and methods introduced by aspects have been added to their
host classes, and static shadows have been identified, whichsignif-
icantly facilitates our analyses.

Programs.Our study used the eight AspectJ programs shown in
Table 2. The first seven program were used in our previous workto
evaluate a technique for regression test selection [34]; inthat work,
the original version of each program was used as basis to create
several modified versions. The last benchmark was taken fromthe
AspectJ example package. This group of benchmarks has also been
used by other researchers [33, 12]. For each program, Table 2shows
the number of lines of code, methods, and shadows in the original
version, plus the number of modified versions. Considering the
different versions of the same program, the study used a total of
37 experimental subjects. All experiments were performed on a PC
with an Intel Xeon 2.8GHz CPU, and run with 512M heap size.

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7

bean

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5

nullcheck

300

1000

1700

2400

3100

3800

4500

5200

5900

1 2 3 4 5 6 7

tracing

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3

lod

400

700

1000

1300

1600

1900

2200

2500

2800

1 2 3 4 5 6 7

telecom

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4

dcm

200

300

400

500

600

700

800

900

1 2 3

quicksort

0

3000

6000

9000

12000

15000

18000

21000

24000

1

spacewar

Figure 6. ICFG edges�/�, control-dependence♦/� and data-dependence△ /N edges: woven bytecode (�, . . .) and AJANA (�, . . .)

6.1 Study 1: ICFG and SDG Size and Cost

Our first study investigated the sizes of the ICFG and the SDG.
Figure 6 compares the graphs constructed by AJANA using the pro-
posed representation and the graphs constructed from the woven
bytecode. Nodes in both types of ICFGs corresponded to Jimple
statements. The figure shows the number of ICFG edges, the num-
ber of SDG control-dependence edges, and the number of SDG
data-dependence edges. These results were obtained by running
abc with advice inlining enabled. We consider edges rather than
nodes, because the number of edges is a more important factorthat
affects the running time of subsequent interprocedural analyses.

For some simple program versions (e.g., for benchmarksbean
andtelecom), our approach produces more ICFG edges. We in-
vestigated these occurrences, and determined that in theseversions
some advice bodies contain only a few statements, and the weaving
process inlines these bodies at their shadows. In these cases, inlin-
ing eliminates interprocedural edges that are explicit in our repre-
sentation. Except for such cases, the number of ICFG edges inour
representation is lower — in many cases, by at least a factor of two
(e.g., fortracing.7 and all versions ofdcm).

For most versions, the SDGs built by our technique have slightly
more control-dependence edges, due to the artificial decision
nodes. On the other hand, the number of SDG data-dependence
edges constructed from the woven bytecode is often dramatically
higher that the corresponding number in AJANA. For example, this
number is more than 7 times higher fornullcheck.5, and more
than 30 times higher for two versions oflod. We inspected the
versions with significant differences, and found that all ofthem
contain around-advices, and many of these advices crosscutevery
call site in the base program. In such cases, any interprocedural
analysis influenced by data dependencies is likely to incur signifi-
cant overhead unless it employs our representation.

The algorithm for building the control- and data-flow rep-
resentation runs in practical time. For example, for programs
nullcheck, lod, dcm andspacewar, which are the largest
among the eight benchmarks, our analysis ran in 156.4, 159.4,

417.7, and 250 ms respectively,1 whereas the corresponding times
for ICFG building from the woven bytecode were 122.0, 122.0,
535.5, and 110 ms. Even though our approach can be a bit slower,
these differences are offset by savings in the subsequent analyses.

In addition to size and cost, another significant benefit of our
representation is its independence from the particular weaving tech-
niques used to create the final Java bytecode. Such independence
has critical advantages when relating the analysis resultsto the orig-
inal program (e.g., in tools for software understanding andtesting),
and when considering different weaving compilers or different ver-
sions of the same compiler.

6.2 Study 2: Slicing

Our second study investigated the effect of our techniques on the
computation of slices for AspectJ programs. One of the majormo-
tivations of computing a slice for a program entity is to understand
its dependencies on other program entities. Consider a slice S and
the set of all SDG nodes included inS. From the point of view of a
programmer, only nodes that correspond to entities from theorig-
inal program source code are of any relevance for program under-
standing through slicing. Therefore, an interesting question is the
following: how many SDG nodes inS correspond to statements
in the original AspectJ code? We will refer to the number of such
nodes, relative to the total number of nodes inS, as therelevance
ratio of the slice.

In this study we ran the standard slicing algorithm [16] on the
SDG built by AJANA and on the SDG built from the woven byte-
code. For each benchmark, we choose the versions that contained
the most complex advice interactions. We computed a slice for each
node in the SDGs of these versions, and determined the relevance
ratios for all slices. Table 3(a) summarizes the results of this exper-
iment. Column “Ver” shows the program versions that were used.
Column “Size” contains the average number of nodes in a slice; a
slash “/” separates the result obtained with our representation from
the one obtained with the woven bytecode. Using a similar format,
column “RelRat” shows the average value of the relevance ratios

1 These times are the averages across all program versions.

Program Ver (a) (b) (c)
Size (nodes) RelRat (%) Time (sec) #EG nodes #EG edges Precision (%) Time (sec) Nodes (%)

bean v4 367 / 618 98.2 / 54.7 2.2 / 2.6 228 302 100 0.14 56.3
tracing v7 829 / 1443 98.7 / 77.2 5.8 / 24.2 56 73 100 0.47 35.3
telecom v7 387 / 230 98.5 / 85.3 2.0 / 1.3 74 96 100 0.19 100
quicksort v2 309 / 325 98.0 / 44.5 0.3 / 0.8 100 142 100 0.19 75
nullcheck v2 836 / 5852 97.8 / 37.7 15.9 / 542.7 229 349 100 27.48 1.3

v5 3313 / 7203 96.1 / 46.0 21.1 / 762.1 388 589 100 154.84 0.8
lod v1 926 / 3593 97.2 / 64.9 32.0 / 105.1 11 12 92.3 1.63 100

v2 652 / 3623 97.9 / 60.1 21.2 / 956.7 10 12 91.4 5.36 100
dcm v2 1444 / 8654 98.2 / 44.3 19.7 / 1011.7 44 54 90 9.91 7.7
spacewar v1 169 / 1687 97.6 / 68.6 3.9 / 62.8 39 50 76 0.45 15.7

Table 3. (a) Slice size, relevance ratio, and slicing time; (b) Effect graph size, precision, and analysis running time; (c) Number of ICFG
nodes in our representation of around-advices, relative toa cloning approach

for the computed slices, and column “Time” shows the total time
of the computation, including SDG building.

For calculating the relevance ratios of the slices, the key is to
determine the set of SDG nodes that donot have corresponding
statements in the AspectJ source code. For slices based on our rep-
resentation, these nodes are all placeholder decision nodes as well
as all call-site and return-site nodes for placeholder methods. For
slices based on the woven bytecode, it is not obvious how to iden-
tify such nodes, due to the difficulty in establishing a map between
the source code and the woven code. As a conservative approxima-
tion, we define this set to contain all nodes in compiler-introduced
methods. In fact, the relevance ratios shown in Table 3(a) may be
too high for the bytecode-based approach, because even in methods
whose declarations are not changed by the compiler there maybe
compiler-introduced statements.

Clearly, our technique achieves significantly better relevance
ratios, which means that the slices it computes are much closer
to the original AspectJ source code. Furthermore, for all programs
excepttelecom, smaller slices are built and the running time for
SDG building and slicing is reduced. Especially for large programs
(such as the last four), our technique achieves impressive time
savings. We manually inspected the woven bytecode fortelecom
and determined that inlining done by the weaving process wasthe
reason for the observed cost of SDG construction and slicing.

6.3 Study 3: Effect Analysis

The third study investigated the object effect analysis, using the
same program versions. For eachph root method, we ran the ef-
fect analysis for each of its reference-typed formal parameters, and
generated regular expressions. Table 3(b) shows the results from
this experiment. Columns “#EG nodes” and “#EG edges” show
the average number, across shadows, of nodes and edges in theef-
fect graph. Column “Precision” shows ratios between the number
of EG nodes for our must-alias-based analysis, and the number of
EG nodes for an artificial may-alias-based analysis which was de-
fined for the purposes of evaluating the precision of the must-alias
information. The may-alias analysis is a modification of themust-
alias analysis, and its results provide a conservative overapproxima-
tion (i.e., an upper bound) of possible effects. For most programs,
the must-alias-based effect analysis achieves perfect precision. The
main reason is that an advice body is usually fairly simple— it con-
tains much fewer control flow paths compared to a Java method.

Note that performing such an effect analysis on the woven
bytecode is clearly infeasible. For example, inlining of advices into
the base code makes an advice a part of the base code. As another
example, an around-advice could be broken up into multiple pieces,
which are scattered in both the base class and the advice class.
Such compiler-specific weaving rules make it extremely difficult
for a non-compiler-designer to distinguish between the base code
and advices in the woven Java bytecode. Also note that these

results were obtained by analyzing the entire interaction graph,
rather than a single advice. The analysis of a single advice is not
sufficient to provide precise information about its behavior, because
its execution is often tied with the execution of other advices.

The running times shown in Table 3(b) include the time used
to build the representation together with the execution time of the
effect analysis. Clearly, this cost is practical.

Representation of around-advices.Our approach merges the
representations of multiple around-advices, as describedin Sec-
tion 3.3. An alternative solution would be to replicate the CFG of
an around-advice for each shadow that the advice matches, result-
ing in a body-cloning-based representation. Table 3(c) shows the
ratios between the number of ICFG nodes in our representation of
around-advices, and the corresponding number in a cloning repre-
sentation. For some programs (e.g.,telecom) our representation
does not achieve any reduction, because these programs either do
not have around-advices, or an around-advice can apply at only one
shadow. For other programs, significant differences can be seen.
For example,nullcheck.5 has only one around-advice, but it
can apply at 274 shadows in the program. Cloning the advice body
per shadow leads to an extremely large ICFG for this program.Al-
though the proposed representation of around-advices is compact, it
can cause propagation along unrealizable paths during a subsequent
static analysis. This problem can be solved by using a “shadow-
sensitive” analysis that associates a call toproceed with a spe-
cific shadow that the call invokes, by propagating interprocedurally
the constant values of variablesdv.

Conclusions.For analyzing AspectJ software, especially larger
non-toy AspectJ applications, the source-code-based representation
proposed in this paper is practical to build, easier to understand,
contains significantly fewer nodes and edges, enables pre-weaving
analysis of interactions between base code and advices, andcan
dramatically speed up subsequent dataflow analyses. These results
strongly indicate that such a representation could serve asstarting
point for future work on adapting existing dataflow analysesto As-
pectJ, and on defining new analyses for AspectJ-specific problems.

7. Related Work
Static analysis of AOP software.Theabc compiler group [1] de-
veloped the AspectBench Compiler for AspectJ, which provides a
variety of static analyses and optimizations [3, 4, 6]. Their work fo-
cuses on optimizations of the generated bytecode to reduce execu-
tion overhead, whereas the focus of our work is representation and
optimization at the source-code level abstracting away compiler-
specific details, in order to facilitate high-level programanalysis
and program understanding. We implemented the AJANA frame-
work as an extension to theabc compiler, building the ICFG be-
tween the static weaving phase and the advice weaving phase.

Rinard et al. [24] present a classification of the interactions be-
tween methods and advices. This classification enables develop-

ers to recognize interaction patterns that support modularreason-
ing and to focus on the causes of potentially non-modular inter-
actions, by employing an existing compositional pointer and es-
cape analysis [32]. However, their work analyzes a single advice,
whereas our approach analyzes the entire interaction graph, and
therefore achieves higher precision in modeling the behavior of
multiple interacting advices. Zhao defines control-flow representa-
tions for a variety of testing and analysis tasks for aspect-oriented
programs [37, 35, 36, 38]. However, the proposed models do not
consider more complex situations such as multiple advices per join
point, or dynamic advices. Our previous work proposed a static
control-flow model for AspectJ software [34] which serves asthe
basis for the ICFG used in this paper. However, this approachdid
not include any data-flow representation that could be used for
dataflow analysis.

Interprocedural dataflow analysis. The theoretical founda-
tions for interprocedural dataflow analysis have been investigated
extensively (e.g., [27, 22, 26]). Both the object effect analysis and
the dependence analysis described earlier are examples of IDE
analyses. In the Java community, dataflow analysis has been widely
used for compiler optimizations (e.g., [29]), software verification
(e.g., [13, 11, 9]), program understanding (e.g., [25]), and error
detection (e.g., [21, 8]). As more large-scale aspect-oriented pro-
grams are being developed and employed for real-world use, adopt-
ing these existing techniques by the aspect-oriented community can
benefit numerous compiler construction and software engineering
tasks. The work presented in this paper is a step towards applying
these techniques to AspectJ software.

There is a large body of work on static slicing [30]. The tradi-
tional SDG-based interprocedural slicing algorithm was proposed
by Horwitz at al. [16]. Later work addresses the slicing of object-
oriented software (e.g., [19]) and of programs with arbitrary control
flow (e.g., [28]). Slicing algorithms for aspect-oriented programs
were proposed, for example, in [36, 17]. Unlike our work, these
efforts do not consider the full complexity of the flow of control
and data at join points, or the generality of AspectJ language fea-
tures. Furthermore, it is not clear how interprocedural dependence
analysis would be performed. Our work defines and evaluates ex-
perimentally a general program representation which can beused
for dependence analysis and for a variety of other interprocedural
analyses (e.g., IDE analyses [26]).

8. Conclusions
This paper describes an approach for constructing a static control-
and data-flow representation for AspectJ software. This source-
code-based technique makes explicit the data exposed during inter-
actions at join points. We use effect analysis, dependence analysis,
and slicing as representative client analyses for the proposed ap-
proach. Our experiments clearly show that, compared to analysis of
the woven bytecode, this representation is better suited asfounda-
tion for subsequent static analyses. We also propose a noveleffect
analysis for understanding and checking of typestate properties of
the behavioral effects of multiple interacting advices on incoming
objects from the base program. This work creates promising oppor-
tunities for future work on adapting many existing Java analyses to
AspectJ, and on designing novel AspectJ-specific analyses,for use
in various tools for program comprehension, impact analysis, type-
state verification, and software testing.

Acknowledgments. We would like to thank the AOSD reviewers
for many valuable comments and suggestions.

References
[1] AspectBench Compiler. abc.comlab.ox.ac.uk.
[2] AspectJ Compiler. www.aspectj.org.

[3] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,J. Lhoták, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Building theabc AspectJ
compiler with Polyglot and Soot. Technical Report abc-2004-4, abc Group, Dec.
2004.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,J. Lhoták, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.abc: An extensible
AspectJ compiler. InAOSD, pages 87–98, 2005.

[5] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,J. Lhoták, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Optimising AspectJ. In
PLDI, pages 117–128, 2005.

[6] P. Avgustinov, E. Hajiyev, N. Ongkingco, O. de Moor, D. Sereni, J. Tibble, and
M. Verbaere. Semantics of static pointcuts in AspectJ. InPOPL, pages 11–23,
2007.

[7] D. Callahan. The program summary graph and flow-sensitive interprocedural
data flow analysis. InPLDI, pages 47–56, 1988.

[8] S. Cherem, L. Princehouse, and R. Rugina. Practical memory leak detection
using guarded value-flow analysis. InPLDI, pages 480–491, 2007.

[9] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in
polynomial time. InPLDI, pages 57–68, 2002.

[10] R. DeLine and M. Fähndrich. Typestates for objects. InECOOP, LNCS 3086,
pages 465–490, 2004.

[11] N. Dor, S. Adams, M. Das, and Z. Yang. Software validation via scalable
path-sensitive value flow analysis. InISSTA, pages 12–22, 2004.

[12] B. Dufour, C. Goard, L. Hendren, O. de Moor, G. Sittampalam, and C. Verbrugge.
Measuring the dynamic behaviour of AspectJ programs. InOOPSLA, pages 150–
169, 2004.

[13] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate
verification in the presence of aliasing. InISSTA, pages 133–144, 2006.

[14] D. Grove and C. Chambers. A framework for call graph construction algorithms.
TOPLAS, 23(6):685–746, Nov. 2001.

[15] N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon
University, 1992.

[16] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs.TOPLAS, 12(1):26–60, 1990.

[17] T. Ishio, S. Kusumoto, and K. Inoue. Debugging support for aspect-oriented
program based on program slicing and call graph. InICSM, pages 178–187,
2004.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of AspectJ. InECOOP, LNCS 2072, pages 327–353, 2001.

[19] L. Larsen and M. J. Harrold. Slicing object-oriented software. In ICSE, pages
495–505, 1996.

[20] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang.PSE: Explaining
program failures via postmortem static analysis. InFSE, pages 63–72, 2004.

[21] T. Marlowe and B. G. Ryder. Properties of data flow frameworks: A unified
model.Acta Informatica, 28:121–163, 1990.

[22] T. Reps, M. Sagiv, and S. Horwitz. Interprocedural dataflow analysis via graph
reachability. Technical Report DIKU-TR94-14, Universityof Copenhagen, Apr.
1994.

[23] M. Rinard, A. Salcianu, and S. Bugrara. A classificationsystem and analysis for
aspect-oriented programs. InFSE, pages 147–158, 2004.

[24] A. Rountev and B. H. Connell. Object naming analysis forreverse-engineered
sequence diagrams. InICSE, pages 254–263, 2005.

[25] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis
with applications to constant propagation.Theoretical Computer Science, 167(1-
2):131–170, 1996.

[26] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S. Muchnick and N. Jones, editors,Program Flow Analysis: Theory and
Applications, pages 189–234. Prentice Hall, 1981.

[27] S. Sinha, M. J. Harrold, and G. Rothermel. System-dependence-graph-based
slicing of programs with arbitrary interprocedural control flow. In ICSE, pages
432–441, 1999.

[28] http://www.sable.mcgill.ca/soot.
[29] F. Tip. A survey of program slicing techniques.Journal of Programming

Languages, 3:121–189, 1995.
[30] F. Tip and J. Palsberg. Scalable propagation-based call graph construction

algorithms. InOOPSLA, pages 281–293, 2000.
[31] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java

programs. InOOPSLA, pages 187–206, 1999.
[32] T. Xie and J. Zhao. A framework and tool supports for generating test inputs of

AspectJ programs. InAOSD, pages 190–201, 2006.
[33] G. Xu and A. Rountev. Regression test selection for AspectJ software. InICSE,

pages 65–74, 2007.
[34] J. Zhao. Change impact analysis for aspect-oriented software evolution. In

International Workshop on Principles of Software Evolution, pages 108–112,
2002.

[35] J. Zhao. Slicing aspect-oriented software. InIEEE International Workshop on
Program Comprehension, pages 251–260, 2002.

[36] J. Zhao. Data-flow-based unit testing of aspect-oriented programs. In
International Computer Software and Applications Conference, page 188, 2003.

[37] J. Zhao and M. Rinard. System dependence graph construction for aspect-
oriented programs. InMIT-LCS-TR-891, 2003.

