AJANA: A General Framework for Source-Code-Level
Interprocedural Dataflow Analysis of AspectJ Software*

Guoqing Xu

Atanas Rountev

Ohio State University
{xug,rountev}@cse.ohio-state.edu

Abstract

Aspect-oriented software presents new challenges for ¢seyn-
ers of static analyses. Our work aims to establish systerfain-
dations for dataflow analysis of AspectJ software. We prepms
control- and data-flow program representation for Aspect} p
grams, as basis for subsequent interprocedural dataflolysasa
The representation is built at the source code level anduoept
the semantic intricacies of various pointcut designatorsltiple
applicable advices per joint point, dynamic advices, ancegd
flow of data to, from, and between advices. We also propose two
dataflow analyses for AspectJ software: (1) a novel objedecef
analysis based on a flow- and context-sensitive must-atiak/a
sis, and (2) a dependence analysis used for constructingytiie
tem dependence graph for slicing, refactoring, change étrgozal-
ysis, etc. Both analyses are representative of a genesjaat of
dataflow analyses referred to as interprocedural disgtbenvi-
ronment (IDE) problems. The two analyses are built on toghef t
proposed representation, and take into account the confiphex
of control and data due to aspect-oriented features. Wepres
study of the proposed techniques on 37 program versionsg usi
our AJANA analysis framework which is based on tiec AspectJ
compiler. The results show that the representation can itteeHix
ciently, that it is superior to an approach based on the woyes+
code, and that it enables analyses that are both faster amdore
cise. These findings strongly indicate that the proposedbaph is
a promising candidate for a foundation upon which variousrin
procedural analyses for AspectJ can be designed and built.

Categories and Subject Descriptors F.3.2 [Logics and Meaning
of Program$: Semantics of Programming Languages—Program
Analysis

General Terms Algorithms, Languages
Keywords Dataflow analysis, interprocedural analysis, AspectJ

1. Introduction

Interprocedural dataflow analysis is a form of static analyfsat
plays an important role in various software tools. Hundrefls

*This material is based upon work supported by the Nation#&nse
Foundation under grant CCF-0546040.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

AOSD '08 March 31-April 4, 2008, Brussels, Belgium.
Copyright(© 2008 ACM 978-1-60558-044-9/08/0003. . . $5.00

different analyses have been used for software undersigrzaid
maintenance (e.g., for program comprehension, slicirgngé im-
pact analysis, automatic transformations, etc.). The sémiafor-
mation produced by dataflow analysis is also used as an &dsent
component of tools for software verification and testingatiui-
tion, dataflow analysis plays an important role for perfono&im-
provements through compiler optimizations. A large bodyexf
isting work has considered the theoretical foundationsl&aflow
analysis (e.g., [27, 22, 26]) as well as specific analysesfpera-
tive languages, and more recently, for object-orienteduages.

The increasing popularity of aspect-oriented programming
presents two serious challenges to the designers of datafialw
yses. First, how should existing analyses be generalizédrndle
aspect-oriented features? Second, what kinds of new asatmn
contribute to better understanding, maintenance, testigfica-
tion, and optimization of aspect-oriented software? Aicaltstep
in attacking these challenges is the definition of systenggneral
foundations for dataflow analysis of aspect-oriented laggs. The
goal of our work is to make novel advances towards achieviigy t
goal for AspectJ software.

A key component of dataflow analyses is the program’s inter-
procedural control-flow graph (ICFG) and the dataflow funrcsi
associated with edges in this graph [27, 22]. In previousk{@4]
we proposed an approach for building the ICFG of an Aspedct] pr
gram. This effort focused on control-flow semantics, and raid
answer a critical question: how should thata-manipulating ef-
fectsof ICFG nodes be represented and modeled in dataflow analy-
ses? In this paper we propose a solution to this problem.skhis
tion, for the first time, makes it possible to define explicttie lat-
tice and functions for dataflow problems for AspectJ sofevahe
proposed approach can serve as the starting point for altedye
of work on adapting existing analyses to AspectJ and on aefini
new analyses for AspectJ-specific problems.

Since the executable code of an AspectJ program (produced by
an AspectJ compiler) is pure Java bytecode, an obvious apipro
is to directly apply existing analysis techniques for Jawathte
bytecode. Of course, this approach requires an analysisltband
preserve a map that associates the data-flow effects of atighie
the bytecode back to those of its corresponding entity irsthece
code. However, as pointed out by our previous work [34],&her
significant discrepancy between the Java/Aspect]) soud amd
the woven Java bytecode. This makes it extremely hard tblesdia
such a map. For example, callsgpoceed in around-advices can
be interpreted as calls to different methods at differemt wint
shadows, and can sometimes even be interpreted as thegnlini
of the body of the crosscut method when that body is suffiient
simple. Furthermore, the correspondence between soevekand
bytecode-level entities is specific to the weaving compileing
used; different compilers (or even different version of Hmme
compiler) can create completely different mappings.

An alternative approach is to perform dataflow analysis @n th
source code or some suitable intermediate form derived frem
source code; this is the approach taken in our work. Suctceeur
code-level (SCL) analysis has several advantages ovecdmge
level (BCL) analysis. First, SCL analysis produces morevaht
results that can be more easily understood and interpretdai-b
man programmers. For example, given a particular variabkni
advice, clients of a points-to analysis are interested ontiie ob-
jectsin the source codéhat this variable may point to. BCL anal-
ysis would return a set of objects including those introdubg
the compiler, which creates significant comprehension aohess
for programmers. Second, SCL analysis can be performedebefo
weaving and therefore can produce information about tleetffof
advices on the base code. The information may include, famex
ple, the purity of an advice (absence of side effects), thelead
effects of advices on objects that flows from/to the baserprag
the sequence of methods invoked by advices on a particuar re
ceiver object, etc. This information allows a software fieaition
tool to statically check certain properties, such as tygiedbased
object protocols or specifications. BCL analysis, on theptiand,
must be performed after code is woven, and therefore is atdap
of providing such information. Finally, SCL analysis is, nmost
cases, faster than BCL analysis on large aspect-orientegans.
For example, in our experiments, SCL slicing is faster th&iB
slicing for 9 out of the 10 experimental data points.

SCL dataflow analysis is complicated by the semantic complex
ity of the various pointcut types, by situations where nulétiad-
vices may apply at the same join point, and by the existendg-of
namic advices which match a join point statically, but maynay
not match it at run time. At present, there does not exist @iggn
and complete treatment of these issues. We propose a progpam
resentation which makes explicit the data that is exposedgithe
interactions between advices and the base code, and desdbia
data with the appropriate ICFG nodes and edges. The repaesen
tion considers cases where multiple advices apply at the $aim
point, as well as the presence of dynamic advices. It prigaispre-
sents the interactions occurring in join points that candmsedbed
by 15 types of pointcut designators, out of a total of 17 defime
the AspectJ language (except tdrl owandcf | owbel ow).

We illustrate the uses of the representation by designirg tw
dataflow analyses: (1) a novebject effect analysibased on a
flow- and context-sensitive must-alias analysis, and (8gpen-
dence analysisised for constructing the system dependence graph
for slicing, refactoring, change impact analysis, etc.rBamalyses
are representative of interprocedural distributed emvirent (IDE)
dataflow analysis problems [26]. The IDE class is a generia-ca
gory of problems, examples of which are copy-constant ggapa
tion and linear-constant propagation [26], object naminglysis
[25], O-CFA type analysis [14, 31, 15], and all IFDS (interpr
cedural, finite, distributive, subset) problems [26] sushreach-
ing definitions, available expressions, live variablagdyttive vari-
ables, possibly-uninitialized variables, flow-sensitside-effects
[7], some forms of may-alias and must-alias analysis [23d, ia-
terprocedural slicing [16]. Through our approach, this et of
existing interprocedural dataflow analyses becomes gdedsilap-
ply to AspectJ software.

The effect analysis is used to build regular expressionsdoh
shadow (i.e., base code corresponding to a join point) tovsanze
the effects that the combination of advices applicableasttadow
can have on the objects that flow to the advices from the base
code. Given a set of objects passed into advices at a shadew, t
effect information includes a sequence of read and writeadjpas
on fields of these objects, and a sequence of methods invaked o
them. The regular expressions produced by this analysisbean
directly used to analyze the interactions between the bade and

the advices, as well as inter-advice interactions. For @kanthe
analysis can be employed to verify the interactions of aslvigith
the the base code against properties considered harmfapaca
oriented software development, such as the writing, in aicagdof
an object that is read in the base code. As another exampéztob
protocols and typestate properties can be directly infleared/or
verified from the analysis output. The proposed analystutiecies
are novel contributions for static analysis of AspectJwafe for
program understanding and verification.

The system dependence graph [16] has traditionally beeth use
for program slicing and other techniques that require prtredu-
ral dependence information. As a second example of an iaterp
cedural dataflow analysis, we define a form of dependencgsisal
and the corresponding slicing algorithm. Slicing of aspe@nted
programs should not be done on the woven code, because @berw
the resulting slices could contain a lot of code that is nahan
understandable, which in turn would complicate, rathen thian-
plify, program understanding tasks. Earlier approacheslfoing
of aspect-oriented software [36, 38, 17] have various &tions —
these analyses were built upon simplified program repragens
that did not capture the full complexity of the problem. Owrlv
defines a more general solution and provides new insightsloas
an extensive experimental evaluation.

The proposed representation and the two dataflow analyses ha
been implemented in our ANA (Aspecf analysis) framework,
built as an extension of thabc Aspectd compiler [1]. We per-
formed an experimental evaluation of the proposed teclesicQur
study indicates that, compared to the BCL analysis (1) tfectsf
of multiple advices (applying at a shadow) on the incomingcis
can be precisely computed; (2) the program representatioriee
SDG have significantly smaller sizes, especially for proggahat
contain around-advices; (3) more precise slices can be w@tp
using our SDG; and (4) significant reduction in analysis mgn
time can be achieved with our approach.

The key contribution of this work are:

Program representation. We propose a technique for build-
ing a program representation for AspectJ programs, as fmasis
subsequent interprocedural dataflow analyses. The repeese
tion is built at the source-code level and captures the séman
intricacies of pointcut designators in the presence of iplelt
applicable advices per joint point, dynamic advices, ana ge
eral flow of data to, from, and between advices.

Effect analysis and summary generationAt the core of the
object effect analysis is a must-alias analysis used tatifglen
variables that definitely refer to the objects of interesis&d

on the must-alias information, we generate regular exjmess

for each object passed into an advice from the base code, to
summarize the effects that the advice can have on the object.

Dependence analysis and slicingVe present an approach for
dependence analysis, SDG construction, and slicing of &3pe
programs. The approach is built on top of the proposed repre-
sentation, and takes into account the complex flow of data due
to aspect-oriented features.

Experimental evaluation. We present an experimental study
on 37 program versions drawn from 8 base programs, using our
AJANA framework. The results show that an effects summary
can be efficiently computed, that the cost of building the rep
resentation and running the analysis is practical, thal@rd
SDG sizes are reduced compared to analysis of woven byte-
code, and that slicing is both faster and more precise. These
findings strongly indicate that our approach is a promisigagc
didate for a foundation upon which a rich variety of inteq@o
dural dataflow analyses for AspectJ can be designed and built

1 class Point {

2 int x =0, y =0;

3 int getX() { return x; }
4 int getY() { returny; }
5 voi d set Rectangul ar (i nt nX,
6

7

8

int nyY) {
set X(nX); setY(nY);
void setX(int nX) { x = nX }
9 void setY(int nY) { y =nY; }
10 void reset() {x =0; y =0;}
11 String toString() { printIn("X=" +x + ", Y=" +vy); }
12
13 class Denp inpl enents PropertyChangelLi stener {
14 void propertyChange(PropertyChangeEvent e) { ... }
15 static void nain(String[] args) {
16 Point p = new Point();
17 p. addPr oper t yChangelLi st ener (new Deno());
18 p. set Rectangul ar(5,2); println("p =" + p);
19 p.set X(6); p.setY(3); printIn("p =" + p);
20 }
21}
Figure 1. Running example, class®vi nt andDeno
[JP category [PC designator | PC category |
initialization JP selector
initialization preinitialization JP selector
staticinitialization | JP selector
cal | JP selector
call’lexecution | execution JP selector
advi ceexecution JP selector
field get/set get JP selector
set JP selector
excpt handling| handl er JP selector
wi thin condition specifier
wi t hi ncode condition specifier
this condition specifier
target data exposer,
condition specifier
args data exposer,
condition specifier
if condition specifier
cfTow condition specifier
cfT owbel ow condition specifier

Table 1. Classification of join points and pointcuts

2. Example and Background

For illustration, we will use a modified version of tHeean
example from the AspectJ distribution. Figure 1 shows elass
Poi nt and Denp. AspectBoundPoi nt, shown in Figure 2,

is used to implement an event firing mechanism by invoking
pr oper t yChange when a change eventis fired. A fiddppor t
and a methoéddPr oper t yChangelLi st ener are introduced

in Poi nt by BoundPoi nt at lines 3—7 in Figure 2. Helper class
Pr oper t yChangeSupport is not shown.

2.1 AspectJ Semantics

A join pointin AspectJ is a well-defined point in the execution that
can be monitored. We classify the join point types in Aspéatid
four categories: (1) initialization, including both objenitializa-
tion and class initialization, (2) method/constructol eald execu-
tion, (3) field getting and setting, and (4) exception hamglliFor a
particular join point, the textual part of the program exeduuring
the time span of the join point is trehadowof the join point [5].
There are two categories of shadoststement shadowfor which
the program entity that is advised is a statement (e.g.,/lp aad
body shadowswhere the advised entity is the body of a method.
A pointcutselects (“picks out” [18]) one or more join points by
imposing run-time restrictions on the basic join point typend op-

1 aspect BoundPoint {

2 // add a field 'support’ to class Point

3 Propert yChangeSupport Point.support =

4 new PropertyChangeSupport (this);

5 voi d Poi nt. addPropertyChangeLi st ener

6 (PropertyChangeli stener 1)

7 { support. addPropertyChangelListener(l); }

8 void firePropertyChange(Point p, String property,

9 doubl e ol dv, double new) {

10 p. support. firePropertyChange(property,

11 new Doubl e(ol dv), new Doubl e(new));

12}

13 // ====== pointcuts ======

14 pointcut setter(Point p):

15 call (void Point.set*(*)) & target(p);

16 pointcut getterX(Point p):

17 execution(void Point.getX(*)) & target(p);
18 // ====== advices for pointcut 'setter’ ======
19 before(int x, Point p)

20 setter(p) &% args(x) { // beforel

21 if (x <0){ printin("Bad set*"); p.reset();}
22

23 after(Point p) : setter(p) { // afterl

24 println("Return fromset*");

25

26 void around(Point p) : setter(p) { // aroundl
27 int oldX = p.getX(); Point g = p; proceed(q);
28 firePropertyChange(q, "set X", ol dX, p. get X());
29

30 void around(Point p) : setter(p) { // around2
31 Point pl = new Point(); proceed(pl);

32 firePropertyChange(p, "setobj", p.getX(), pl.getX());
33 }

34 /| ====== advices for pointcut 'getterX ======
35 before(Point p) : getterX(p) { // before2

36 println("Start getX");

37

38 after(Point p) returning (int x)

39 getterX(p) { // afterReturningl

40 printin("Return fromgetX: " + x);

41 '}

42}

Figure 2. Running example, aspeBbundPoi nt

tionally exposes some of the values from the execution goris-
pectJ defines 17 types of primitive pointcut designatorschesify
them into three categoriegin point selectoy run-time condition
specifier anddata exposerTable 1 shows the classifications of join
point types and pointcut designator types. A pointcut isayit if
itis a run-time condition specifier; otherwise, the poittisistatic.

A combined pointcut is dynamic if at least one of its compdnen
pointcuts is dynamic.

» Example. AspectBoundPoi nt from Figure 2 defines two
pointcuts:set t er andget t er X. The shadows of the join points
picked out byset t er are the five call sites at lines 6, 18, and 19
in Figure 1. The shadow of the join point picked outdpst t er X
is the body of methogdet X. Both pointcuts are dynamic because
they includet ar get (p) , which picks out only run-time objects
that are instances &fi nt . «

An advice declaratiorconsists of an advice kind (before, after,
etc.), a pointcut, and a body of code formingamvice Whenever
multiple advices apply at the same join point, precedendesru
determine the order in which they execute [2]. We refer tocvicz
associated with a dynamic pointcut adymamic advice

» Example. In Figure 2bef orel, af t er 1, ar oundl, and
ar ound2 may apply at the same join point. Similarbyef or e2
andaf t er Ret ur ni ngl may apply at the same join point. The
execution order of the first four advices is

bef orel, aroundl] around2[cs, after 1]]

wherecs denotes the actual advised call site, and a pair of brackets
[] encloses advices that are invoked by the captoceed in
the preceding around-advica.

Advice nesting tree

around1 ph_proceed1 around2 ph_proceed2
i ;’y ! / ! >
ph_decision | ce]

Figure 3. Advice nesting tree and partial interaction graph for skagoset X(6)

2.2 Control-Flow Representation

In previous work [34] we considered the problem of regressio
test selection for AspectJ software, and proposed a cefhtnol
representation for identifying the differences between warsions

of the same program. Using essentially the same approaeh, on
could construct the interprocedural control-flow graphRG) of

an AspectJ program. The rest of this subsection descrilmas sb

the details of the ICFG control-flow representation. Figdishows

a subset of the ICFG for the example from Figures 1 and 2.

An ICFG contains (1) standard CFGs that model the control
flow within Java classes, within aspects, and between aspect
and classes through non-advice method calls, andéh{@jaction
graphs(IGs) that model the interactions between methods and ad-
vices at join points. The ICFG specifically addresses theasin
where multiple advices apply at the same join point, and ke e
tence of dynamic advices. An IG is built for each statemeatishv.

» Example. Consider shadow. set X(6) at line 19 in Fig-
ure 1. In the absence of aspect-oriented features, thisvoalld
be represented by two ICFG nodescall-site node and aeturn-
site node. Interprocedural edges would connect the call-sitke no
with the start node ofet X, and the exit node ofet X with the
return-site node. For this example, advites or e1, ar ound1,
around2, andaf t er 1 apply at the corresponding join point. In
the ICFG the call is represented by an artificial metpbddr oot
(ph_ stands for “placeholder”) which represents the top-levgid
associated with the run-time processing of the join peint.

Handling of multiple advices. The precedence rules of AspectJ
can be used to build a helper data structureatidce nesting tree
which represents the run-time advice nesting relationgtaph tree
level contains at most one around-advice, which is the rbatlo
advices in the lower levels of this tree. With each aroundeedA
the tree associates (1) a possibly-empty set of beforesashand
after-advices, (2) zero or one around-advices, and patgn{3)
the actual crosscut call site that could be invoked by thetoal
proceed in A. These advices and the call site appear as if they
were nested withirA. The advice nesting tree f@oundPoi nt
at shadowp. set X(6) is shown in Figure 3.

Nodes at one level of the tree are invoked by the call to
pr oceed in the around-advice in the upper level of the tree. A
placeholder methoghh_pr oceed is used to represent the pro-
ceed call in an around-advice. This method contains callallto
children advices, including the crosscut call site. Fornepie,
ph_pr oceedl, which represents the proceed callanound1l,

contains a call tar ound2, whose proceed call is in turn repre-
sented byph_pr oceed2, which then callsset X (the shadow)
andaf t er 1. The top-levelph_r oot method corresponds to the
root of the advice nesting tree.

Handling of dynamic advices.For dynamic advices that may
or may not be invoked at the join point, the ICFG uses an artifi-
cial ph_deci si on node. The "true” edge leaving this node goes
directly to its call-site node — that is, if the run-time catioh
evaluates to true, the advice will be invoked. For a non-+adeu
advice, the "false” edge goes to the call-site node for the ad-
vice that could be invoked in the current method. For an ateun
advice, the "false” edge goes to a call-site node for itsespond-
ing ph_pr oceed method, meaning that if this advice is not in-
voked, the advices that are nested within it will still beaked.

3. Data-Flow Representation

In order to apply any dataflow analysis techniques, the kep-pr
lem becomeswhat data can flow in the interaction graph at a join
point, and how can it be represente@®is section describes our
technique that builds an ICFG-based data-flow representdty
associating data with related ICFG nodes and edges. Ous goal
(1) making variables that are defined or used during thednter
tion explicit for the placeholder methods that will refecerthem;
(2) associating witlph_deci si on nodes the variables that con-
tribute to making run-time decision about invocation of agc
advices; (3) exposing a minimum set of variables, withotroin
ducing any unnecessary variables or extra helper variabl&ss;
and (4) keeping a single CFG for each advice declaratiomouit
replicating graphs for different advice applications.¥ig4 shows
pseudo-code which is equivalent to the representationhforek-
ample from Figures 1, 2, and 3. This representation is théirgga
point for the interprocedural dataflow analyses describest.|

This section describes the handling of call join points axel e
cution join points (see Table 1), which are the most commah an
useful join point types in AspectJ practice. Due to spacéditions,
we do not discuss the other three types of join points, athaur
implementation handles them. In the ICFG, for an executiom j
point of methodn a new methodri nt er nal is created, and all
CFG nodes and edges framare moved tari nt er nal . A call
ton®i nt er nal is added inm so that the execution join point of
mis converted to a call join point afsi nt er nal . Thus, without
loss of generality, the discussion covers only call joinnpg&i Our
goal is to make explicit the flow of data by creating formalgrae-

class Denp inpl ements PropertyChangelistener {
static void main(String[] args) {

ph_r oot1(p,6); // for shadow p.set X(6)

}

aspect BoundPoi nt {
static void ph_root1(Point argO,
/+ call site for beforel =/
if (...) beforel(argl, arg0);
/* call sites for aroundl */
if (...) ph_proceedl(argo0,argl);
el se aroundl(arg0, argl, null, 0,0, argo0,0);

int argl) {

static void aroundl(Point arg0, int argl, Point arg2,

int arg3, int arg4, Point p, int dv) {
int oldX = p.getX(); Point q = p;
switch (dv) {
[+ for shadow p.setX */
case 0: ph_proceedl(q, argl);
|+ for shadow p.set Rectangul ar */
case 1: ph_proceedl_2(q, arg3, arg4);
}
firePropertyChange(q, "set X", ol dX, p.get X());
static void ph_proceedl(Point arg0, int argl) {
[+ call sites for around2 x/
if (...) ph_proceed2(arg0,argl);
el se around2(arg0, argl, null, 0,0, argo0, 0);
static void around2(Point arg0, int argl, Point arg2,
int arg3, int arg4, Point p, int dv) {

Point pl = new Point();
switch (dv){
|+ for shadow p.setX */
case 0: ph_proceed2(pl,argl);
I+ for shadow p.setRectangul ar */
case 1: ph_proceed2_2(pl, arg3, arg4);
}
firePropertyChange(p, "setobj", p.getX(), pl.getX());
}
static void ph_proceed2(Point argoO,
/+ the original call site */
arg0. set X(argl);
[+ call site for afterl */
if (...) after1(arg0);

int argl) {

}
static void beforel(int argO, Point argl) {...}
static void after1(Point arg0) {...}

Figure 4. Pseudocode for the IG shown in Figure 3.

ters and actual parameters associated with ICFG nodesjén tr
enable analysis based on this data-flow representation.

3.1 Declarations for Placeholder Methods and
Non-Around-Advices

For a method call join point, the variables that can be refezd are
limited to the actual$aq, as, . .., a,) at the call site, as well as the
receiver object referenag, if the crosscut call site is an instance
invocation. Given an IG, each placeholder method is comaserv
tively parameterized with a list of formaldo, f1, fo, . .., f) that
matches the actuals of the shadow call site. Each such ma&thod
static and has the same return type as the return type of ttheche
called at the shadow call site; if the shadow does not hagedus
return value, the method is declaredi d. For example, consider
ph_r oot in Figure 3. The signature of this placeholder method is

voi d phroot (Point arg0, int argl)

are its original declared parameters, because a non-aamide
will execute only its own body without affecting the invoigat of
other advices and the crosscut call site. For example, ¢magire
for advicebef or el in Figure 2 is

voi d beforel(int arg0, Point argl)

An after-returning-advice has one last formal parametereeo
sponding to the returned value specified in the advice databar.
For example, the signature faf t er Ret ur ni nglis

voi d afterReturni ngl(Point arg0O,int retval)

For an around-advice, the control and data flow are more com-
plicated, because it could invoke other advices and thescubs
method. The handling of around-advices is discussed iril dtete.

3.2 Call Sites for Non-Around-Advices

The IG contains call sites that invoke non-around advice®n-
able any dataflow analysis, the appropriate actual parasnetast
be associated with these call site. For an advice that hdarddc
parameters, there have to be one or more data exposer papteu
ignators associated with it. There are two kinds of suchyhedors:

t arget andar gs (recall Table 1). One can build a formal-to-
actual mapping functiofi_a_map for the parameters in the advice
declaration that are specified by gs. For each such parameter,
f-a_map maps its position in the advice’s formal list to the posi-
tion of its corresponding actual in the actual list of thedsva call
site. Based on this map, a helper functifws (short for “formal
position”) can be defined as follows:

0 ped = target
f-acmap(i) +1 ped = args A cs is instance
f-a-map(i) ped = args A cs is static

wherepcd denotes the type of pointcut designator, andienotes
the shadow call site.

For each before-advice and after-advig¢ges is applied for
each parametep; in its declaration. As a result, one can obtain
the position of the corresponding formal of its caller plaaleler
method. This formal should be used as the actualpfom the
created call site. Specifically, for an advice declaration

ad(t,piy...,pn) : target(t) && args(pi,...,pn) && ...
a call site of the form

ad(F (fpos(0, target)), F(fpos(1, args)), .., F'(fpos(n, args)))
is created, wherd”(5) is the j-th formal parameter of the place-
holder method that contains the call site.

» Example. Consider advicédef or el, called byph_r oot
in Figure 3. Since parametaris specified by thar gs pointcut
designator (line 20 in Figure 2), we need to determine itsecor
sponding actual at the shadow call site — in this case, thstanh
6. Since the position ok in the parameter list dbef or el is O,
and the position 06 in the actual list ofp. set X(6) is 0, the pair
(0,0) is included inf_a-map. Functionfpos is then applied for
bef or el’s formal parameterg andp. Forp, fpos(1, target) =
0 and the corresponding formal gfh_r oot is ar g0. For X,
fpros(0, args) = f_a-map(0) + 1 = 1, and the corresponding
formal of ph_r oot is argl. Thus, the call site fobef or el
insideph_r oot is of the formbef or el(ar g1, ar g0) . «

The IG also contains a call site for the original shadow. The
formals of the caller placeholder method are used as actaels
receiver) of this call site. If the original shadow is an gasnent,
areturn$val ue local variable in the placeholder method is

fpos(i, ped) =

wherear g0 corresponds to the receiver object reference at shadow assigned the return value at the newly created call siteeXample,

p. set X(6),andar g1 corresponds to the actual at this call site.
A non-around-advice that is called by a placeholder metkod i
declared as static withwaoi d return type. The formal parameters

consider the call tgset X contained irph_pr oceed?2 in Figure 3.
The created call site is of the forar g0. set X(ar gl1), where
ar g0 andar g1 are the formals oph_pr oceed?2.

For each after-returning-advice, an additional actuahipes-
ter is needed for the last formal parameter. In the callecesla
holder method, the et ur n$val ue local should have already
been created and assigned the return value of a call to tlss-cro
cut method (or to anothgoh_pr oceed method). This local is
used as the last actual at the call site. For example, canaitie
viceaf t er Ret ur ni ngl defined at lines 38-41 in Figure 2. The
execution join point forget X is converted to a call join point
for get X$i nt er nal , and the shadow becomes the call site for
get X$i nt er nal () . The IG for the shadow contains a call to the
crosscut methodet X$i nt er nal (), followed by a call to ad-
vice af t er Ret ur ni ngl. Conceptually, the pseudocode for this
IG is as the follows:
int ph_root(Point arg0) {

int return$val ue = arg0. get X$i nternal ();
afterReturni ngl(argoO,return$val ue);
return return$val ue;

}

3.3 Handling of Around-Advices
Handling of an around-advice is more complicated because it

position”) maps each shadow to the starting position of dse:
sponding parameters ifiobal _params.

» Example. Considerar ound2 and two of the shadows it ap-
plies to:p. set X(6) andp. set Rect angul ar (5, 2) atlines
19 and 18 in Figure 1. The actual parameters required at inesk
ows have typeéPoi nt , i nt) and(Poi nt,int,int) respec-
tively. Hence,global_params is (Poi nt arg0, int argl,
Point arg2, int arg3, int arg4). For p.set X(6)
the starting position of its parameters givbal_params is 0, and
for p. set Rect angul ar (5, 2) the starting position is 2. These
positions are encoded in mapos. Note that there are three more
shadows at which this advice applies; to simplify the distus
for the rest of this subsection we omit the details relatethése
three shadows«

List global_params together with the originally declared pa-
rameters of the around-advice are used to build the list wh#b
parameters for this advice. An additional parameter is atiated
as the last formal; this parameter islecision valuéndicating the
shadow where the advice is currently applied. For example, t
parameter list forar ound2 is (Poi nt arg0, int argl,
Point arg2, int arg3, int arg4, Point p, int
dv) , wherear g0 throughar g4 come fromglobal_params, p is

formal parameters are dependent on the crosscut methodrand o the original declared parameter (line 30 in Figure 2), dads the

other advices that are invoked within it. Similarly to a mac
holder method, an around-advice must have all necessaayngar
ters of the shadow call site (including the receiver for astance
method), in order to call the crosscut method qstapr oceed
method. For example, consideh_pr oceed?2 in Figure 3, which
is called from withinar ound2. Because the formal parameter list
for ph_proceed2 is (Poi nt arg0,int argl), around2
has to take at least these two kinds of formal parametersiier ¢o
provide the actuals for the call site, althoughound?2 itself has
only one declared formal parameter (line 26 in Figure 2).

An even more significant problem is that the formal param-
eters needed by an around-advice could be different foerdiff

decision value.

The purpose of includinglobal_params in the parameter list
is to propagate the data from different shadows, in orders® u
that data to call @h_pr oceed method, or the crosscut method,
for that shadow. Parametdw is used to select among the calls to
differentph_pr oceed methods.

In each placeholder method where an around-advice is ¢alled
the call site for that advice has non-trivial actuals only ()
formal parameters corresponding to the currently-acthadew,
as defined by the positions in mapos, (2) the advice’s original
formal parameters, and (3) the last formal paramatei-or formal
parameters corresponding to the shadow, the formals ofather c

ent shadows that the advice matches, because different shadplaceholder method are used as actuals. For the advicgmari

ows may call different methods due to the use of wild cards
(*) in the pointcut definition. To illustrate, consider agadvice
around2 defined in Figure 2. Theet t er pointcut associated
with ar ound2 statically matches five statement shadows. Thus,
ar ound2 can crosscut bothet Xandset Rect angul ar calls.

For shadows that caBet X, the formal parameter types needed
by ar ound2 are(Poi nt, i nt), whereas for shadows that call
set Rect angul ar the types needed adPoi nt, i nt,int).

One possible approach is to replicate the CFG of an around-
advice for each shadow that the advice matches, and to dreate
method declaration and the call site for the advice on padsh
basis. Hence, one can have shadow-specific placeholdeodseth
and around-advices, and globally unique non-around-advitn
fact, this approach is being used by #iec compiler [1]. However,
this violates the fourth goal that was stated at the beggnafrthis
section — the goal to keep one CFG per advice, without refitiga
the CFG per advice application. Such replication could lteau
an explosion in the number of ICFG nodes, and therefore may
introduce significant overhead for subsequent dataflowyaisalin
fact, our experiments showed that for some benchmarksioamga
around-advices that match every call site, the size of tbgram
is doubled after it is compiled by trebc compiler.

3.3.1 Declarations and Call Sites for Around-Advices

We propose a different approach which does not require fiicae
tion of around-advices. For each such advice, our approacsid-
ers all shadows that the advice matches, and constructdallgto
valid list global_params that includes parameters which are re-
quired at each shadow. A companion maps (short for “shadow

formal parameters, the actual are constructed similarkats to
non-around-advices (as described in Section 3.2). A ursfadow
ID is used as the actual for formal parameder. For example, for
shadowp. set X(6) , the call site forar ound2 is

around2(argo0, argi, null, 0,0, arg0, 0)

wherear g0 andar g1 are the formals of methgah_pr oceedl
which contains the call site. The first two actuals correspon
to the shadow’s parameters, while the next-to-last actoal c
responds to the declared formalof ar ound2. Similarly, for

p. set Rect angul ar (5, 2) , the call site is

around2(nul |, 0, arg0, argl, arg2, argo0, 1)

Note that the last actuals in these two call siteaifd1) are unique
IDs for the corresponding shadows.

3.3.2 Call Sites for Placeholder Methods Inside an
Around-Advice

Because there is a single CFG for an around-advice, the edvic
should be able to call differemth_pr oceed methods for differ-
ent shadows. A pair of call-site and return-site nodes iategefor
each placeholder method the advice could call. The origiadl
to pr oceed in the body of the after-advice is replaced with this
group of calls. A special placeholder decision node is ectad
represent the selection of a placeholder method to be ¢alledt
formal parametedyv is associated with this decision node. Essen-
tially, this representation is equivalent to a switch stwat.

The actual parameters for the calls to the placeholder rdstho
can be defined similarly to the actuals for calls to aroundcadv
(as described in Section 3.3.1) — the formals corresponidirtige

shadow are identified in the around-advice’s list of formatsl are
used as actual parameters at the call site. However, adalitians-
formations are necessary: actuals that correspond to ihiealty
declared parameters of the around-advice must be replaitbd w
the actuals for the original call for oceed in this around-advice.
This is necessary for cases whenoceed is called with values
other than the formals of the around-advice, in which casendw
values need to be propagated toptepr oceed methods as well.
» Example. Consider the earlier example, wheae ound?2
needs to callph_proceed2 at shadowp. set X(6), and to
call another placeholder method (e.g., nanpédpr oceed2_2)
at shadowp. set Rect angul ar (5, 2) . The following pseu-
docode illustrates the control- and data-flow representati

voi d around2(Point arg0O, int argl, Point arg2,
int arg3, int arg4, Point p, int dv) {
Point pl = new Point();

switch (dv) {
/1 used to be ph_proceed2(arg0, argl)
case 0: ph_proceed2(pl,argl);
/1 used to be ph_proceed2_2(arg2, arg3, arg4)
case 1: ph_proceed2_2(p1l, arg3, arg4);
}
}

The “used to be” comments show the call sites before takitm in
account the fact that the original call fr oceed (line 31 in
Figure 2) usepl and notp as an actual parametex.

After creating the call sites, redundant formal parametieas

» Example. Consider the decision node iph_r oot that
guards the call tar oundl1 (shown in Figure 3). The run-time
condition specifier inar ound1l'’s sett er pointcut (line 15 in
Figure 2) ist ar get . Therefore, the data that should be associated
with this decision is the formal gfh_r oot that corresponds to the
receiver object — that is, formal parametarg0. «

4. Object Effect Analysis

The proposed program representation enables a varietyeopmo-
cedural static analyses. Based on this representation ropoge

a novel object effect analysis that computes regular esfmes to
summarize, for each shadow, the field access and methodainvoc
tion effects of the corresponding interaction graph upenahiects
that are passed into the advices from the based code.

» Example. For shadowp. set X(6) at line 19 in Figure 1,
there is only one reference-typed parametegO passed to its
ph_r oot placeholder method. Hence, for this shadow, we gener-
ate regular expressions only far g0. Our analysis computes two
regular expressions for the corresponding object:

(reset|e)((setX |e)|(getX ((setX |e)|(setRectangular|e))))

((wawy)[e)((wze)](rz ((wale) |(wawy)[€)))))

The first expression summarizes the method invocation segue
on the object referred to kgr g0, and the second one summarizes
the field read/write sequence (i.e., ecess pathon ar g0 (wsa
andrgg represent a write effect and a read effect on a fféd).

are not used by the advice can be cleaned up. For example, afte Thage regular expressions encode the paths along whichtafip

this redundancy removal, the parameter listdoound?2 is (i nt
argl, int arg3, int arg4, Point p, int dv).

3.4 Data for Placeholder Decision Nodes

For a placeholder decision node that guards a call-site faydan
advice, we need to associate the data that contributes tdettie
sion making. This, of course, is essential for subsequetatfider
analysis. There are two kinds of placeholder decision nodgs
a shadow-based selection decision node in an around-ab:ige
swi t ch(dv) inthe example from above), and (2) a decision node
that guards a dynamic advice. For the first kind of node, theas
ated data is the decision-value formal parameter~or the second
kind, there has to be a run-time condition specifier poinassoci-
ated with the dynamic advice that the node guards. The digmus
below considers each pointcut designator that defines dimen-
condition, and the data that should be associated with the-co
sponding placeholder decision node.

As shown in Table 1, there are eight kinds of condition-sfci
pointcut designators in AspectJ. Rairt hi n andwi t hi ncode,
one can statically determine if the pointcut matches. Hetimy
do not contribute to making the run-time decision of whetbier
not an advice executes. Fbar get andar gs, which are also
data-exposer designators, the needed data are the parsuthete
the pointcut specifies. Ahi s pointcut designator indicates that
the receiver object at the shadow call site must be an instahc
the type specified by the pointcut; the data that is needethéor
decision is a reference to this receiver object. Thepointcut can
only reference parameters which are introduced by one oemor
data-exposer pointcuts. Hence, the data for the decisoagain
the parameters specified byr get and/orar gs pointcuts. For
cfl owandcf | owbel ow, there does not exist an explicit value
that affects decision making. Our tool currently ignoressthtwo
kinds of pointcuts; future work will have to develop statitadysis
techniques for handling such pointcuts. Finally, for a cosif
pointcut, the needed data is the union of the data for its oot
primitive pointcut designators.

tial states of the object in this IG can be reached. This infdifon
can be used directly to check certain temporal properties) as
typestate-based object protocols (e.g., similarly to [1,13] for
non-aspect-oriented languaged).

4.1 Dataflow Problem

At the core of the effect analysis is a context-sensitivewflo
sensitive must-alias analysis that identifies, for eacleresfce-
typed formal parameter of ph_r oot method, a set of variables
in the corresponding interaction graph thatistpoint to the same
object as the formal parameter does. The must-alias infilsma
provided by the analysis enables strong updates at assigsianed
operations via pointers, and therefore can be used to vedfyy
typestate properties that cannot be verified using mag-ati@r-
mation. The regular expressions produced by our analysis ma
miss effects that could occur on an object of interest. Hanev
using must-occurring events contained in the expressiangim-
inate false positives, and thus improve the precision aaldwerld
usefulness of error detection. In fact, similar approadiesed on
must-alias information have been used in reverse engirgeaols
[25] and in verification tools [11, 10, 13].

Lattice and transfer functions. We define a lattice of values
to state the dataflow problem. Each reference-typed foyfraila
ph_r oot method corresponds to a distinct lattice elenignthis
lattice element represents the valuefofipon entry toph_r oot .
The lattice also contains a top eleméhtand a bottom element
L. The lattice for shadowp. set X(6) (i.e., for ph_root 1 in
Figure 4) is{T, largo, L}. The goal of the analysis is to associate
lattice elements with different variables in the corresfing 1G.

If L is associated with some variahlethis means that could
refer to more than one object, or to an object that is not phisse
atph_r oot . In Figure 4,p1 in ar ound2 has this property.L is
associated with this variable, which shows thatis not included
in the must-alias set @r g0.

The partial order in the lattice is < [; < T, and the meet op-
erationA isdefined as followst A L = 1,2 AT =z, 2Nz =z,

andz Ay = L for x # y. The meet operation is used by the anal-
ysis to merge information about values that are propagdtedya
different execution paths. In particular, consider the take. If a
variable may refer to one object along one execution patth,t@an
another object along a different execution path, the vigisasso-
ciated with_L. This resembles constant propagation analysis, which
determines expressions that definitely have the same Viaing all
execution paths; similarly, our analysis determines e that
are guaranteed, along all execution paths, to refer to tfeeothat

a particular formal parameter referred to at the entrgtofr oot .

We associate a ma$, : V' — L with each ICFG node; here
V is the set of variables in the IG, andis the lattice described
earlier. If S, (v) is some lattice element other thanand L, the
value ofv immediately before the execution ef is guaranteed
to be the unique object corresponding to that element. Aevalu
Sn(v) = L shows that the analysis could not determine that
refers only to a particular object represented by a singlicéa
element. In the beginning of the analysig(v) = T for all n
andw, indicating that no alias information is currently known.

The effects of ICFG nodes on the solution can be represegted b
dataflow transfer functiong-or each node, the analysis defines a
function f,, : (V. — L) — (V — L). If S provides information
about the values of variables immediately befaref, (S) shows
the values immediately after n. For asy: V' — L, we will use
the notationS[v — (] to denote a new map that is the sameSas
except for the value associated withe V', which is changed to
l € L. The key transfer functions are as follows:

o for vy = vy fn(S) = S[vr — S(v2)]

o for v1 = v2.fld: fr(S) = S[v1 — 1]

o forvi.fld = va: fu(S) =S

o for vy = new X: fn(S) = S[vy — 1]
o for calls and returns: discussed below
o for other nodesy,,(S) = S

For an assignment; = wvs, the analysis propagates the current
value of v, to v1. When the value is obtained through an object
field in v1 = wvs.fld, a conservative assumption is made that any
object reference could be assignedtpand thereforel is propa-
gated. More precise treatment of field reads and writes tials
plemented in our analysis, by iteratively creating addgioattice
elements for field dereferences (e.g., lattice elemgnis aar . aaz2)-
Due to space limitations, we do not provide the details of dni-
hancement. Conceptually,4f can be decided to point to a unique
object at a node; = vs.fld, we create a lattice element fos.fid
and propagate this lattice element to subsequent CFG notes.
standardk-limiting approach is used in our implementation (with

= 3 used for the experimental study) to limit the level of field
dereferences to be analyzed.

The transfer functiory, for a pathp in the ICFG is the compo-
sition of the functions for the nodes and the interproceldeniges
on the path. Not all ICFG paths represent possible exeaitian
valid path has interprocedural edges that are properly matched:
each (exit, return-site) edge is matched correctly withléis¢ un-
matched (call-site, entry) edge on the path, in the sendebtiih
edges correspond to the same call site. The precise sohftite
dataflow problem is defined with respect to the set of all vadiths.

The meet-over-all-valid-paths solutiof/ VP,, for noden de-
scribes the variable values immediately before the exacudf ».
This solution is defined as

MVP, =

N Fo(MVP)

pE VP(n)

whereentry is the entry node oph_r oot , and VP(n) is the set
of all valid pathsp leading fromentry to n. For any reference-

typed formalf of ph_r oot with a corresponding lattice element
ly, MVP eniry(f) = ly. For all otherv € V, MVP eppry(v) = T
indicating that currently there is no information about

4.2 Analysis Algorithm

The dataflow problem presented in the previous subsectames-
ample of an interprocedural distributive environment ()[iEob-
lem. In IDE problems, the information at a program point ig-re
resented by a map from symbols to lattice elements. Sagil: et a
[26] define a general approach for solving such problemsgelc
We have instantiated their approach to apply to the probledeu
consideration. The resulting flow- and context-sensitige@thm,
described in this section, is provably precise in the sefis®m-
puting the meet-over-all-valid-paths solution for eacdeo

Phase 1: Relate formals to variablesThe first phase of the
analysis computes, for each method reachable froph.a oot
method, information that relates the values of local vdeisiio
the values of the formal parameters of this method. For eadke n
n and local variablev, the analysis computes a sEf (v) that
contains formal parameters afs method thaty maybe aliased to
immediately aftem. These sets are propagated along ICFG paths
in the method. If ath variablewv is assigned values that cannot
alias a formal parametef,(v) = {L}. The meet operation is
performed at control-flow joint point: if node does not assign
a value tov, and any incomingF,, (v) contains_L, the resulting
F,.(v) must contain onlyL; if none of the incoming set$:,, (v)
containsl, the resultingF, (v) = U,,. Fn,;(v). Here at node: we
have to preserve all possible formal parametersdimany alias at
predecessor nodes, because at this time there is no knowledge
of the potential aliasing relationships among formal pastars of
this method.

If n is a return statement, is the value that is returned, and
F,(v) does not containl, F,(v) is added to a sefF (short for
“summary function”) for this method. This set encodes a fitata
summary function in the classical sense of the functionpt@gch
for interprocedural analysis by Sharir and Pnueli [27]His phase,
the analysis considers the strongly-connected-compsn&€C)
in the call graph and performs a bottom-up processing of @€-S
DAG. If n is a call site of the formv = o.m(a1,az,...,anr), We
consult the set§'F of the possible target methods that could be
called by this site, and find a set of actual parametérf3 that
correspond to the formals contained in thesé sets. For each
actuala; € AP, Fy,(v) is updated with seF), (a;). Again, if any
F,(a;) containsL, the resultingF’, (v) contains only.L.

Phase 2: Propagation of lattice elementd his phase of the al-
gorithm propagates information from callers to calleed. $.¢(v)
be the lattice element associated witlimmediately before node
n. If n is a call node at which is used as an actual, the value of
Sn»(v) is propagated to the corresponding formal(s) of the callee
method(s). When a method is processed, for each nael vari-
ablev, we replace the formal parameter(s)in(v) with the corre-
sponding lattice element(s). If eventualiy; (v) contains more than
one lattice elements, the meet operation is performed oarttiee
set and the resulting lattice element is used to upfate).

Phase 3: Effect graph building and summary generation.
This phase of the analysis performs a depth-first traverfstieo
ICFG starting from eachh_r oot method, and removes nodes that
do not read/write a field or invoke a method on a local variable
with which a non-L lattice element is associated. The resulting
pruned ICFG is areffect graph This graph is essentially a finite
state automaton that encodes all reachable states of thetotjat
flow into this interaction graph. By computing SCCs and huotto
up traversing the SCC-DAGs in an effect graph, we are able to
generate regular expressions (as shown in the earlier éenfop
each incoming object.

around2

around2

Qo) Y
sion

\|
2:ph_deci:

. static void around2(int arg1,
int arg3, int arg4, Point p, int dv)

. associated data: dv 6. call f1_in.setX(f2_in)

. call ph_proceed2(p1,arg1) 7. associated data: f1_in

for shadow p.setX(6) 8. call after1(f1_in)

call ph_proceed2_2(p1,arg3,arg4)

for shadow p.setRectangular(5,2)

. static void ph_proceed2(Point f1_in, int f2_in)

Figure 5. Partial SDG forar ound?2

control dependence

N

data dependence
parameter flow

w

call/return

>

summary edge

o

5. Slicing AspectJ Programs

This section outlines a program slicing technique for Aspgco-
gram, as a second proof-of-concept analysis. The depeaderad-
ysis used in this technique is another representative of feowd
context-sensitive dataflow analysis algorithms; all suger@hms
require the information described in Section 3. Our goalasto
define a complete slicer for AspectJ, but rather to show Heapto-
posed representation contains all necessary informatiperform
interprocedural dependence analysis. Thus, the analysisnpli-
fied in two ways: (1) it uses a field-based approach that tedlads-
currences of the same instance field as aliases, withouidewirg
the base object in which the field is contained, and (2) it dus
take into consideration the effects of library calls. Caltlaeturn
edges are determined using class hierarchy analysis. Ao@ive
intraprocedural points-to analysis is used to refine theluésn of
virtual calls and to eliminate certain spurious data depanits.
Building the system dependence graph (SDG)Given the
control- and data-flow representation, the SDG of an Aspgact]
gram can be constructed relatively easily. The SDG contaits-

[Program | #LOC | #Versions| #Methods | #Shadows)|
bean 296 7 40 11
tracing 1059 | 7 44 32
tel ecom 870 7 96 19
qui cksort | 111 3 18 15
nul I check | 2991 5 196 146
I od 3075 | 3 220 1103
dcm 3423 | 4 249 359
spacewar 3053 1 288 369

Table 2. Analyzed programs

» Example. Figure 5 illustrates a partial SDG for the running
example, again with focus on shadpwset X(6) . Since relevant
data is associated with placeholder decision nodes, thoitim
can take into account the data dependencies between suek nod
and the nodes that define the data. For example, the proceed-
selection decision node 2 in the SDG is data dependent on the
formal dv. Similarly, decision node 7 is data dependent on formal
f 1.i n, which is a reference to the receiver object of the crosscut
call site, because this node representsttheget pointcut that
guards the execution of advieé t er 1. «

Slicing AspectJ Software. Standard graph-reachbility-based
slicing [16] can be directly applied to the SDG. Each statenie
the source code of an AspectJ program, except cals tceed,
corresponds to a unique node in the ICFG. Therefore, for cbmp
ing a forward or backward slice for any ngm-oceed statement,
the slicing algorithm is executed starting from the coroeging
ICFG node. A call topr oceed in an around-advice may corre-
spond to a group of call-site nodes in the ICFG, each of whadls ¢
aph_pr oceed method for one shadow. In this case a slice is com-
puted for each call-site node, and the slice union is taken.

6. Experimental Evaluation

To evaluate the proposed techniques, we performed a stuiithhwh
focused on the following research questions:

e What are the ICFG and SDG sizes observed for our approach,
compared to using the woven bytecode?

e What is the cost of building the representation?

e How many IG variables are determined to refer to objects flow-
ing to advices, and what is the cost of the effect analysis?

e What is the effect of our approach on slice size and compurtati
time, compared to slicing on the woven bytecode?

Implementation. We have implemented the analyses in our
AJANA analysis framework, built on top of thebc Aspect com-
piler [1]; details on the weaving performed lypc can be found
in [4]. AJANA uses the Jimple intermediate representation pro-
duced by the static weaving component of the compiler, lecttoe
actual advice weaving process starts. At this point ther-itylge
fields and methods introduced by aspects have been addesirto th
host classes, and static shadows have been identified, sibiuif

dependence and control-dependence edges between ICF& nodeicantly facilitates our analyses.

together with special nodes and edges to represent thasetiec
calls. We use the standard algorithm by Horwitz et al. [16judd
the SDG. A key feature of this algorithm is the computation of

Programs. Our study used the eight AspectJ programs shown in
Table 2. The first seven program were used in our previous twork
evaluate a technique for regression test selection [34fiahwork,

summary edgethat represent transitive dependencies along same- the original version of each program was used as basis tdecrea

level valid ICFG paths [26]. Such edges are constructedigira
bottom-up traversal of the call graph, using the dependarfoe-
mation for a callee to construct the summary edges in a caller
A decision node is created for each virtual call site; each

control-dependence edge leaving this node goes to a taltaie

for a possible method that could be invoked at run time. Fes¢h
and other placeholder decision nodes, the variable assdaidgth

the node is considered used (i.e., read).

several modified versions. The last benchmark was taken thhem
AspectJ example package. This group of benchmarks hasedso b
used by other researchers [33, 12]. For each program, Tahlevzs
the number of lines of code, methods, and shadows in thenatigi
version, plus the number of modified versions. Considerhmgy t
different versions of the same program, the study used &dbta
37 experimental subjects. All experiments were performed BC
with an Intel Xeon 2.8GHz CPU, and run with 512M heap size.

2000 +
5900

1800 + 5200

o
]

1600 1 4500 -

3800
1200 + 3100
1000 + 2400 +
800 + 1700

600 + 1000 +

300

400

tracing

80000 400000 T

A

70000 350000 +

60000 300000 +

50000 250000 +

40000 200000 +

30000 150000 +

20000 100000 +

10000 L
50000 o

1 2 3
lod

0

nullcheck

2800 900 +

2500 800 -

2200 4 700 &

1900
600 +

1600
500 +
1300 +
400 +

1000

300 +
700

200

400

quicksort
45000 + A
24000
40000 +
21000
35000 +
18000
30000 +
15000

25000 + 12000

20000 + 9000

15000 + 6000

o
[]

10000 + 3000

5000

1

spacewar

Figure 6. ICFG edge$]/M, control-dependencé/4 and data-dependenee /A edges: woven bytecod&l(...) and AJANA (H,...)

6.1 Study 1: ICFG and SDG Size and Cost

Our first study investigated the sizes of the ICFG and the SD
Figure 6 compares the graphs constructed bysa using the pro-
posed representation and the graphs constructed from thenwo
bytecode. Nodes in both types of ICFGs corresponded to dimpl

G.

statements. The figure shows the number of ICFG edges, the num
ber of SDG control-dependence edges, and the number of SDG

data-dependence edges. These results were obtained bpgunn
abc with advice inlining enabled. We consider edges rather than
nodes, because the number of edges is a more important fiaator
affects the running time of subsequent interprocedurdyaas.

For some simple program versions (e.g., for benchmiagen
andt el econ), our approach produces more ICFG edges. We in-
vestigated these occurrences, and determined that inibesiens
some advice bodies contain only a few statements, and thangea
process inlines these bodies at their shadows. In thess, ¢ake-
ing eliminates interprocedural edges that are explicituinrepre-
sentation. Except for such cases, the number of ICFG edgas in
representation is lower — in many cases, by at least a fattarm
(e.g., fort raci ng. 7 and all versions oficm).

For most versions, the SDGs built by our technique havetjigh
more control-dependence edges, due to the artificial decisi

417.7, and 250 ms respectivélyyhereas the corresponding times
for ICFG building from the woven bytecode were 122.0, 122.0,
535.5, and 110 ms. Even though our approach can be a bit slower
these differences are offset by savings in the subsequalytsas.

In addition to size and cost, another significant benefit af ou
representation is its independence from the particulavingaech-
nigues used to create the final Java bytecode. Such indepande
has critical advantages when relating the analysis remuite orig-
inal program (e.g., in tools for software understanding testing),
and when considering different weaving compilers or défarver-
sions of the same compiler.

6.2 Study 2: Slicing

Our second study investigated the effect of our techniquethe
computation of slices for AspectJ programs. One of the nrajor
tivations of computing a slice for a program entity is to urstiend
its dependencies on other program entities. Consider e Sland
the set of all SDG nodes included.¢h From the point of view of a
programmer, only nodes that correspond to entities fronotite
inal program source code are of any relevance for prograrerund
standing through slicing. Therefore, an interesting quass the
following: how many SDG nodes i¥ correspond to statements

nodes. On the other hand, the number of SDG data—dependencén the original AspectJ code? We will refer to the number aftsu

edges constructed from the woven bytecode is often draatigtic
higher that the corresponding number insAIA. For example, this
number is more than 7 times higher foul | check. 5, and more
than 30 times higher for two versions bbd. We inspected the
versions with significant differences, and found that alltteém
contain around-advices, and many of these advices crosgenyt
call site in the base program. In such cases, any interpuoaked
analysis influenced by data dependencies is likely to inignifs
cant overhead unless it employs our representation.

The algorithm for building the control- and data-flow rep-
resentation runs in practical time. For example, for progwa
nul | check, | od, dcmandspacewar, which are the largest
among the eight benchmarks, our analysis ran in 156.4, 159.4

nodes, relative to the total number of nodesSinas therelevance
ratio of the slice.

In this study we ran the standard slicing algorithm [16] oa th
SDG built by AsANA and on the SDG built from the woven byte-
code. For each benchmark, we choose the versions that wedtai
the most complex advice interactions. We computed a slioedfch
node in the SDGs of these versions, and determined the neleva
ratios for all slices. Table 3(a) summarizes the resulthisféxper-
iment. Column “Ver” shows the program versions that wereluse
Column “Size” contains the average number of nodes in a;sdice
slash “/” separates the result obtained with our repreentirom
the one obtained with the woven bytecode. Using a similan&tr
column “RelRat” shows the average value of the relevandesrat

1These times are the averages across all program versions.

Program | Ver @) (b) (c)
Size (nodes)[RelRat (%) [Time (sec) #EG nodes| #EG edges| Precision (%)] Time (sec) || Nodes (%)

bean v4 367/618 98.2/54.7 | 2.2/2.6 228 302 100 0.14 56.3
tracing v7 82971443 98.7/77.2] 5.8/24.2 56 73 100 0.47 35.3
telecom v7 3877230 98.5/85.3 | 2.0/1.3 74 96 100 0.19 100
quicksort | v2 3097325 98.0/445] 0.3/0.8 100 142 100 0.19 75
nullcheck | v2 836 /5852 97.8/37.7 | 15.9/542.7 229 349 100 27.48 1.3

V5 331377203 | 96.1746.0 | 21.1/762.1 388 589 100 154.84 0.8
lod vl 926 /3593 97.27/64.9 | 32.0/105.1 11 12 92.3 1.63 100

v2 65273623 97.9760.1 | 21.27956.7 10 12 914 5.36 100
dcm v2 144418654 | 98.2/44.3 | 19.7/1011.7|| 44 54 20 9.91 7.7
spacewar | vl 169 /1687 97.6/68.6 | 3.9/62.8 39 50 76 0.45 15.7

Table 3. (a) Slice size, relevance ratio, and slicing time; (b) Bfigaph size, precision, and analysis running time; (c) Nemnd§ ICFG
nodes in our representation of around-advices, relatigedoning approach

for the computed slices, and column “Time” shows the totakti
of the computation, including SDG building.

For calculating the relevance ratios of the slices, the kepi
determine the set of SDG nodes that miat have corresponding
statements in the AspectJ source code. For slices based ogpsu
resentation, these nodes are all placeholder decisiorsrasiesell
as all call-site and return-site nodes for placeholder odshFor
slices based on the woven bytecode, it is not obvious howeto-id
tify such nodes, due to the difficulty in establishing a mafween
the source code and the woven code. As a conservative apoxi
tion, we define this set to contain all nodes in compileredtrced
methods. In fact, the relevance ratios shown in Table 3(a) lea
too high for the bytecode-based approach, because evertiodse
whose declarations are not changed by the compiler therebemay
compiler-introduced statements.

Clearly, our technique achieves significantly better ratee
ratios, which means that the slices it computes are mucterclos
to the original AspectJ source code. Furthermore, for aljams
exceptt el ecom smaller slices are built and the running time for
SDG building and slicing is reduced. Especially for largeggams
(such as the last four), our technique achieves impressgive t
savings. We manually inspected the woven bytecode ébrecom
and determined that inlining done by the weaving processtivas
reason for the observed cost of SDG construction and slicing

6.3 Study 3: Effect Analysis

The third study investigated the object effect analysisngishe
same program versions. For egaiir oot method, we ran the ef-
fect analysis for each of its reference-typed formal patameand
generated regular expressions. Table 3(b) shows the sesaith
this experiment. Columns “#EG nodes” and “#EG edges” show
the average number, across shadows, of nodes and edgesin the
fect graph. Column “Precision” shows ratios between the lrem
of EG nodes for our must-alias-based analysis, and the nuafibe
EG nodes for an artificial may-alias-based analysis which de
fined for the purposes of evaluating the precision of the ralia
information. The may-alias analysis is a modification of itmest-
alias analysis, and its results provide a conservativeapgEpxima-
tion (i.e., an upper bound) of possible effects. For mosggms,
the must-alias-based effect analysis achieves perfecispe. The
main reason is that an advice body is usually fairly simplé-een-
tains much fewer control flow paths compared to a Java method.
Note that performing such an effect analysis on the woven
bytecode is clearly infeasible. For example, inlining ofiads into

results were obtained by analyzing the entire interacticaplg,

rather than a single advice. The analysis of a single adgic®i

sufficient to provide precise information about its behawecause
its execution is often tied with the execution of other adsic

The running times shown in Table 3(b) include the time used
to build the representation together with the executioretohthe
effect analysis. Clearly, this cost is practical.

Representation of around-advicesOur approach merges the
representations of multiple around-advices, as describebiec-
tion 3.3. An alternative solution would be to replicate theGCof
an around-advice for each shadow that the advice matchesi-re
ing in a body-cloning-based representation. Table 3(cjvshihe
ratios between the number of ICFG nodes in our representafio
around-advices, and the corresponding number in a cloeipigef
sentation. For some programs (etgel econ) our representation
does not achieve any reduction, because these prograras @ith
not have around-advices, or an around-advice can applyhyaboa
shadow. For other programs, significant differences caneee.s
For examplenul | check. 5 has only one around-advice, but it
can apply at 274 shadows in the program. Cloning the advidg bo
per shadow leads to an extremely large ICFG for this progrsm.
though the proposed representation of around-advicesripadt, it
can cause propagation along unrealizable paths duringsegqubent
static analysis. This problem can be solved by using a “shiado
sensitive” analysis that associates a calptamceed with a spe-
cific shadow that the call invokes, by propagating interpohcally
the constant values of variablds.

Conclusions.For analyzing AspectJ software, especially larger
non-toy AspectJ applications, the source-code-basedseptation
proposed in this paper is practical to build, easier to ustded,
contains significantly fewer nodes and edges, enables paging
analysis of interactions between base code and advicescand
dramatically speed up subsequent dataflow analyses. Teéssiésr
strongly indicate that such a representation could sergtaasng
point for future work on adapting existing dataflow analyseAs-
pectJ, and on defining new analyses for AspectJ-specifidgmsh

7. Related Work

Static analysis of AOP softwareTheabc compiler group [1] de-
veloped the AspectBench Compiler for Aspectd, which presid
variety of static analyses and optimizations [3, 4, 6]. Thirk fo-
cuses on optimizations of the generated bytecode to reckeoeie
tion overhead, whereas the focus of our work is representatnd
optimization at the source-code level abstracting awaypil@m

the base code makes an advice a part of the base code. Asranothespecific details, in order to facilitate high-level programalysis

example, an around-advice could be broken up into multiglegs,
which are scattered in both the base class and the advice clas
Such compiler-specific weaving rules make it extremely diffi
for a non-compiler-designer to distinguish between thee lzagle

and program understanding. We implemented thenx frame-

work as an extension to trebc compiler, building the ICFG be-

tween the static weaving phase and the advice weaving phase.
Rinard et al. [24] present a classification of the interaxgibe-

and advices in the woven Java bytecode. Also note that thesetween methods and advices. This classification enabledageve

ers to recognize interaction patterns that support modekson-
ing and to focus on the causes of potentially non-modularint
actions, by employing an existing compositional pointed @s-
cape analysis [32]. However, their work analyzes a singigcad
whereas our approach analyzes the entire interaction geaph
therefore achieves higher precision in modeling the beinaof
multiple interacting advices. Zhao defines control-flowresgnta-
tions for a variety of testing and analysis tasks for aspeented

programs [37, 35, 36, 38]. However, the proposed models do no

consider more complex situations such as multiple advieegom

point, or dynamic advices. Our previous work proposed dcstat

control-flow model for AspectJ software [34] which servegtas
basis for the ICFG used in this paper. However, this appraith

not include any data-flow representation that could be used f

dataflow analysis.

Interprocedural dataflow analysis. The theoretical founda-
tions for interprocedural dataflow analysis have been tyated
extensively (e.g., [27, 22, 26]). Both the object effectlgsia and

the dependence analysis described earlier are exampleBEof |

analyses. In the Java community, dataflow analysis has bieletyw
used for compiler optimizations (e.g., [29]), softwareifieation
(e.g., [13, 11, 9]), program understanding (e.g., [25])3 anror
detection (e.g., [21, 8]). As more large-scale aspectteik pro-
grams are being developed and employed for real-world depta
ing these existing techniques by the aspect-oriented caritynzan
benefit numerous compiler construction and software eeging
tasks. The work presented in this paper is a step towardyiagpl
these techniques to AspectJ software.

There is a large body of work on static slicing [30]. The tradi

tional SDG-based interprocedural slicing algorithm wasppsed
by Horwitz at al. [16]. Later work addresses the slicing ofeab-
oriented software (e.g., [19]) and of programs with arlpjtiontrol
flow (e.g., [28]). Slicing algorithms for aspect-orientebgrams
were proposed, for example, in [36, 17]. Unlike our work,ste
efforts do not consider the full complexity of the flow of coit
and data at join points, or the generality of AspectJ langufag-
tures. Furthermore, it is not clear how interproceduraletielence

analysis would be performed. Our work defines and evaluates e

perimentally a general program representation which canseed
for dependence analysis and for a variety of other integuoral
analyses (e.g., IDE analyses [26]).

8. Conclusions

This paper describes an approach for constructing a staticat-
and data-flow representation for AspectJ software. Thiscgsu
code-based technique makes explicit the data exposedydater-
actions at join points. We use effect analysis, dependenalysis,
and slicing as representative client analyses for the m@gpap-
proach. Our experiments clearly show that, compared tysisabf
the woven bytecode, this representation is better suitéduasia-
tion for subsequent static analyses. We also propose a affeet
analysis for understanding and checking of typestate priegeof
the behavioral effects of multiple interacting advices ncoming
objects from the base program. This work creates promigipge
tunities for future work on adapting many existing Java gses to
AspectJ, and on designing novel AspectJ-specific analjmesse
in various tools for program comprehension, impact anajygpe-
state verification, and software testing.

Acknowledgments We would like to thank the AOSD reviewers

for many valuable comments and suggestions.
References

[1] AspectBench Compileabc. conl ab. ox. ac. uk.
[2] Aspectd Compileww. aspect j . or g.

[3] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzihd,hotak, O. Lhotak,
0. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Bugdimeabc AspectJ
compiler with Polyglot and Soot. Technical Report abc-2@04bc Group, Dec.
2004.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzihd,hotak, O. Lhotak,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibb#c: An extensible
AspectJ compiler. INOSD pages 87-98, 2005.

[5] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzihd,hotak, O. Lhotak,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Optigig\spectJ. In
PLDI, pages 117-128, 2005.

[6] P. Avgustinov, E. Hajiyev, N. Ongkingco, O. de Moor, D.réei, J. Tibble, and
M. Verbaere. Semantics of static pointcuts in AspectlP@PL, pages 11-23,
2007.

[7] D. Callahan. The program summary graph and flow-sermsititerprocedural
data flow analysis. I’LDI, pages 47-56, 1988.

[8] S. Cherem, L. Princehouse, and R. Rugina. Practical mgieak detection
using guarded value-flow analysis. DI, pages 480-491, 2007.

[9] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitivgim verification in
polynomial time. InPLDI, pages 57-68, 2002.

[10] R. DeLine and M. Fahndrich. Typestates for objectsE@OOR LNCS 3086,
pages 465-490, 2004.

[11] N. Dor, S. Adams, M. Das, and Z. Yang. Software validatioa scalable
path-sensitive value flow analysis. IBSTA pages 12-22, 2004.

[12] B.Dufour, C. Goard, L. Hendren, O. de Moor, G. Sittangma) and C. Verbrugge.
Measuring the dynamic behaviour of AspectJ program@Q@PSLA pages 150—
169, 2004.

[13] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.eéiffie typestate
verification in the presence of aliasing. IBSTA pages 133-144, 2006.

[14] D. Grove and C. Chambers. A framework for call graph ¢artdion algorithms.
TOPLAS 23(6):685—746, Nov. 2001.

[15] N. Heintze. Set Based Program AnalysisPhD thesis, Carnegie Mellon
University, 1992.

[16] S. Horwitz, T. Reps, and D. Binkley. Interproceduratisig using dependence
graphs TOPLAS 12(1):26-60, 1990.

[17] T. Ishio, S. Kusumoto, and K. Inoue. Debugging supportdspect-oriented
program based on program slicing and call graphlQ8M, pages 178-187,
2004.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.iRaand W. Griswold. An
overview of AspectJ. IECOOP, LNCS 2072, pages 327-353, 2001.

[19] L. Larsen and M. J. Harrold. Slicing object-orientedts@re. InICSE pages
495-505, 1996.

[20] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. YaR§E: Explaining
program failures via postmortem static analysisF8E pages 63-72, 2004.

[21] T. Marlowe and B. G. Ryder. Properties of data flow frarnekg: A unified
model. Acta Informatica 28:121-163, 1990.

[22] T. Reps, M. Sagiv, and S. Horwitz. Interprocedural flata analysis via graph
reachability. Technical Report DIKU-TR94-14, UniversitfyCopenhagen, Apr.
1994.

[23] M. Rinard, A. Salcianu, and S. Bugrara. A classificatgstem and analysis for
aspect-oriented programs. FSE pages 147-158, 2004.

[24] A. Rountev and B. H. Connell. Object naming analysisrfarerse-engineered
sequence diagrams. I68SE pages 254-263, 2005.

[25] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocaddataflow analysis
with applications to constant propagatidrheoretical Computer Scienck57(1-
2):131-170, 1996.

[26] M. Sharir and A. Pnueli. Two approaches to interprocatdata flow analysis.
In S. Muchnick and N. Jones, edito®rogram Flow Analysis: Theory and
Applications pages 189-234. Prentice Hall, 1981.

[27] S. Sinha, M. J. Harrold, and G. Rothermel. System-ddpeoe-graph-based
slicing of programs with arbitrary interprocedural cohfiow. In ICSE pages
432-441, 1999.

[28] http://ww. sabl e. ntgill.calsoot.

[29] F. Tip. A survey of program slicing techniqueslournal of Programming
Languages3:121-189, 1995.

[30] F. Tip and J. Palsberg. Scalable propagation-basddygh construction
algorithms. INOOPSLA pages 281-293, 2000.

[31] J. Whaley and M. Rinard. Compositional pointer and pecanalysis for Java
programs. IMOOPSLA pages 187—206, 1999.

[32] T. Xie and J. Zhao. A framework and tool supports for gafiag test inputs of
AspectJ programs. IAOSD pages 190-201, 2006.

[33] G. Xu and A. Rountev. Regression test selection for Atpsoftware. INCSE
pages 6574, 2007.

[34] J. Zhao. Change impact analysis for aspect-orientévare evolution. In
International Workshop on Principles of Software Evolnfipages 108-112,
2002.

[35] J. Zhao. Slicing aspect-oriented software.|HEE International Workshop on
Program Comprehensiopages 251-260, 2002.

[36] J. Zhao. Data-flow-based unit testing of aspect-oednprograms. In
International Computer Software and Applications Confieepage 188, 2003.

[37] J. Zhao and M. Rinard. System dependence graph cotistifor aspect-
oriented programs. IMIT-LCS-TR-8912003.

