
Semeru: A Memory-Disaggregated Managed Runtime

Chenxi Wang† Haoran Ma† Shi Liu† Yuanqi Li† Zhenyuan Ruan‡ Khanh Nguyen§

Michael D. Bond∗ Ravi Netravali† Miryung Kim† Guoqing Harry Xu†

UCLA† MIT‡ Texas A&M University§ Ohio State University∗

Abstract
Resource-disaggregated architectures have risen in popularity
for large datacenters. However, prior disaggregation systems
are designed for native applications; in addition, all of them
require applications to possess excellent locality to be effi-
ciently executed. In contrast, programs written in managed
languages are subject to periodic garbage collection (GC),
which is a typical graph workload with poor locality. Al-
though most datacenter applications are written in managed
languages, current systems are far from delivering acceptable
performance for these applications.

This paper presents Semeru, a distributed JVM that can
dramatically improve the performance of managed cloud ap-
plications in a memory-disaggregated environment. Its design
possesses three major innovations: (1) a universal Java heap,
which provides a unified abstraction of virtual memory across
CPU and memory servers and allows any legacy program
to run without modifications; (2) a distributed GC, which
offloads object tracing to memory servers so that tracing is
performed closer to data; and (3) a swap system in the OS
kernel that works with the runtime to swap page data effi-
ciently. An evaluation of Semeru on a set of widely-deployed
systems shows very promising results.

1 Introduction
The idea of resource disaggregation has recently attracted
a great deal of attention in both academia [16, 45, 49, 87]
and industry [3, 33, 39, 52, 65]. Unlike conventional data-
centers that are built with monolithic servers, each of which
tightly integrates a small amount of each type of resource (e.g.,
CPU, memory, and storage), resource-disaggregated datacen-
ters contain servers dedicated to individual resource types.
Disaggregation is particularly appealing due to three major
advantages it provides: (1) improved resource utilization: de-
coupling resources and making them accessible to remote
processes make it much easier for a job scheduler to achieve
full resource utilization; (2) improved failure isolation: any
server failure only reduces the amount of resources of a par-
ticular type, without affecting the availability of other types
of resources; and (3) improved elasticity: hardware-dedicated
servers make it easy to adopt and add new hardware.
State of the Art. Architecture [10, 22, 23, 58] and network-
ing [7, 30, 46, 55, 72, 83, 86, 88] technologies have matured
to a point at which data transfer between servers is fast enough
for them to execute programs collectively. LegoOS [87] pro-

vides a new OS model called splitkernel, which disseminates
traditional OS components into loosely coupled monitors,
each of which runs on a resource server. InfiniSwap [49]
is a paging system that leverages RDMA to expose mem-
ory to applications running on remote machines. FaRM [37]
is a distributed memory system that uses RDMA for both
fast messaging and data access. There also exists a body of
work [12, 28, 38, 60, 61, 64, 65, 73, 77, 94, 96, 97, 105] on
storage disaggregation.

1.1 Problems

Although RDMA provides efficient data access among remote
access techniques, fetching data from remote memory on a
memory-disaggregated architecture, is time consuming, incur-
ring microsecond-level latency that cannot be handled well
by current system techniques [20]. While various optimiza-
tions [37, 38, 49, 84, 87, 105] have been proposed to reduce
or hide fetching latency, such techniques focus on the low-
level system stack and do not consider run-time semantics of
a program, such as locality.

Improving performance for applications that exhibit good
locality is straightforward: the CPU server runs the program,
while data are located on memory servers; the CPU server has
only a small amount of memory used as a local cache1 that
stores recently fetched pages. A cache miss triggers a page
fault on the CPU server, making it fetch data from the memory
server that hosts the requested page. Good locality reduces
cache misses, leading to improved application performance.
As a result, a program itself needs to possess excellent spa-
tial and/or temporal locality to be executed efficiently under
current memory-disaggregation systems [7, 8, 49, 87].

This high requirement of locality creates two practical
challenges for cloud applications. First, typical cloud appli-
cations are written in managed languages that execute atop a
managed runtime. The runtime performs automated memory
management using garbage collection (GC), which frequently
traces the heap and reclaims unreachable objects. GC is a
typical graph workload that performs reachability analysis
over a huge graph of objects connected by references. Graph
traversal often suffers from poor locality, so GC running on
the CPU server potentially triggers a page fault as it follows
each reference. As shown in §2, memory disaggregation can
increase the duration of GC pauses by >10×, significantly
degrading application performance.

1In this paper, “cache” refers to local memory on the CPU server.

Second, to make matters worse, unlike native programs
whose data structures are primarily array-based, managed
programs make heavy use of object-oriented data struc-
tures [74, 100, 101], such as maps and lists connected via
pointers without good locality. To illustrate, consider a Spark
RDD — it is essentially a large list that references a huge
number of element objects, which can be distributed across
memory servers. Even a sequential scan of the list needs to ac-
cess arbitrarily located elements, incurring high performance
penalties due to frequent remote fetches.

In essence, managed programs such as Spark, which are
typical cloud workloads that resource disaggregation aims
to benefit, have not yet received much support from existing
resource-disaggregated systems.

1.2 Our Contributions
Goal and Insight. The goal of this project is to design a
memory-disaggregation-friendly managed runtime that can
provide superior efficiency to all managed cloud applications
running in a memory-disaggregated datacenter. Our major
drive is an observation that shifting our focus from low-level,
semantics-agnostic optimizations (as done in prior work) to
the redesign of the runtime that improves data placement,
layout, and usage, can unlock massive opportunities.

To achieve this goal, our insights are as follows. To exploit
locality for GC, most GC tasks can be offloaded to memory
servers where data is located. As GC tasks are mostly mem-
ory intensive, this offloading fits well into a memory server’s
resource profile: weak compute and abundant memory. Mem-
ory servers can perform some offloaded GC tasks — such as
tracing objects — concurrently with application execution.
Similarly, other GC tasks — such as evacuating objects and
reclaiming memory — can be offloaded to memory servers,
albeit while application execution is paused. Furthermore,
evacuation can improve application locality by moving ob-
jects likely to be accessed together to contiguous memory.
Semeru. Following these insights, we develop Semeru,2 a
distributed Java Virtual Machine (JVM) that supports efficient
execution of unmodified managed applications. As with prior
work [49, 87], this paper assumes a setting where processes
on each CPU server can use memory from multiple memory
servers, but no single process spans multiple CPU servers.
Semeru’s design sees three major challenges:

The first challenge is what memory abstraction to provide.
A reachability analysis over objects on a memory server
requires the server to run a user-space process (such as a
JVM) that has its own address space. As such, the same
object may have different virtual addresses between the CPU
server (that runs the main process) and its hosting memory
server (that runs the tracing process). Address translation for
each object can incur large overheads.

To overcome this challenge, Semeru provides a memory
abstraction called the universal Java heap (UJH) (§3.1). The

2Semeru is the highest mountain on the island of East Java.

execution of the program has a main compute process running
on the CPU server as well as a set of “assistant” processes,
each running on a memory server. The main and assistant
processes are all JVM instances, and servers are connected
with RDMA over InfiniBand. The main process executes
the program while each assistant process only runs offloaded
memory management tasks. The heap of the main process
sees a contiguous virtual address space partitioned across the
participating memory servers, each of which sees and man-
ages a disjoint range of the address space. Semeru enables an
object to have the same virtual address on both the CPU server
and its hosting memory server, making it easy to separate an
application execution from the GC tasks.

The second challenge is what to offload. An ideal ap-
proach is to run the entire GC on memory servers while the
CPU server executes the program, so that memory manage-
ment tasks are performed (1) near data, providing locality ben-
efits, and (2) concurrently without interrupting the main exe-
cution. However, this approach is problematic because some
GC operations — notably evacuating (moving) and compact-
ing objects into a new region — must coordinate extensively
with application threads to preserve correctness. As a result,
many GC algorithms — including the high-performance GC
that our work extends — trace live objects concurrently with
application execution, but move objects only while applica-
tion execution is paused (i.e., stop-the-world collection).

We develop a distributed GC (§4) that selectively offloads
tasks and carefully coordinates them to maximize GC per-
formance. Our idea is to offload tracing to memory servers
concurrently with application execution. Tracing computes a
transitive closure of live objects from a set of roots. It does
nothing but pointer chasing, which would be a major bottle-
neck if performed at the CPU server. To avoid this bottleneck,
Semeru lets each memory server trace its own objects, as
opposed to bringing them into the CPU server for tracing.

Tracing is a memory-intensive task that does not need
much compute [27] but benefits greatly from being close to
data. To leverage memory servers’ weak compute, memory
servers trace their local objects continuously while the CPU
server executes the main threads. Tracing also fits well into
various hardware accelerators [69, 85], which future memory
servers may employ. The CPU server periodically stops the
world for memory servers to evacuate live objects (i.e., copy
them from old to new memory regions) to reclaim memory.
Object evacuation provides a unique opportunity for Semeru
to relocate objects that may potentially be accessed together
into a contiguous space, improving spatial locality.

The third challenge is how to efficiently swap data. Exist-
ing swap systems such as InfiniSwap [49] and FastSwap [11]
cannot coordinate with the language runtime and have bugs
when running distributed frameworks such as Spark (§2). Mel-
lanox provides an NVMe-over-fabric (NVMe-oF) [1] driver
that allows the CPU server to efficiently access remote stor-
age using RDMA. A strawman approach here is to mount

1.0 1.0 1.0 1.0

2.7

1.3 1.2
1.4

3.8

2.8
2.0

2.3

0

1

2

3

4

Young GC Full GC Mutator Total Time

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

Ti

m
e

GraphX TriangleCounting

No Swap 50% 25%

1.0 1.0 1.0 1.0
3.9

57.1

2.0
8.4

6.9

126.1

5.3
18.9

0

50

100

150

Young GC Full GC Mutator Total Time

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

Ti

m
e

MLlib KMeans

No Swap 50% 25%
Figure 1: Slowdowns of two representative Spark applications under disaggregated memory; NVMe-oF was used for data swapping. Spark
was executed over OpenJDK 12 with its default (Garbage First) GC. The four groups for each program report the slowdowns of the nursery
(young) GC, full-heap GC, mutator, and end-to-end execution. Each group contains three bars, reporting the execution times under three cache
configurations: 100%, 50%, and 25%. Each configuration represents a percentage of the application’s working set that can fit into the CPU
server’s local DRAM. Execution times of the 50% and 25% configurations are normalized to that of 100%.

remote memory as RAMDisks and use NVMe-oF to swap
data. However, this approach does not work in our setting
where remote memory is subject to memory-server tracing
and compaction, precluding it from being used as RAMDisks.
To this end, we modify the NVMe-oF implementation (§5) to
provide support for remote memory management. InfiniBand
gather/scatter is used to efficiently transfer pages. We also de-
velop new system calls that enable effective communications
between the runtime and the swap system.
Results. We have evaluated Semeru using two widely-
deployed systems – Spark and Flink – each with a represen-
tative set of programs. Our results demonstrate that Semeru
improves the end-to-end performance of these systems by an
average of 2.1× and 3.7× when the cache size is 50% and
25% of the heap size, application performance by an average
of 1.9× and 3.3×, and GC performance by 4.2× and 5.6×,
respectively, compared to running these systems directly on
NVM-oF where remote accesses incur significant latency
overheads. These promising results suggest that Semeru re-
duces the gap between memory disaggregation and managed
cloud applications, taking a significant step toward efficiently
running such applications on disaggregated datacenters.

Semeru is publicly available at https://github.com/
uclasystem/Semeru.

2 Motivation
We conducted experiments to understand the latency penal-
ties that managed programs incur on existing disaggregation
systems. We first tried to use existing disaggregation systems
including LegoOS [87], InfiniSwap [49], and FastSwap [11].
However, LegoOS does not yet support socket system calls
and cannot run socket-based distributed systems such as
Spark. Under InfiniSwap and FastSwap, the JVM was fre-
quently stuck — certain remote fetches never returned.
Background of G1 GC. To collect preliminary data, we
set up a small cluster with one CPU and two memory servers,
using Mellanox’s NVMe-over-fabric (NVMe-oF) [1] protocol

for data swapping, mounting remote memory as a RAMDisk.
On this cluster, we ran two representative Spark applications:
Triangle Counting (TC) from GraphX and KMeans from
MLib with the Twitter graph [63] as the input. We used
OpenJDK 12 with its high-performance Garbage First (G1)
GC, which is the default GC recommended for large-scale
processing tasks, with a 32GB heap. G1 is a region-based,
generational GC that most frequently traces the young genera-
tion (i.e., nursery GC) and occasionally traces both young and
old generations (i.e., full-heap GC). This is based on the gen-
erational hypothesis that most objects die young and hence
the young generation contains a larger fraction of garbage
than the old generation [93].

Under G1, the memory for both the young and old genera-
tions is divided into regions, each being a contiguous range
of address space. Objects are allocated into regions. Each
nursery GC traces a small number of selected regions in the
young generation. After tracing, live objects in these regions
are evacuated (i.e., moved) into new regions. Objects that
have survived a number of nursery GCs will be promoted to
the old generation and subject to less frequent tracing. Each
full-heap GC traces the entire heap, and then evacuates and
compacts a subset of regions.

Performance. The performance of these applications is re-
ported in Figure 1. In particular, we measured time spent on
nursery and full-heap collections, as well as end-to-end execu-
tion time. Three cache configurations (shown in three bars of
each group) were considered, each representing a particular
percentage of the application’s working set that can fit into
the CPU server’s local DRAM.

Despite the many block-layer optimizations in the NVMe-
oF swap system, performance penalties from remote fetching
are still large. Under the 25% cache configuration, the average
slowdown for these applications is 10.6×. Note that for a
typical Big Data application with a large working set (e.g., 80–
100GB), 25% of the working set means that the CPU server

https://github.com/uclasystem/Semeru
https://github.com/uclasystem/Semeru

Memory Servers
Java heap LJVM #1

Memory Server #1
LJVM #2

Memory Server #2
LJVM #3

Memory Server #3

CPU-Server Main JVM
Universal Java heap

Virtual Address

Local RAM (cache)

Physical Memory

Addresses Aligned

Semeru Block Device

Page SwapRDMA Messages

RDMA over InfiniBand

(a) Universal Java Heap (b) State machine of a virtual page

Init

Cached-Dirty Evicted

Allocate Swap out

Cached-Clean

Free (unmap)

Figure 2: Semeru’s heap and virtual page management.

needs at least 20–25GB DRAM for a single application to
have a ∼10× slowdown. Considering a realistic setting where
the CPU server runs multiple applications, there is a much
higher DRAM requirement for the CPU server, posing a
practical challenge for disaggregation.
Takeaway. Disaggregated memory incurs a higher slow-
down for the GC than the main application threads (i.e., mu-
tator threads in GC literature terminology) — this is easy
to understand because compared to the mutator (which, for
example, manipulates large Spark RDD arrays), the GC has
much worse locality. Moreover, KMeans suffers much more
from remote memory than TC due to significantly increased
full-heap GC time. This is because KMeans uses a number
of persisted RDDs (that are held in memory indefinitely).
Although TC also persists RDDs, those RDDs are too large
to be held in memory; as such, Spark releases them and re-
constructs them when they are needed. This increases the
amount of computation but reduces the GC effort under dis-
aggregation. However, since memoization is an important
and widely used optimization, it is not uncommon for data
processing applications to hold large amounts of data in mem-
ory. As a result, these applications are expected to suffer from
large-working-set GC as well.

These results call for a new managed runtime that can de-
liver good performance under disaggregated memory without
requiring developers to be aware of and reason about the
effects of disaggregation during development.

3 Semeru Heap and Allocator
This section discusses the design of Semeru’s memory ab-
straction. In order to support legacy applications developed
for monolithic servers and to hide the complexity of data
movement, we propose the universal Java heap (UJH) mem-
ory abstraction. We first describe this abstraction, and then
discuss object allocation and management.

3.1 Universal Java Heap

The main process (i.e., a JVM instance) running on the CPU
server sees a large contiguous virtual address space, which
we refer to as the universal Java heap. The application can
access any part of the heap regardless of the physical loca-
tions. This contiguous address space is partitioned across

memory servers, each of which provides physical memory
that backs a disjoint region of the universal heap. The CPU
server also has a small amount of memory, but this memory
will serve as a software-managed, inclusive cache and hence
not be dedicated to specific virtual addresses. Mutator (i.e.,
application) threads run on the CPU server. When they access
pages that are uncached on the CPU server, a page fault is trig-
gered, and the paging system swaps pages that contain needed
objects into the CPU server’s local memory (cache). When
the cache is full, selected pages are swapped out (evicted) to
their corresponding memory servers, as determined by their
virtual addresses.

Figure 2(a) provides an overview of the UJH. In addition
to the main process running on the CPU server, Semeru also
runs a lightweight JVM (LJVM) process on each participat-
ing memory server that performs tracing over local objects.
This LJVM3 is specially crafted to contain only the modules
of object tracing and memory compaction, with support for
RDMA-enabled communication with the CPU server. Due
to its simplicity (i.e., the modules of compiler, class loader,
and runtime as well as much of the GC are all eliminated),
the LJVM has a very short initialization time (e.g., millisec-
onds) and low memory footprint (e.g., megabytes of memory
for tracing metadata). Hence, a memory server can easily
run many LJVMs despite its weak compute (i.e., each for a
different CPU-server process).

When the LJVM starts, it aligns the starting address of its
local heap with that of its corresponding address range in the
UJH. As a result, each object has the same virtual address
on the CPU and memory servers, enabling memory servers
to trace their local objects without address translation. All
physical memory required at each memory server is allocated
when the LJVM is launched and pinned down during the
entire execution of the program.

Coherency. This memory abstraction is similar in spirit
to distributed shared memory (DSM) [66], which has been
studied for decades. However, different from DSM, which
needs to provide strong coherency between servers, Semeru’s
coherency protocol is much simpler because memory servers,
which collectively manage the address space, do not execute

3It is technically no longer a JVM since it does not execute Java programs.

any mutator code. The CPU server has access to the entire
UJH, but each memory server can only access data in the
address range it manages. In Semeru, each non-empty virtual
page is in one of two high-level states, cached (in the CPU
server) or evicted (to a memory server). When the CPU server
accesses an evicted virtual page, it swaps the page data into
its cache and changes the page’s state to cached.

3.2 Allocation and Cache Management

Object allocation is performed at the CPU server. Allocation
finds a virtual space that is large enough to accommodate
the object being allocated. We adopt G1’s region-based heap
design where the heap is divided into regions, which are con-
tiguous segments of virtual memory. The region-based design
enables modular tracing and reclamation — each memory
server hosts a set of regions; a memory server can trace any
region it hosts independently of other regions, thereby en-
abling memory servers to perform tracing in parallel (while
the CPU server executes the program). Modular tracing is
enabled by using remembered sets, discussed shortly in §4.

When an object in a region is requested by the CPU server,
the page(s) containing the object are swapped in. At this point,
the region is partially cached and registered at the CPU server
into an active region list. Semeru uses a simple LRU-based
cache management algorithm to evict pages. The region is
removed from this list whenever all its pages are evicted.

Upon an allocation request, the Semeru allocator finds the
first region from this list that has enough space for the new ob-
ject. If none of these regions can satisfy the request, Semeru
creates a new region and allocates the object there. Allocation
is based upon an efficient bump pointer algorithm [57], which
places allocated objects contiguously and in allocation or-
der. Bump pointer allocation maintains a position pointer for
each region, pointing to the starting address of the free space.
Bump pointer allocation maintains a position pointer for each
region that points to the starting address of the region’s free
space. For each allocation, the pointer is simply “bumped
up” by the size of the allocated object. Very large objects are
allocated to a special heap area called the humongous space.

1 struct region {
2 uint64_t start; // start address
3 uint64_t bp; // bump pointer
4 uint64_t num_obj; // total # objects
5 uint64_t cached_size; // size of pages in CPU cache
6 uint16_t survivals; // # evacuations survived
7 remset* rem_set; // remembered set (Section 4)
8 ...
9 }

Figure 3: A simplified definition for a region descriptor in Semeru.

The CPU server maintains, for all regions, their state de-
scriptors. Each region descriptor is a struct, illustrated in
Figure 3. Descriptors are used in both allocation and garbage
collection. For example, start and bp are used for alloca-
tion; they can also be used to calculate the size of allocated
objects. survivals indicates the total number of evacuation
phases that the regions’ objects have survived. It can be used,

together with num_obj, to compute an age measurement for
the region. rem_set is used as the tracing roots, which will
be discussed shortly in §4.2.

Cache Management. Semeru employs a lazy write-back
technique for allocations. Each allocated object stays in the
CPU server’s cache and Semeru does not write the object
back to its corresponding memory server until the pages con-
taining the object are evicted. For efficiency, only dirty pages
are written back. Figure 2(b) shows the state machine of a
virtual page. Each virtual page is initially in the Init state.
Upon an object allocation on a page, the object is placed in
the cache of the CPU server and its virtual page is marked
as Cached, indicating that the object is currently being ac-
cessed by the CPU server. Evicted pages are swapped out to
memory servers. Virtual pages freed by the GC are unmapped
from their physical pages (their corresponding page table en-
tries are not freed) and have their states reset to Init. This
state machine is managed solely by the CPU server; memory
servers do not run application code and hence do not need to
know the state of each page (although they need to know the
state of regions for tracing).

4 Semeru Distributed Garbage Collector
Semeru has a distributed GC that offloads tracing — the most
memory-intensive operation in the GC (as it visits every live
object) — to memory servers. Tracing is a task that fits well
into the capabilities of a memory server with limited compute.
That is, traversing an object graph by chasing pointers does
not need strong compute, but benefits greatly from being
close to data. In addition to memory-server tracing that runs
continuously, Semeru periodically conducts a highly parallel
stop-the-world (STW) collection phase to free cache space
on the CPU server and reclaim memory on memory servers
by evacuating live objects.

Design Overview. Although regions have been used in
prior heap designs [36, 79], there are two unique challenges
in using regions efficiently for disaggregated memory.

The first challenge is how to enable modular tracing for
regions. Prior work such as Yak [79] builds a remembered set
(remset) for each region that records references coming into
objects in the region from other regions. These references,
which are recorded into the set by instrumentation code called
a write barrier, when the mutator executes each object write
of a non-null reference value, can be used as additional roots
to traverse the object graph for the region. However, none of
the existing techniques consider a distributed scenario, where
region tracing is done on memory servers, while their remsets
are updated by mutator threads on the CPU server. We pro-
pose a new distributed design of the remset data structure to
minimize the communication between the CPU and memory
servers. Our remset design is discussed in §4.1.

The second challenge is how to split the GC tasks between
servers. Our distributed GC has two types of collections:

MSCT	

MSCT	

Mutator	
CSSC	

MSCT	

MSCT	

Memory	
Server	

Memory	
Server	

CPU	
Server	

Figure 4: Semeru GC overview: the MSCT (on memory servers)
traces evicted regions; the CSSC (coordinated between CPU and
memory servers) traces cached regions and reclaims all regions.

Memory Server Concurrent Tracing (MSCT, §4.2):
Each memory server performs intra-region tracing over re-
gions for which most pages are evicted, as a continuous task.
Tracing runs concurrently on memory servers by leveraging
their cheap but idle CPU resources. One can think of this
as a background task that does not add any overhead to the
application execution. The goal of MSCT is to compute a
live object closure for each region at memory servers without
interfering with the main execution at the CPU server. As a
result, by the time a STW phase (i.e., CSSC) runs, much of
the tracing work is done, minimizing the STW pauses.

CPU Server Stop-The-World Collection (CSSC, §4.3):
The CSSC is the main collection phase, coordinated between
the CPU and memory servers to reclaim memory. During this
phase, memory servers follow the per-region object closure
computed during the MSCT to evacuate (i.e., move out) live
objects. Old regions are then reclaimed as a whole. Also
during this phase, the CPU server traces and reclaims regions
for which most pages are cached. Such regions are not traced
by the MSCT. For evacuated objects, pointers pointing to
them need to be updated in this phase as well.

Figure 4 shows an overview of these two types of collec-
tions. While the CPU server runs mutator threads, memory
servers run the MSCT that continuously traces their hosted
regions. When the CPU server stops the world and runs the
CSSC, memory servers suspend the MSCT and coordinate
with the CPU server to reclaim memory.

4.1 Design of the Remembered Set

The remset is a data structure that records, for each region, the
references coming into the region. The design of the remset
is much more complicated under a memory-disaggregated
architecture due to the following two challenges. First, in a
traditional setting, to represent an inter-region reference (e.g.,
from field o.f to object p), we only need its source location —
the address of o.f . This is because p can be easily obtained by
following the reference in o.f . However, in our setting, both
o.f and p need to be recorded for efficiency. This is because
o and p can be on different servers and naïvely following the
reference in o.f can trigger a remote access.

The second challenge is that the remset of each region
is updated by the write barrier executed on the CPU server,
while the region may be traced by a memory server. As a
result, the CPU server has to periodically send the remsets to

Transfer
Thread

<card#1, 0x0002>
Mutator thread #1

<card#3, 0x0013>

Mutator Thread #N
<card#8, 0x0023>
<card#12, 0x0045>

… …

Region #N remset
Source Queue

card#1
card#3

…
card#8

card#12

Target Queue

…

0x0045
0x0023

0x0013
0x0002

… RDMA

CPU Server

Mem
Server

Inter-region References

Figure 5: Semeru’s remset design; the source and target queues are
implemented as bitmaps for space efficiency.

memory servers for them to concurrently trace their regions.
In addition, after memory servers evacuate objects, they need
to send update addresses for the remsets back to the CPU
server for it to update the sources of references (e.g., o.f may
point to a moved object p).

Figure 5 shows our remset. To represent the source of a
reference, we leverage OpenJDK’s card table, which groups
objects into fixed-sized buckets (i.e., cards) and tracks which
buckets contain references. A card’s ID can be easily com-
puted (i.e., via a bit shift) from a memory address and yet we
can enjoy the many space optimizations already implemented
in OpenJDK (e.g., for references on hot cards that contain
references going to the same region [36], their sources need
to be recorded only once). As such, each incoming reference
is represented as a pair 〈card, tgt〉 where card is the (8-
byte) index of the card representing the source location of the
reference, and tgt is the (8-byte) address of the target object.

Shown on the left side of Figure 5 are inter-region refer-
ences recorded by the write barrier of each mutator thread. To
reduce synchronization costs, each mutator thread maintains
a thread-local queue storing its own inter-region references.
The CPU-server JVM runs a daemon (transfer) thread that pe-
riodically moves these references into the remsets of their cor-
responding regions (i.e., determined by the target addresses).
For each region, a pointer to its remset is saved in the region’s
descriptor (Figure 3), which can be used to retrieve the remset
by the CPU server. When a reference is recorded in a remset,
its card and tgt are decoupled and placed separately into a
source and a target queue.

Target queues are sent (together with stack references)
— during each CSSC via RDMA — to their corresponding
memory servers, which use them as roots to compute a closure
over live objects. Source queues stay on the CPU server and
are used during each CSST to update references if their target
objects are moved during evacuation. The benefit of using
a transfer thread is that mutator threads simply dump inter-
region references, while the work of separating sources and
targets and deduplicating queues (based on a simple hash-
based data structure) is done by the transfer thread, which
does not incur overhead on the main (application) execution.

4.2 Memory Server Concurrent Tracing (MSCT)

The MSCT brings significant efficiency benefits because (1)
tracing computation runs where data is located, avoiding

high swapping costs, and (2) tracing regions concurrently on
multiple memory servers has zero impact on the execution of
the main application on the CPU server.

The MSCT continuously traces regions (until the CSSC
starts) in the order of a region’s age (i.e., the smaller the value
of survivals, the younger a region) and the percentage of
evicted pages. That is, younger regions with more evicted
pages are traced earlier. This is because (1) younger regions
are likely to contain more garbage (according to the genera-
tional hypothesis), and (2) evicted pages are not touched by
the CPU server. Regions with a low ratio of evicted pages are
not traced since cached objects may be frequently updated
by the CPU server. Tracing such regions would be less prof-
itable because these updates can change pointer structures
frequently, making the tracing results stale.
Identifying Roots. There are two types of roots for the
MSCT to trace a region: (1) objects referenced by stack vari-
ables and (2) cross-region references recorded in the region’s
remset. Both types of information come from the CPU server
— during each CSSC (§4.3), the CPU server scans its stacks,
identifies objects referenced by stack variables, and sends
this information, together with each region’s remset, to its
corresponding memory server via RDMA.
Live Object Marking. The MSCT computes a closure of
reachable objects in each region by traversing the object sub-
graph (within the region) from its roots. When live objects
are traversed, we remember them in a per-region bitmap
live_bitmap where each bit represents a contiguous range
of 8 bytes (because the size of an object is always a multiple
of 8 bytes), and the bit is set if these bytes host a live object.
Furthermore, since live objects will be eventually evacuated,
we compute a new address for a live object as soon as it is
marked. The new address indicates where this object will be
moved to during evacuation. New addresses are recorded in
a forward table (i.e., a key–value store) where keys are the
indexes of the set bits in live_bitmap and values are the
new addresses of the live objects represented by these bits.

Each new address is represented as an offset. At the start
of the MSCT, it is unclear where these objects will be moved
to (since evacuation will not be performed until a CSSC). As
a result, rather than using absolute addresses, we use offsets
to represent their relative locations. Their actual addresses
can be easily computed using these offsets once the starting
address of the destination space is determined.

Offset computation is in traversal order. For example, the
first object reached in the graph traversal receives an offset 0;
the offset for the second object is the size of the first object.
This approach dictates that objects that are contiguous in
traversal will be relocated to contiguous space after evacu-
ation. Hence, the traversal order, which determines which
objects will be contiguously placed after evacuation, is critical
for improving data locality and prefetching effectiveness.

For instance, if the traversal algorithm uses DFS, objects
connected by pointers will be relocated to contiguous memory

(based on an observation that such objects are likely in the
same logical data structure and hence accessed contiguously).
As another example, if we use BFS to traverse the graph,
objects at the same level of a data structure (such as elements
of an array) will be relocated to contiguous memory; this
can be useful for streaming applications that may do a quick
linear scan of all such element objects (i.e., BFS) rather than
fully exploring each element (i.e., DFS). To support these
different heuristics, Semeru allows the user to customize the
traversal algorithm for different workloads.
Tracing Correctness. There are two potential concerns in
tracing safety. First, if a region has a cached page, can the
memory server safely trace the region (given that the CPU
server may update the cached page)? For example, if an
update happens after tracing completes, would the tracing
results still be valid? Second, the root information may be out
of date when a region is traced because the CPU server may
have updated certain inter-region references or stack variables
since the previous CSSC (where roots are computed and sent).
Is it safe to trace with such out-of-date roots?

The answer to both questions is that it is still valid for
a memory server to trace a region over an out-of-date ob-
ject graph. An important safety property is that objects un-
reachable in any snapshot of the object graph will remain
unreachable in any future snapshots (i.e., “once garbage, al-
ways garbage”). Thus the transitive closure may include dead
objects (due to pointer changes the memory server is not
aware of), but objects not in the closure are guaranteed to be
dead (except for newly allocated objects, discussed next).

However, tracing using an out-of-date object graph may
lead to two issues. First, the CPU server may allocate new
objects into a region after the region is traced on a memory
server. These new objects are missed by the closure com-
putation. To solve this problem, we identify all objects that
have been allocated into the region since the last CSSC; such
objects are all marked live at the time the region is reclaimed
in the next CSSC so that no live object is missed. Newly
allocated objects can be identified by remembering the value
of the bump pointer (bp in Figure 3) at the the last CSSC and
comparing it with the current value of bp — the difference
between them captures objects allocated since the last CSSC.
Such handling is conservative, because some of the objects
may be dead already but are still included in the closure.

The second issue is that some objects in the region may lose
their references and become unreachable after tracing is done.
These dead objects are still in the closure. For this issue, we
take a passive approach by not doing anything — we simply
let these dead objects stay in the closure and be moved during
evacuation. These dead objects will be identified in that next
MSCT and collected during the next CSSC. Essentially, we
delay the collection of these objects by one CSSC cycle. Note
that datacenter applications are often not resource strapped;
hence, delaying memory reclamation by one GC cycle is a
better choice than an aggressive alternative that retraces the

region before reclamation (which can increase the length of
each CSSC pause).
Handling CPU Evictions. A significant challenge is that
concurrent tracing of a region can potentially race with the
CPU server evicting a page into the region. To complicate
matters, memory servers are not aware of remote reads/writes
due to Semeru’s use of one-sided RDMA (for efficiency).
Although recent RDMA libraries (such as LITE [91]) pro-
vide rich synchronization support, our use of RDMA at the
block layer has many specific needs that are not met by these
libraries, which were developed for user-space applications.

To overcome this challenge, we develop a simple
workaround: each memory server reserves the first 4 bytes of
each region to store two tags 〈dirty , ver〉. The first 2 bytes
encode a boolean dirty tag and the second 2 bytes encode
an integer version tag. These two tags are updated by the
CPU server both before and after evicting pages into a region,
and checked by the memory server both before and after the
region is traced. Figure 6 shows this logic.

4 <dirty, ver> = atomic_read();
5 if(!dirty) {
6 trace();
7 <dirty, ver1> = atomic_read();
8 if(ver != ver1) discard();
9 }
10 else skip();

(b) MSCT tracing(a) CPU server eviction

1 atomic_write(<1, v1>);

2 evict_pages();

3 atomic_write(<0, v2>);

|-- 16-bit Dirty tag --
|-- 16-bit Version tag --|

Figure 6: Detection of evictions at a memory server.

Before evicting pages, the CPU server assigns 1 to the dirty
tag and a new version number v1 to the version tag (Line 1).
This 4-byte information is written atomically by the RDMA
network interface controller (RNIC) into the target region.
After eviction, the CPU server clears the dirty tag and writes
another version number v2 (Line 3). The memory server reads
these 4 bytes atomically and checks the dirty tag (Line 4). If
it is set, this indicates a potential eviction; the memory server
skips this region and moves on to tracing the next region
(Line 10). Otherwise, the region is traced (Line 6). After
tracing, this metadata is retrieved again and the new version
tag is compared with the pre-tracing version tag. A difference
means that an eviction may have occurred and the tracing
results are discarded (Line 8).

The algorithm is sufficient to catch all concurrent evictions.
The correctness can be easily seen by reasoning about the
following three cases. (1) If Line 1 comes before Line 4
(which comes before Line 3), tracing will not be performed.
(2) If Line 1 comes after Line 4 but before Line 8, the version
check at Line 8 will fail. (3) If Line 1 comes after Line 7, the
eviction has no overlap with the tracing and thus the tracing
results are legitimate.

This algorithm introduces overheads due to extra write-
backs. However, by batching pages from the same region and
employing InfiniSwap’s gather/scatter, we manage to reduce
this overhead to about 5%, which can be easily offset by the

savings achieved by tracing objects on memory servers (see
§6.4). Concurrent CPU-server reads are allowed. Similar
to tracing out-of-date object graphs, fetching a page into the
CPU server can potentially lead to new objects and pointer
updates to the page. However, our aforementioned handling
is sufficient to cope with such scenarios.

4.3 CPU Server Stop-The-World Collection (CSSC)
CSSC Overview. As the major collection effort, the CSSC
runs when (1) the heap usage exceeds a threshold, e.g., N%
of the heap size, or (2) Semeru observes large amounts of
swapping. The CPU server suspends all mutator threads and
collaborates with memory servers to perform a collection.
Our goal is to (1) reclaim cache memory at the CPU server
and (2) provide a STW phase for memory servers to safely
reclaim memory by evacuating live objects in the traced re-
gions. Figure 7 overviews the CSSC protocol; edges represent
communications of GC metadata between CPU and memory
servers. The CSSC has four major tasks.

Task 1: The CPU server prepares information for memory
servers to reclaim regions. Such information includes which
regions to reclaim at each memory server (1) and newly
allocated objects for each region to be reclaimed (2). As
discussed in §4.2, newly allocated objects need to be marked
live for safety and are identified by differencing the current
value of bp and its old value (old_bp) captured in the last
CSSC. This information is sent to memory servers (2 → 10)
before they reclaim regions. Before evacuation happens, each
memory server must ensure that regions to be evacuated have
all their pages evicted, to avoid inconsistency. To this end,
the CPU server evicts all pages for each selected region (1).

Task 2: Memory servers reclaim selected regions by mov-
ing out their live objects (10 – 14). For these regions, their
tracing (i.e., closure computation) is already performed dur-
ing the MSCT, and hence, reclamation simply follows the
closure to copy out live objects (i.e., object evacuation) from
old regions into new ones. Object evacuation is done using a
region’s forward table, which is computed in traversal order
to improve locality, as discussed earlier in §4.2. Live objects
from multiple old regions can be compacted into a new re-
gion to reduce fragmentation. Moreover, each memory server
attempts to coalesce regions connected by pointers, again, to
improve locality — if region A has references from region B,
Semeru attempts to copy live objects from A and B into the
same (new) region. The new addresses of these objects can
be computed easily by adding their offsets from the forward
tables onto the base addresses of their target spaces (which
may be brand-new or half-filled regions).

Since objects are moved, their addresses have changed
and hence pointers (stack variables or fields of other objects)
referencing the objects must be updated. Pointer updates,
however, must be done through the CPU server, because
pointers can be scattered across the cache and other memory
servers. Thus after reclaiming regions, each memory server

CSSC at CPU Server
Select regions for evacuation on mem
servers; evict all their cached pages
	

1	

2	 Notify memory servers of these
regions and their bp-old_bp
	3	 Find regions where most pages
are cached and trace them
	4	 Evacuate their objects and write
new regions back to mem servers
	

6	 Update stack ref. and propagate
pointer updates to mem servers	

5	 old_bp = bp	

CSSC at Memory Server

Suspend MSCT
	

9	

Evacuate their live objects 11	
Send updated addresses to CPU
Server 12	

regions
bp diffs	

Update local pointers whose
targets have changed 13	

Identify newly allocated objects
for these regions 10	

Scan stacks/RemSet and send root
info to memory servers
	

Send CPU server dead sources 14	
7	 Remove dead entries from RemSets	

dead
source

8	
Reset each region to be traceable 15	

roots Resume MCST 16	

Figure 7: Semeru’s CSSC protocol: edges represent communications
in the RDMA control path; bp−old_bp represents the difference
between the current bp and the value of bp captured at the last CSSC.

sends the updated addresses of moved objects back to the CPU
server (12). If a cached object references a moved object, the
CPU server updates the pointer directly; the CPU server must
also propagate these update requests to other memory servers
(6 → 13), which may host objects referencing moved objects.

Task 3: While memory servers reclaim their regions, the
CPU server reclaims regions where most objects are cached.
Since these regions have not been traced during the MSCT,
the CPU server has to trace them to build the closure and
then reclaim them using the same object evacuation algorithm
(3 and 4). Unlike memory-server region reclamation, the
CPU server has to additionally write new regions back to their
respective memory servers after object evacuation to ensure
consistency (4). Next, the CPU server remembers the current
value of bp into old_bp (5) for use in the next CSSC.

Task 4: Since most dead objects have already been re-
claimed, the CPU server scans the remsets to remove dead
entries (7). This is important since otherwise remsets can
keep growing and dead entries would become memory leaks.
Removing dead entries at the CPU server requires memory
servers to provide information about which objects are dead
(14 → 7) because most regions are traced and reclaimed at
memory servers. The CPU server then scans each reference
in each region’s remset and removes those references with
dead targets. Finally, the CPU server scans its stacks and the
updated remset of each region to compute new roots, which
are sent to memory servers for the next round of MSCT (8).
Memory servers reset the metadata (e.g., live_map and for-
ward table) so that the next round of MSCT can trace each
region from scratch (15 and 16).

Since each CSSC only collects selected regions, it may not
reclaim enough memory for the application to run. In such
rare cases (e.g., one or two in our experiments with each Spark
application), Semeru runs a full-heap scan (i.e., the same as
a regular full-heap GC in G1), which brings all objects into
the cache for tracing and collection. Since CSSC relies on
remset-based modular tracing, it cannot reclaim dead objects

that are (1) in different regions and (2) form cycles. Such
objects have to be reclaimed at a full-heap GC.

5 The Semeru Swap System
We build Semeru’s swap system by piggybacking on Mel-
lanox’s NVMe-oF implementation [1]. This section briefly
describes our modifications. During booting, the CPU server
sends JVM metadata (such as metadata of loaded classes) in
its native heap to memory servers, which use such informa-
tion to launch LJVMs. On each memory server, the LJVM
receives these native objects and reconstructs their virtual
tables for function calls to execute correctly on these objects.
Block Layer. We modify NVMe-oF’s block layer to add
support for remote memory management. The remote physi-
cal memory that backs the Java heap on all memory servers
is registered as a whole as an RDMA buffer and pinned down
throughout the execution. As a simple optimization, we re-
move block-layer staging queues and merge several block I/O
(BIO) requests into a single I/O request, turning them directly
into RDMA messages.

Merging BIOs enables the use of InfiniBand’s gather-
scatter for data transfer. For each BIO request generated
by the block layer, it often contains multiple physical pages
to be transferred to a memory server. These physical pages
are not necessarily contiguous. One optimization here is in-
stead of generating multiple RDMA messages separately for
these physical pages, we amortize per-message overhead by
leveraging the scatter-gather technique so that these pages
can be processed using a single RDMA message. We also
develop thread-local RDMA message pools so that multiple
threads can perform their own RDMA message creation and
initialization without needing synchronization.
RDMA Management. All communications between the
CPU and memory servers are through reliable one-sided
RDMA. We distinguish these communications based on data
types: (1) page fetching and evictions, which dominate the
communications, go through a data path inside the kernel
(to provide transparency to applications); (2) signals and
GC information (e.g., all messages in Figure 7), are passed
through a control path implemented as a user-space library
for efficiency. A user-space implementation benefits from
efficiency from raw RDMA (e.g., no overhead from system
calls); since the control path does not overlap with the data
path and transfers small amounts of information (i.e., only
inside each CSSC), our implementation can deliver good
performance for both control and data paths.

6 Evaluation
To implement Semeru, we wrote/modified 58,464 lines of
(non-comment) C/C++ code, including 43,838 lines for the
LJVM (based upon OpenJDK version 12.0.2) on memory
servers, 7,406 lines for the CPU-server JVM, and 7,220 lines
for the Linux kernel (4.11-rc8). Our kernel support contains
4,424 lines of C code for the paging system and RDMA

management (based upon NVMe-oF), and 2,796 lines for the
modified block layer and memory management part as well
as new system calls.
Setup and Methodology. We ran Semeru in a cluster with
one CPU server and three memory servers. Each server has
two Xeon(R) CPU E5-2640 v3 processors, 128GB memory,
one 200GB SSD, and one 40 Gbps Mellanox ConnectX-3
InfiniBand network adapter. Servers are connected by one
Mellanox 100 Gbps InfiniBand switch. To emulate the weak
compute of memory servers, we let the LJVM on each mem-
ory server use only one core. All our experiments used a
32GB heap, 512MB regions, and 4K pages. The default swap
prefetching mechanism in Linux was used.

Unfortunately, we were only able to gain exclusive use of
a small cluster with four machines when evaluating Semeru.
Despite running on this small cluster, our experiments used
large-scale applications involving multiple memory servers,
representing a real-world use of Semeru. Adding more mem-
ory servers would not change the results because (1) memory
servers perform modular collection — they do not commu-
nicate with each other and hence not have scalability issues;
and (2) the CPU server only communicates with memory
servers during each CSSC — more memory servers would
only increase the control-path communication, which is mini-
mal. Adding CPU servers and running more processes would
increase the amount of tracing work on each memory server.
However, as shown in §6.3, tracing for a large Spark applica-
tion can only utilize 13% of each memory server’s compute
— one single core on each server can support simultaneous
tracing for ∼8 Spark applications.

Name Dataset Size
GraphX-ConnectedComponents (GCC)

Wikipedia English [5] 2GB
GraphX-PageRank (GPR)
Naïve-PageRank (NPR) Wikipedia Polish [5] 1GB
Naïve TriangleCounting Synthetic 2.5K points

1GB
(NTC) 10K edges
MLlib-Bayes Classifiers (MBC) KDD 2012 [4] 5GB

Table 1: Description of five Spark programs.

Name Dataset Size
Word Count (FWC) Wikipedia English [5] 2GB
KMeans (KMS)

Wikipedia English [5] 2GB
Connected Components (FCC)

Table 2: Description of three Flink batch-processing programs.

We evaluated Semeru with two widely deployed data analyt-
ics systems: Apache Spark (3.0.0) and Apache Flink (1.10.1).
Spark was executed under Hadoop 3.2.1 and Scala 2.12.11, us-
ing a set of five programs (listed in Table 1): PageRank (GPR)
and ConnectedComponents (GCC) from the GraphX [48] li-
braries, as well as Bayes Classifier (MBC) from the MLlib
libraries. We also included naïve PageRank (NPR) and naïve
TriangleCounting (NTC), implemented directly atop Spark.

Flink also ran on top of Hadoop version 3.2.1. Flink has
both streaming and batch-processing models. In this experi-

ment, we focused on the batch-processing model, in particular,
Map/Reduce programs. The programs and their datasets are
summarized in Table 2. These programs are selected based
on their popularity and usefulness, covering a spectrum of
text analytics, graph analytics, and machine learning tasks.

6.1 Overall Semeru Performance

We compared Semeru and the original OpenJDK 12 that runs
the G1 GC — the default GC in the JVM since OpenJDK
9. G1 is a concurrent GC that runs concurrent tracing as
the mutator thread executes and stops the world for memory
reclamation. G1 is designed for short latency (i.e., GC pauses)
at the cost of reduced throughput (i.e., concurrent tracing
slows down the mutator as it competes resources with the
mutator). We have tested other GCs as well and found that
G1 consistently outperforms all others in latency.

We ran G1 with two swap mechanisms: a local RAMDisk
and NVMe-oF, which connects the CPU server to remote
memory on the three memory servers. To use NVMe-oF, we
configured remote memory as remote RAMDisks, which host
data objects without supporting memory management. Se-
meru ran on our own swap system built on top of NVMe-oF
with added support for the remote heap and memory man-
agement. Each memory server hosts around one-third of
the 32GB Java heap. There are three cache configurations:
100%, 50%, and 25%. The 100% configuration is our base-
line, which represents the original OpenJDK’s performance
without any swapping.
Running Time. Figure 8 shows performance comparison
between these systems, for our eight programs, under the
three cache configurations. There is only one bar under the
100% cache configuration, representing the original perfor-
mance of G1 that does not perform swapping.

50% Cache 25% Cache
System Mutator GC All Mutator GC All
G1-RD 1.82× 2.79× 1.87× 3.16× 4.59× 3.23×

G1-NVMe 2.00× 4.44× 2.24× 3.85× 14.13× 4.58×
Semeru 1.06× 1.42× 1.08× 1.22× 2.67× 1.32×

Table 3: Overhead summary: overheads are calculated using the G1
performance under the 100% cache configuration as the baseline.

Table 3 summarizes the time overheads incurred by mem-
ory disaggregation on these systems. The baseline used to
calculate these overheads is the G1 performance under the
100% cache ratio (without any kernel and JVM modification).
On average, G1 has 1.87× and 2.24× end-to-end overhead
under RAMDisk and NVMe-oF, respectively, for the 50%
cache configuration. When the cache ratio reduces to 25%,
these overheads increase to 3.23× and 4.58×, respectively.
By offloading tracing and evacuation to memory servers and
improving the locality for the mutator threads, Semeru re-
duces these overheads, by 3.23 times overall, to 1.08× and
1.32× for the two cache ratios, respectively.

Our first observation here is that disaggregation incurs a
much higher overhead on GC than the mutator for Spark

0

50

100

150

200

250

300

350

100% 50% 25%

Spark GPR

0

50

100

150

200

250

300

350

100% 50% 25%

Spark NPR

0

100

200

300

400

500

100% 50% 25%

Spark NTC

0

50

100

150

200

250

300

350

100% 50% 25%

Spark MBC

0

300

600

900

1200

1500

100% 50% 25%

Flink FWC

0
50

100
150
200
250
300
350
400

100% 50% 25%

Flink KMS

0

50

100

150

200

250

300

350

100% 50% 25%

Flink FCC

Figure 8: Performance comparisons between G1 under NVMe-oF (left bar of each group), G1 under RAMDisk (middle bar), and Semeru
(right bar) for three cache configurations: 100%, 50%, and 25%; each bar is broken down into mutator (bottom) and GC (top) time (second).

applications, and it is consistent with our motivating data
reported in §2. This is because GC algorithms inherently do
not possess good locality and, as a result, pay a higher penalty
for remote memory fetching than the mutator. This overhead
grows significantly when the cache size decreases. It is also
easy to see that accessing remote memory (via NVMe-oF)
incurs a higher overhead than accessing the local RAMDisk.

The second observation is that for Flink, which has much
less GC than Spark, Semeru can still considerably improve
its performance. An inspection found that Flink stores data
in the serialized form and implements operators that can pro-
cess data without creating objects for them. Flink allocates
long-lived data items directly in native memory and/or re-
served space in the old generation. Nevertheless, Semeru’s
optimizations are still effective. This is because the G1 GC
uses a disaggregation-agnostic policy to dynamically tune the
size of young generation. Since most objects in Flink die
in the young generation, the pause time of each young GC
is extremely short (e.g., less than 10 ms) and always meets
G1’s pause-time target. As such, G1 keeps increasing the
young generation size to reduce the GC frequency, making
the young generation quickly reach the size of the CPU cache.

However, the problem here is the young generation con-
tains large amounts of garbage, cached on the CPU server,
leaving little cache space for long-lived data. This causes
hot, long-lived data (e.g., in native memory) to be frequently
swapped in and out. In contrast, under Semeru’s region de-
sign, a CSSC is triggered when Semeru observes frequent
swapping. The CSSC reclaims garbage and compacts regions,
freeing up cache space for accommodating other hot data.

The third observation is that applications have different
levels of tolerance to fetching latency. For example, GCC and
GPR have an exceedingly high GC overhead because they
create large RDDs and persist them in memory. These RDDs

50% Cache 25% Cache
System Mutator GC All Mutator GC All
G1-RD 1.73× 2.31× 1.75× 2.65× 2.35× 2.56×

G1-NVMe 1.91× 4.20× 2.10× 3.31× 5.61× 3.69×

Table 4: Summary of performance improvements achieved by Se-
meru: improvements are computed with a

b
where a is the (mutator,

GC, or end-to-end) time under a system and cache configuration,
and b is Semeru’s time under the same configuration.

and their elements quickly become old and get promoted
to the old generation. G1 cannot reclaim much memory in
nursery GCs and, as such, most GCs scan the entire heap,
requiring many remote fetches. For other applications such
as Spark NPR, their GC performance is not as significantly
degraded because their executions generate many temporary
objects that die young (rather than old objects) — when a
nursery GC runs, most young objects are garbage cached
locally on the CPU server, and hence, they can be easily
reclaimed without triggering many remote fetches.

To make Semeru’s improvements clear, Table 4 reports
detailed improvement ratios under each configuration. It is
easy to see that Semeru improves the performance of both the
mutator and GC. On the mutator side, Semeru eliminates G1’s
concurrent marking — which runs on the CPU server in paral-
lel with application execution, competing for resources with
mutator threads and polluting the cache — and dynamically
improves locality (discussed in §4.3) by relocating objects
likely to be accessed to contiguous memory. On the GC side,
Semeru significantly reduces pause time by letting memory
servers perform tracing and evacuation, all of which used to
be done on the CPU server.

Memory. To understand Semeru’s ability to reclaim mem-
ory, we collected post-GC memory footprints for Spark NPR
and Spark KMS under three GCs: Semeru, G1, and Parallel

Elapsed Time (s)

H
ea

p
S

iz
e

(G
B

)

0

10

20

30

250 500 750 1000 1250

Semeru G1 Parallel Scavenge

Elapsed Times (s)

H
ea

p
S

iz
e

(G
B

)

0

10

20

30

250 500 750 1000 1250

Semeru G1 Parallel Scavenge

0

20

40

60

80

0

10

20

30

40

42
0

42
9

43
7

44
6

45
5

46
5

47
4

48
9

50
5

52
6

54
9

GC
 P

au
se

 T
im

e
(s

)

He
ap

 S
ize

 (G
B)

Elapsed Time (s)
GC Time w/o CT GC Time with CT
Heap Size w/o CT Heap Size with CT

(a) Memory: NPR, 50% cache (b) Memory: KMS, 25% cache (c) Mem/time: NPR, w/ and w/o cont. tracing
Figure 9: Memory footprints under Semeru, G1, and Parallel Scavenge for NPR (a) and KMS (b); (c) shows the memory footprint and GC
pause time with and without continuous tracing for NPR.

Scavenge (PS). PS is a non-concurrent GC designed for high
throughput. We added PS because it often can reclaim more
memory at each GC than G1 at the cost of higher latency.
PS’s strong memory reclamation capabilities are clearly seen
in Figure 9(a) where PS has the lowest memory footprint
throughout the execution. Semeru outperforms G1 — G1
uses concurrent tracing to estimate a garbage ratio for each
region; with this information, when each STW phase runs, the
GC can selectively reclaim regions with the highest garbage
ratios. Under memory disaggregation, however, concurrent
tracing runs slowly due to frequent remote fetches. It cannot
finish tracing the heap at the time a STW starts; as a result,
garbage ratios are not available for most regions.

As a result, at each STW phase, there is not much informa-
tion about which regions have the most garbage, and thus, the
GC selects arbitrary regions to collect. Many such regions
do not have much garbage, which explains why G1 reclaims
less memory than Semeru and PS. Note that Semeru does not
suffer from this problem because tracing is done locally on
memory servers; hence, it runs efficiently and can trace many
regions between two consecutive CSSCs.

Figure 9(b) shows the memory footprint for Spark KMS
running under the 25% cache configuration. In this case, Se-
meru’s collection performance is close to that of PS — for
both of them, the program’s memory consumption becomes
stabilized after about 400 seconds. Under G1, however, the
memory footprint fluctuates, again due to the (semi-random)
selection of regions to collect. If regions with large garbage
ratios happen to be in the cache, G1 is able to quickly identify
them during concurrent marking and collect them in a subse-
quent STW phase. However, if they are remotely resident on
memory servers, G1 would lack sufficient information in a
STW phase to collect the right regions.

6.2 Effectiveness of Continuous Tracing

To understand the usefulness of continuous tracing on mem-
ory servers, we compared Semeru with a variant that does
not perform continuous tracing but rather traces regions in
each CSSC. In this variant, tracing is still done on memory
servers but combined with other memory management tasks
such as object evacuation in each STW phase. Without con-
tinuous tracing, which uses idle resources on memory servers
to trace local regions, Semeru suffers from the same problem

as G1 — when a CSSC runs, Semeru does not know which
regions have the most garbage and thus should be reclamation
targets. To minimize the GC latency, each CSSC has to be
extremely short, leaving memory servers insufficient time to
trace many regions. As a result, memory servers can only
trace and reclaim regions based on their age without the more
useful information of their garbage ratio.

To illustrate this problem, Figure 9(c) shows the post-GC
memory footprint (i.e., y-axis on the left) and the pause time
of each CSSC (i.e., y-axis on the right). The two lines rep-
resent the memory footprints of Semeru with and without
continuous tracing while the short bars report the GC pauses.
We make two important observations here. First, Semeru
with continuous tracing consistently reclaims more memory
than the version without continuous tracing, because it knows
the right regions to reclaim in each CSSC. Second, since the
version without continuous tracing cannot reclaim enough
memory, it triggers a full-heap scan at the 484th second, which
is extremely time consuming (i.e., 65 seconds).

A modern generational GC achieves its efficiency by scan-
ning only the young nursery generation in most of its GC
runs. As soon as it needs to scan the entire heap, its perfor-
mance degrades significantly. This is especially the case with
memory disaggregation where a full-heap scan fetches most
objects from memory servers to the CPU server, incurring an
extremely long pause, as shown in the figure. The full-heap
GC reclaims much space and reduces memory consumption.

In contrast, with continuous tracing, Semeru does not en-
counter any full-heap GC throughout the execution. Although
it does not reclaim as much memory as a full-heap GC, it
avoids long pauses and yet is still able to give the application
enough memory to run.

6.3 Tracing Performance

Memory servers are expected to possess weak compute power.
To understand how tracing performs under different levels of
compute, we used one single core on each memory and varied
its frequency with DVFS. Table 5 summarizes the impact of
each frequency on the tracing performance, GC and mutator
performance, and end-to-end performance of NPR. We also
obtained the same measurements when tracing is performed
on the CPU server with a dedicated core. As shown, even with
a single core at 1.2GHz, tracing on memory servers still yields

Tracing Performance Overall Performance
Configuration Thruput CUtil AT AIT GC Mutator Overall

(Memory Server) single core, 1.2 GHz 418.3 MB/s 29.0% 6.5 secs 4.6 secs 59.4 secs 180.2 secs 239.6 secs
(Memory Server) single core, 2.6 GHz 922.2 MB/s 12.4% 5.7 secs 5.0 secs 59.3 secs 173.9 secs 233.2 secs

(CPU Server) single core, 2.6 GHZ, dedicated to GC 93.9 MB/s N/A 38.8 secs N/A 126.0 secs 218.9 secs 344.9 secs
Table 5: Performance of NPR when tracing is performed under different core frequencies at memory servers: reported are the configurations
(Configuration) of memory-server cores, tracing throughput (Thruput), memory-server CPU utilization (CUtil), average time between two
consecutive CSSCs (AT), average idle CPU time between two consecutive CSSCs (AIT), total GC (GC) and mutator time (Mutator), and
end-to-end run time (Overall).

0
100
200
300
400
500

In-
Me
mo
ry

RA
MD

isk
(50
%)

Se
me
ru-
no
-gs
(50
%)

Se
me
ru-
gs(
50
%)

Ti
m
e
(S
ec
on
ds
)

1.5 1.6 1.5

7.6
9.3 8.6

1.6
2.2

1.7

8.2

13.4 12.1

RA
MD

isk
(50
%)

Se
me
ru-
no
-gs
(50
%)

Se
me
ru-
gs(
50
%)

RA
MD

isk
(25
%)

Se
me
ru-
no
-gs
(25
%)

Se
me
ru-
gs(
25
%)

Sl
ow

do
w
n
(T
im
es
)

Mutator GC

(a) (b)

Figure 10: Comparisons between Semeru’s swap system and local
RAMDisk: (a) shows Spark running times when the size of the
cache is 50% of the heap size; the first bar reports performance of the
baseline (cache ratio = 100%); (b) shows normalized performance
(i.e., slowdowns) for the two cache configurations (50% and 25%).

a throughput 4.5× higher than doing so on the CPU server
with a dedicated 2.6GHz core. This is easy to understand:
the bottleneck of a memory-disaggregated system is at (1)
the poor locality, which triggers many on-demand swaps, and
(2) racing for network resource between the mutator and GC
threads, not the lack of compute power.

Another important observation is on the low CPU utiliza-
tion on memory servers. Even with a 1.2GHz core, continuous
tracing between consecutive CSSCs has only 29% CPU uti-
lization — this is because (1) tracing only follows pointers,
(2) dead objects are not traced and hence, for each region,
only a small fraction needs to be traced, and (3) not all re-
gions need to be traced (i.e., those with a high rate of cached
objects are not traced). These results demonstrate that sup-
porting multiple processes, with weak compute on memory
servers, should not be a concern.

6.4 Swap Performance

To evaluate our swap system’s performance, we turned off
the Semeru runtime (i.e., all memory management tasks on
memory servers) and ran the original G1 GC on top of our
swap system. We tried to run InfiniSwap [49], but its execu-
tions were frequently stuck, even on native programs. This
subsection focuses on comparisons of swap performance be-
tween local RAMDisk and Semeru’s swap system (with and
without using InfiniSwap’s gather/scatter).

The results of Spark NPR are reported in Figure 10. We
used two cache configurations: 50% and 25%. Figure 10(a)
shows actual running times when the cache ratio is 50% be-
tween four versions of the system: in-memory (i.e., cache
ratio is 100%), RAMDisk, Semeru-no-gs (i.e., gather/scatter

is not used), and Semeru-gs (which uses gather/scatter). For
ease of comparison, Figure 10(b) shows normalized times.

Elapsed Time(s)
M

em
or

y
Ba

nd
w

id
th

 (M
B

)

0

500

1000

1500

2000

0 100 200 300

RAMDisk Semeru Swap Without G/S Semeru Swap With G/S

Figure 11: A comparison of the combined swap read/write through-
put between Semeru-gs, Semeru-no-gs, and RAMDisk.

Under the 50% cache configuration, using RAMDisk as
the swap partition incurs a 1.5× and 1.6× overhead in the
mutator and GC, respectively, compared with the in-memory
baseline. Semeru-no-gs increases the overheads to 1.6× and
2.2×. Merging BIO requests and using gather/scatter brings
the overheads down to 1.5× and 1.7×, which are on par with
those of the RAMDisk. Similar observations can be made
for the 25% cache rate. Across all programs, gather/scatter
improves the swap performance overall by 14%.

Figure 11 compares the read/write throughput between
Semeru-gs, Semeru-no-gs, and RAMDisk when Spark LRG
is executed under the 25% cache configuration. As shown,
gather/scatter helps Semeru achieve a higher peak read/write
bandwidth than Semeru-no-gs (especially when pages con-
tiguously swapped come from / go to the same region).

0 100 200 300 400

Read Write

Semeru-gs

Semeru-no-gs

RAMDisk

Throughput (MB/s)

Figure 12: Average read/write throughput.

A comparison on the average read/write throughput be-
tween the three systems is shown in Figure 12. Semeru-gs’s

1

10

100

1000

10000

100000

200 220 240 260 280

O

n
-D

e
m

an
d

Sw
ap

s

Elapsed Time (s)

Semeru GC Semeru Mutator G1 GG G1 Mutator

Figure 13: Numbers of on-demand swap-ins between G1 and Semeru
under the 25% cache configuration for Spark MBC.

overall read/write throughput is 13% higher than that of Se-
meru-no-gs and is on par with that of RAMDisk. Clearly,
additional gains can be obtained by merging BIO requests
and using gather-scatter.

6.5 Locality Improvement

To understand how Semeru improves locality for application
execution, we measured the number of on-demand swap-ins
performed by the swap system under G1 and Semeru when
Spark MBC was executed with a 25% cache ratio. Figure 13
reports how such numbers change as the execution progresses
for both the mutator and GC. Both Semeru-muator and Se-
meru-GC need significantly fewer on-demand swap-ins due
to improved locality. On average, Semeru reduces the number
of on-demand swap-ins by 8.76×. Note that both G1 and
Semeru ran under the default swap prefetcher in Linux, which
relies on the pages swapped in during the last two page faults:
if they are contiguous, Linux continues to bring in several
contiguous pages into the page cache; otherwise, it assumes
that there are no patterns and reduces or stops prefetching.
Despite the recent development of more advanced prefetchers
(such as Leap [71]) for remote memory, Semeru already per-
forms well under the default prefetcher in Linux. We expect
it to continue to work well when other prefetchers are used.
The average ratio between the sizes of data swapped in the
data and control path is 29.8 across the programs.

7 Related Work
Resource Disaggregation. Due to rapid technological ad-
vances in network controllers, it has become practical to reor-
ganize resources into disaggregated clusters [21, 29, 45, 51].
A disaggregated cluster can increase the hardware resource
utilization and has the potential to overcome fundamen-
tal hardware limits, such as the critical “memory capacity
wall” [9, 13, 17, 58, 67, 68, 95]. A good number of systems
have been developed in the past to take advantage of this ar-
chitecture [7, 35, 41, 42, 44, 54, 62]. However, almost all of
them treat remote memory as fast storage. When the network
connection only has microseconds of latency and hundreds of
gigabits of bandwidth [55, 72], applications can suffer from
significant delays in memory access. Despite many optimiza-

tions [7, 11, 49, 84, 87–89] developed to reduce this latency,
they all focus on low-level system stacks and do not con-
sider run-time characteristics of programs. They do not work
well for managed cloud applications such as [6, 14, 15, 24–
26, 31, 32, 50, 56, 75, 76, 81, 82, 92, 102–104, 106]. Semeru
co-optimizes the runtime and the swap system, unlocking
opportunities unseen by existing techniques.
Garbage Collection for Modern Systems. GC is a
decades-old topic. In order to meet the requirements of
low latency and high throughput, many concurrent GC al-
gorithms have been proposed, including the Garbage-First
(G1) GC [36], Compressor [59], ZGC [2], the Shenandoah
GC [43], Azul’s pauseless GC [34], and C4 [90], as well as
several real-time GCs [18, 19]. These GC algorithms can
run in the background with short pauses for mutator threads.
However, none of them can work directly in the resource-
disaggregated environment, which has a unique resource pro-
file — data are all located on memory servers, the CPU server
has a small cache, and memory servers have weak compute.

Efficiently using memory is important especially for appli-
cations running on the cloud [40]. Yak [79] is a region-based
GC developed for such applications. Taurus [70] coordinates
GC efforts in a distributed setting for cloud systems. Fa-
cade [80] uses region-based memory management to reduce
GC costs for Big Data applications. Gerenuk [78] develops a
compiler analysis and runtime system that enable native repre-
sentation of data for managed analytics systems such as Spark
and Hadoop. Espresso [99] and Panthera [95] are designed
for systems with non-volatile memory. Platinum [98] is a GC
that aims to reduce tail latency for interactive applications.
NUMAGiC [47] is a GC developed for the NUMA architec-
ture. However, NUMAGiC assumes that NUMA nodes are
completely symmetric (with the same CPU, the same amount
of local memory, and the same GC algorithm) — which is
not the case for disaggregated clusters. DMOS [53] is a dis-
tributed GC algorithm that has not been implemented and
whose performance in a real-world setting is unclear.

8 Conclusions
Semeru is a managed runtime designed for efficiently running
managed applications with disaggregated memory. It achieves
superior efficiency via a co-design of the runtime and swap
system as well as careful coordination of different GC tasks.

Acknowledgments
We thank the OSDI reviewers for their valuable and thor-
ough comments. We are grateful to our shepherd Yiying
Zhang for her feedback, helping us improve the paper substan-
tially. This work is supported by NSF grants CCF-1253703,
CCF-1629126, CNS-1703598, CCF-1723773, CNS-1763172,
CCF-1764077, CNS-1907352, CNS-1901510, CNS-1943621,
CNS-2007737, CNS-2006437, and ONR grants N00014-16-
1-2913 and N00014-18-1-2037, and a grant from the Alexan-
der von Humboldt Foundation.

A Artifact Appendix
A.1 Artifact Summary

Semeru is a managed runtime built for a memory-
disaggregated cluster where each managed application uses
one CPU server and multiple memory servers. When
launched on Semeru, the process runs its application code
(mutator) on the CPU server, and the garbage collector on
both the CPU server and memory servers in a coordinated
manner. Due to task offloading and moving computation close
to data, Semeru significantly improves the locality for both
the mutator and GC and, hence, the end-to-end performance
of the application.

A.2 Artifact Check-list

• Hardware: Intel servers with InfiniBand
• Run-time environment: OpenJDK 12.02, Linux-4.11-rc8,

CentOS 7.5(7.6) with MLNX-OFED 4.3(4.5)
• Public link: https://github.com/uclasystem/
Semeru

• Code licenses: The GNU General Public License (GPL)

A.3 Description

A.3.1 Semeru’s Codebase

Semeru contains the following three components:

• the Linux kernel, which includes a modified swap system,
block layer and a RDMA module,

• the CPU-server Java Virtual Machine (JVM),
• the Memory-server lightweight Java Virtual Machine

(LJVM).

These three components and their relationships are illustrated
in Figure 14.

CPU-Server JVM Memory Server#0
Lightweight JVM

Memory Server#1
Lightweight JVM

RDMA on InfiniBand

MSCT

Mutator

Linux Kernel

Block Layer

Swap System

RDMA Module

CSSC
Launcher

MSCT
Launcher

Memory Compactor

Memory Compactor

Control Path Data Path
Figure 14: Overview of Semeru’s codebase.

A.3.2 Deploying Semeru

To build Semeru, the first step is to download its source code:

git clone
git@github.com:uclasystem/Semeru.git

When deploying Semeru, install the three components in
the following order: the kernel on the CPU server, the Semeru
JVM on the CPU server, and the LJVM on each memory
server. Finally, connect the CPU server with memory servers
before running applications.
Kernel Installation. We first discuss how to build and in-
stall the kernel.
• Modify grub and set transparent_hugepage to
madvise:
sudo vim /etc/default/grub

+ transparent_hugepage=madvise

• Install the kernel and restart the machine:
cd Semeru/Linux-4.11-rc8

sudo ./build_kernel.sh build

sudo ./build_kernel.sh install

• Build the Semeru RDMA module:

Add the IP of each memory server into
Semeru/linux-4.11-rc8/include/

linux/swap_global_struct.h

e.g., the Infiniband IPs of the 2 memory servers
are 10.0.0.2 and 10.0.0.4.
char* mem_server_ip[][] = {"10.0.0.2",

"10.0.0.4"};

uint16_t mem_server_port = 9400;

Then build the Semeru RDMA module
make

Install the CPU-Server JVM. We next discuss the steps
to build and install the CPU-server JVM.
• Download Oracle JDK 12 to build Semeru JVM:

Assume jdk 12.02 is under path
${home_dir}/jdk12.0.2

Or change the path in shell script
Semeru/CPU-Server/build_cpu_server.sh

boot_jdk="${home_dir}/jdk12.0.2"

• Build the CPU-server JVM:

${build_mode} can be one of the three modes:
slowdebug, fastdebug, or release.
We recommend fastdebug to debug the JVM code
and release to test the performance.
Please make sure both the CPU server and
memory servers use the same build mode.
cd Semeru/CPU-Server/

./build_cpu_server.sh ${build_mode}

./build_cpu_server.sh build

Take fastdebug mode as example — the compiled
JVM will be in:
Semeru/CPU-Server/build

/linuxx86_64serverfastdebug/jdk

https://github.com/uclasystem/Semeru
https://github.com/uclasystem/Semeru

Install the Memory-Server LJVM. The next step is to
install the LJVM on each memory server.
• Download OpenJDK 12 and build the LJVM:

Assume OpenJDK12 is under the path
#${home_dir}/jdk-12.0.2
Or you can change the path in the script
Semeru/Memory-Server/build_mem_server.sh
boot_jdk="${home_dir}/jdk-12.0.2"

• Change the IP addresses:

E.g., mem-server #0’s IP is 10.0.0.2, ID is 0.
Change the IP address and ID in file:
Semeru/Memory-Server/src/hotspot/share/
utilities/globalDefinitions.hpp

#@Mem-server #0
#define NUM_OF_MEMORY_SERVER 2

#define CUR_MEMORY_SERVER_ID 0

static const char cur_mem_server_ip[] =

"10.0.0.2";

static const char cur_mem_server_port[]

= "9400";

• Build and install the LJVM:

Use the same ${build_mode} as the CPU-server
JVM.
cd Semeru/CPU-Server/

./build_memory_server.sh ${build_mode}

./build_memory_server.sh build

./build_memory_server.sh install

The compiled Java home will be installed under:
{home_dir}/jdk12u-self-build/jvm/

openjdk-12.0.2-internal

Set JAVA_HOME to point to this folder.

A.3.3 Running Applications

To run applications, we first need to connect the CPU server
with memory servers. Next, we mount the remote memory
pools as a swap partition on the CPU server. When the appli-
cation uses more memory than the limit set by cgroup, its
data will be swapped out to the remote memory via RDMA.
• Launch memory servers:

Use the shell script to run each memory server.
#${execution_mode} can be execution or gdb.
#@Each memory server
cd Semeru/ShellScrip

run_rmem_server_with_rdma_service.sh

Case1 ${execution_mode}

• Connect the CPU server with memory servers:

#@CPU server
cd Semeru/ShellScript/

install_semeru_module.sh semeru

To close the swap partition, do the following:
#@CPU server
cd Semeru/ShellScript/

install_semeru_module.sh close_semeru

• Set a cache size limit for an application:

E.g., Create a cgroup with 10GB memory limita-
tion.
#@CPU server
cd Semeru/ShellScript

cgroupv1_manage.sh create 10g

• Add a Spark executor into the created cgroup:

Add a Spark worker into the cgroup, memctl.
Its sub-process, executor, falls into the same cgroup.
Modify the function start_instance under
Spark/sbin/start-slave.sh

#@CPU server
cgexec -sticky -g memory:memctl

"${SPARK_HOME}/sbin" /sparkdaemon.sh

start $CLASS $WORKER_NUM -webui-port

"$WEBUI_PORT" $PORT_FLAG $PORT_NUM

$MASTER "$@"

• Launch a Spark application:
Some Semeru JVM options need to be added for both CPU-
server JVM and LVJMs. CPU-server JVM and memory
server LJVMs should use the value for the same JVM
option.

E.g., under the configuration of 25% local memmory
512MB Java heap Region
#@CPU server
-XX:+SemeruEnableMemPool

-XX:EnableBitmap -XX:-UseCompressedOops

-Xnoclassgc -XX:G1HeapRegionSize=512M

-XX:MetaspaceSize=0x10000000

-XX:SemeruLocalCachePercent=25

#@Each memory server
${MemSize}: the memory size of current memory
server
${ConcThread}: the number of concurrent threads
-XX:SemeruEnableMemPool

-XX:-UseCompressedOops

-XX:SemeruMemPoolMaxSize=${MemSize}

-XX:SemeruMemPoolInitialSize=${MemSize}

-XX:SemeruConcGCThreads=${ConcThread}

More details of Semeru’s installation and deployment can
be found in Semeru’s code repository.

References
[1] NVMe over fabrics. http://

community.mellanox.com/s/article/
what-is-nvme-over-fabrics-x.

[2] The Z garbage collector. https://wiki.
openjdk.java.net/display/zgc/Main.

[3] SeaMicro Technology Overview. https:
//data.tiger-optics.ru//download/
seamicro/SM_TO02_v1.4.pdf, 2010.

[4] Libsvm data: Classification. https://www.
csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets, 2012.

[5] Wikipedia networks data. http://konect.
uni-koblenz.de/networks/, 2020.

[6] P. Agrawal, D. Kifer, and C. Olston. Scheduling shared
scans of large data files. Proceedings of VLDB Endow.,
1(1):958–969, 2008.

[7] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, S. Novakovic, A. Ramanathan, P. Subrah-
manyam, L. Suresh, K. Tati, R. Venkatasubramanian,
and M. Wei. Remote regions: A simple abstraction
for remote memory. In USENIX ATC, pages 775–787,
2018.

[8] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, P. Subrahmanyam, L. Suresh, K. Tati,
R. Venkatasubramanian, and M. Wei. Remote memory
in the age of fast networks. In SoCC, pages 121–127,
2017.

[9] M. K. Aguilera, K. Keeton, S. Novakovic, and S. Sing-
hal. Designing far memory data structures: Think
outside the box. In HotOS, pages 120–126, 2019.

[10] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. Pim-enabled in-
structions: A low-overhead, locality-aware processing-
in-memory architecture. In ISCA, pages 336–348,
2015.

[11] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ouster-
hout, M. K. Aguilera, A. Panda, S. Ratnasamy, and
S. Shenker. Can far memory improve job throughput?
In EuroSys, 2020.

[12] Amazon. Amazon EC2 root device volume.
https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/RootDeviceStorage.
html#RootDeviceStorageConcepts, 2019.

[13] S. Angel, M. Nanavati, and S. Sen. Disaggregation
and the application. In HotCloud, 2020.

[14] Hadoop: Open-source implementation of MapReduce.
http://hadoop.apache.org.

[15] Apache Flink. http://flink.apache.org/.

[16] K. Asanovic. Firebox: A hardware building block for
2020 warehouse-scale computers. In FAST, 2014.

[17] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A
view from berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California,
Berkeley, Dec 2006.

[18] J. Auerbach, D. F. Bacon, P. Cheng, D. Grove, B. Biron,
C. Gracie, B. McCloskey, A. Micic, and R. Sciampa-
cone. Tax-and-spend: Democratic scheduling for real-
time garbage collection. In EMSOFT, pages 245–254,
2008.

[19] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time
garbage collector with low overhead and consistent
utilization. In POPL, pages 285–298, 2003.

[20] L. Barroso, M. Marty, D. Patterson, and P. Ran-
ganathan. Attack of the killer microseconds. Commun.
ACM, 60(4):48–54, 2017.

[21] L. A. Barroso. Warehouse-scale computing: Entering
the teenage decade. In ISCA, 2011.

[22] M. N. Bojnordi and E. Ipek. PARDIS: A pro-
grammable memory controller for the DDRx inter-
facing standards. In ISCA, pages 13–24, 2012.

[23] M. N. Bojnordi and E. Ipek. A programmable memory
controller for the DDRx interfacing standards. ACM
Trans. Comput. Syst., 31(4):11:1–11:31, 2013.

[24] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and
R. Vernica. Hyracks: A flexible and extensible foun-
dation for data-intensive computing. In ICDE, pages
1151–1162, 2011.

[25] Y. Bu, V. Borkar, G. Xu, and M. J. Carey. A bloat-
aware design for big data applications. In ISMM, pages
119–130, 2013.

[26] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
HaLoop: Efficient iterative data processing on large
clusters. PVLDB, 3(1):285–296, 2010.

[27] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKin-
ley. The yin and yang of power and performance for
asymmetric hardware and managed software. In ISCA,
pages 225–236, 2012.

http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
https://wiki.openjdk.java.net/display/zgc/Main
https://wiki.openjdk.java.net/display/zgc/Main
https://data.tiger-optics.ru//download/seamicro/SM_TO02_v1.4.pdf
https://data.tiger-optics.ru//download/seamicro/SM_TO02_v1.4.pdf
https://data.tiger-optics.ru//download/seamicro/SM_TO02_v1.4.pdf
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html#RootDeviceStorageConcepts
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html#RootDeviceStorageConcepts
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html#RootDeviceStorageConcepts
http://hadoop.apache.org
http://flink.apache.org/

[28] W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng,
Y. Wang, and G. Ma. PolarFS: An ultra-low latency and
failure resilient distributed file system for shared stor-
age cloud database. Proc. VLDB Endow., 11(12):1849–
1862, 2018.

[29] A. Carbonari and I. Beschasnikh. Tolerating faults
in disaggregated datacenters. In HotNets-XVI, pages
164–170, 2017.

[30] CCIX. Cache coherent interconnect for accelerators.
https://www.ccixconsortium.com/, 2018.

[31] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: easy
and efficient parallel processing of massive data sets.
Proc. VLDB Endow., 1(2):1265–1276, 2008.

[32] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum. FlumeJava:
easy, efficient data-parallel pipelines. In PLDI, pages
363–375, 2010.

[33] I.-H. Chung, B. Abali, and P. Crumley. Towards a
composable computer system. In HPC Asia, pages
137–147, 2018.

[34] C. Click, G. Tene, and M. Wolf. The pauseless gc
algorithm. In VEE, pages 46–56, 2005.

[35] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A.
Patterson. Cooperative caching: Using remote client
memory to improve file system performance. In OSDI,
1994.

[36] D. Detlefs, C. Flood, S. Heller, and T. Printezis.
Garbage-first garbage collection. In ISMM, pages 37–
48, 2004.

[37] A. Dragojević, D. Narayanan, M. Castro, and O. Hod-
son. FaRM: Fast remote memory. In NSDI, pages
401–414, 2014.

[38] Facebook. Introducing Lightning: A flex-
ible NVMe JBOF. https://code.fb.
com/data-center-engineering/
introducing-lightning-a-flexible-nvme-jbof,
2019.

[39] Facebook and Intel. Facebook and intel col-
laborate on future data center rack technologies.
http://goo.gl/6h2Ut, 2013.

[40] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu.
Interruptible tasks: Treating memory pressure as in-
terrupts for highly scalable data-parallel programs. In
SOSP, pages 394–409, 2015.

[41] M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Kar-
lin, H. M. Levy, and C. A. Thekkath. Implementing
global memory management in a workstation cluster.
In SOSP, pages 201–212, 1995.

[42] E. Felten and J. Zahorjan. Issues in the implementation
of a remote memory paging system. In University of
Washington CSE TR CSE TR, 1991.

[43] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and
R. Westrelin. Shenandoah: An open-source concurrent
compacting garbage collector for openjdk. In PPPJ,
pages 13:1–13:9, 2016.

[44] M. D. Flouris and E. P. Markatos. The network
ramdisk: Using remote memory on heterogeneous
nows. Cluster Computing, 2(4), Dec 1999.

[45] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira,
S. Han, R. Agarwal, S. Ratnasamy, and S. Shenker.
Network requirements for resource disaggregation. In
OSDI, pages 249–264, 2016.

[46] GenZ. Genz consortium. http://
genzconsortium.org/, 2019.

[47] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and
N. Nguyen. NumaGiC: A garbage collector for big
data on big NUMA machines. In ASPLOS, pages 661–
673, 2015.

[48] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph processing in
a distributed dataflow framework. In OSDI, pages
599–613, 2014.

[49] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with infiniswap. In
NSDI, pages 649–667, 2017.

[50] Z. Guo, X. Fan, R. Chen, J. Zhang, H. Zhou,
S. McDirmid, C. Liu, W. Lin, J. Zhou, and L. Zhou.
Spotting code optimizations in data-parallel pipelines
through periscope. In OSDI, pages 121–133, 2012.

[51] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker. Network support for resource disaggrega-
tion in next-generation datacenters. In HotNets, pages
10:1–10:7, 2013.

[52] Hewlett-Packard. The machine: A new kind of
computer. https://www.hpl.hp.com/research/systems-
research/themachine/.

[53] R. L. Hudson, R. Morrison, J. E. B. Moss, and D. S.
Munro. Garbage collecting the world: One car at a
time. In OOPSLA, pages 162–175, 1997.

https://www.ccixconsortium.com/
https://code.fb.com/data-center-engineering/introducing-lightning-a-flexible-nvme-jbof
https://code.fb.com/data-center-engineering/introducing-lightning-a-flexible-nvme-jbof
https://code.fb.com/data-center-engineering/introducing-lightning-a-flexible-nvme-jbof
http://genzconsortium.org/
http://genzconsortium.org/

[54] L. Iftode, K. Li, and K. Petersen. Memory servers for
multicomputers. In Digest of Papers. Compcon Spring,
pages 538–547, Feb 1993.

[55] Intel. Intel high performance com-
puting fabrics. https://www.
intel.com/content/www/us/en/
high-performance-computing-fabrics/,
2019.

[56] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequen-
tial building blocks. In EuroSys, pages 59–72, 2007.

[57] R. Jones, A. Hosking, and E. Moss. The Garbage Col-
lection Handbook: The Art of Automatic Memory Man-
agement. Chapman & Hall/CRC, 1st edition, 2011.

[58] K. Keeton. The Machine: An architecture for memory-
centric computing. In ROSS, 2015.

[59] H. Kermany and E. Petrank. The Compressor: Concur-
rent, incremental, and parallel compaction. In PLDI,
pages 354–363, 2006.

[60] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and
S. Kumar. Flash storage disaggregation. In EuroSys,
pages 29:1–29:15, 2016.

[61] A. Klimovic, H. Litz, and C. Kozyrakis. ReFlex: Re-
mote flash ≈ local flash. In ASPLOS, pages 345–359,
2017.

[62] S. Koussih, A. Acharya, and S. Setia. Dodo: a user-
level system for exploiting idle memory in workstation
clusters. In HPDC, pages 301–308, Aug 1999.

[63] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In WWW,
pages 591–600, 2010.

[64] E. K. Lee and C. A. Thekkath. Petal: Distributed
virtual disks. In ASPLOS, pages 84–92, 1996.

[65] S. Legtchenko, H. Williams, K. Razavi, A. Donnelly,
R. Black, A. Douglas, N. Cheriere, D. Fryer, K. Mast,
A. D. Brown, A. Klimovic, A. Slowey, and A. Row-
stron. Understanding rack-scale disaggregated storage.
In HotStorage, 2017.

[66] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Trans. Comput. Syst.,
7(4):321–359, Nov. 1989.

[67] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated memory
for expansion and sharing in blade servers. In ISCA,
pages 267–278, 2009.

[68] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang,
P. Ranganathan, and T. F. Wenisch. System-level im-
plications of disaggregated memory. In HPCA, pages
1–12, 2012.

[69] M. Maas, K. Asanović, and J. Kubiatowicz. A hard-
ware accelerator for tracing garbage collection. In
ISCA, pages 138–151, 2018.

[70] M. Maas, T. Harris, K. Asanović, and J. Kubiatowicz.
Taurus: A holistic language runtime system for coordi-
nating distributed managed-language applications. In
ASPLOS, pages 457–471, 2016.

[71] H. A. Maruf and M. Chowdhury. Effectively prefetch-
ing remote memory with Leap. In USENIX ATC, pages
843–857, 2020.

[72] Mellanox. Connectx-6 single/dual-port adapter
supporting 200gb/s with vpi. http://www.
mellanox.com/page/products_dyn?
product_family=265&mtag=connectx_6_
vpi_card, 2019.

[73] J. Mickens, E. B. Nightingale, J. Elson, K. Nareddy,
D. Gehring, B. Fan, A. Kadav, V. Chidambaram, and
O. Khan. Blizzard: Fast, cloud-scale block storage for
cloud-oblivious applications. In NSDI, pages 257–273,
2014.

[74] N. Mitchell and G. Sevitsky. The causes of bloat, the
limits of health. In OOPSLA, pages 245–260, 2007.

[75] D. G. Murray, M. Isard, and Y. Yu. Steno: automatic
optimization of declarative queries. In PLDI, pages
121–131, 2011.

[76] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow
system. In SOSP, pages 439–455, 2013.

[77] M. Nanavati, J. Wires, and A. Warfield. Decibel: Iso-
lation and sharing in disaggregated rack-scale storage.
In NSDI, pages 17–33, 2017.

[78] C. Navasca, C. Cai, K. Nguyen, B. Demsky, S. Lu,
M. Kim, and G. H. Xu. Gerenuk: Thin computation
over big native data using speculative program trans-
formation. In SOSP, pages 538–553, 2019.

[79] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu,
S. Alamian, and O. Mutlu. Yak: A high-performance
big-data-friendly garbage collector. In OSDI, pages
349–365, 2016.

[80] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu.
FACADE: A compiler and runtime for (almost) object-
bounded big data applications. In ASPLOS, pages
675–690, 2015.

https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card

[81] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.
Automatic optimization of parallel dataflow programs.
In USENIX ATC, pages 267–273, 2008.

[82] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD, pages 1099–1110, 2008.

[83] OpenCAPI. Open coherent accelerator processor inter-
face. https://opencapi.org/, 2018.

[84] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and
H. Balakrishnan. Shenango: Achieving high CPU
efficiency for latency-sensitive datacenter workloads.
In NSDI, pages 361–378, 2019.

[85] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh,
J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck,
S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,
and D. Burger. A reconfigurable fabric for accelerating
large-scale datacenter services. In ISCA, pages 13–24,
2014.

[86] S. M. Rumble. Infiniband verbs performance.
https://ramcloud.atlassian.net/
wiki/display/RAM/Infiniband+Verbs+
Performance, 2010.

[87] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In OSDI, pages 69–87, 2018.

[88] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S.
Lee, H. Wang, R. Agarwal, and H. Weatherspoon.
Shoal: A network architecture for disaggregated racks.
In NSDI, pages 255–270, 2019.

[89] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and
G. Alonso. StRoM: Smart remote memory. In Eu-
roSys, 2020.

[90] G. Tene, B. Iyengar, and M. Wolf. C4: The contin-
uously concurrent compacting collector. In ISMM,
pages 79–88, 2011.

[91] S.-Y. Tsai and Y. Zhang. LITE kernel RDMA support
for datacenter applications. In SOSP, pages 306–324,
2017.

[92] Storm: dstributed and fault-tolerant realtime compu-
tation. https://github.com/nathanmarz/
storm.

[93] D. Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. In
PSDE, pages 157–167, 1984.

[94] VMware. Virtual SAN. https://www.vmware.
com/products/vsan.html, 2019.

[95] C. Wang, H. Cui, T. Cao, J. Zigman, H. Volos,
O. Mutlu, F. Lv, X. Feng, and G. H. Xu. Panthera:
Holistic memory management for big data processing
over hybrid memories. In PLD, pages 347–362, 2019.

[96] W.-H. Wang, J.-L. Baer, and H. M. Levy. Readings in
computer architecture. chapter Organization and Per-
formance of a Two-level Virtual-real Cache Hierarchy,
pages 434–442. 2000.

[97] Wen-Hann Wang, J. Baer, and H. M. Levy. Organiza-
tion and performance of a two-level virtual-real cache
hierarchy. In ISCA, pages 140–148, 1989.

[98] M. Wu, Z. Zhao, Y. Yang, H. Li, H. Chen, B. Zang,
H. Guan, S. Li, C. Lu, and T. Zhang. Platinum: A cpu-
efficient concurrent garbage collector for tail-reduction
of interactive services. In USENIX ATC, 2020.

[99] M. Wu, Z. Ziming, L. Haoyu, L. Heting, C. Haibo,
Z. binyu, and G. Haibing. Espresso: Brewing Java for
more non-volatility. In ASPLOS, pages 70–83, 2018.

[100] G. Xu. Finding reusable data structures. In OOPSLA,
pages 1017–1034, 2012.

[101] G. Xu, M. Arnold, N. Mitchell, A. Rountev, E. Schon-
berg, and G. Sevitsky. Finding low-utility data struc-
tures. In PLDI, pages 174–186, 2010.

[102] G. H. Xu, M. Veanes, M. Veanes, M. Musuvathi,
T. Mytkowicz, B. Zorn, H. He, and H. Lin. Niijima:
Sound and automated computation consolidation for
efficient multilingual data-parallel pipelines. In SOSP,
pages 306–321, 2019.

[103] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: a system for
general-purpose distributed data-parallel computing
using a high-level language. In OSDI, pages 1–14,
2008.

[104] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster computing with working
sets. HotCloud, page 10, Berkeley, CA, USA, 2010.

[105] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson,
X. Yang, R. Yao, M. Chintalapati, A. Krishnamurthy,
and T. Anderson. Deepview: Virtual disk failure diag-
nosis and pattern detection for Azure. In NSDI, pages
519–532, 2018.

[106] J. Zhou, P.-Å. Larson, and R. Chaiken. Incorporating
partitioning and parallel plans into the SCOPE opti-
mizer. In ICDE, pages 1060–1071, 2010.

https://opencapi.org/
https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://github.com/nathanmarz/storm
https://github.com/nathanmarz/storm
https://www.vmware.com/products/vsan.html
https://www.vmware.com/products/vsan.html

	Introduction
	Problems
	Our Contributions

	Motivation
	Semeru Heap and Allocator
	Universal Java Heap
	Allocation and Cache Management

	Semeru Distributed Garbage Collector
	Design of the Remembered Set
	Memory Server Concurrent Tracing (MSCT)
	CPU Server Stop-The-World Collection (CSSC)

	The Semeru Swap System
	Evaluation
	Overall Semeru Performance
	Effectiveness of Continuous Tracing
	Tracing Performance
	Swap Performance
	Locality Improvement

	Related Work
	Conclusions
	Artifact Appendix
	Artifact Summary
	Artifact Check-list
	Description
	Semeru's Codebase
	Deploying Semeru
	Running Applications

