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Abstract
Graph mining is an important category of graph algo-
rithms that aim to discover structural patterns such as
cliques and motifs in a graph. While a great deal of work
has been done recently on graph computation such as
PageRank, systems support for scalable graph mining is
still limited. Existing mining systems such as Arabesque
focus on distributed computing and need large amounts
of compute and memory resources.

We built RStream, the first single-machine, out-of-core
mining system that leverages disk support to store inter-
mediate data. At its core are two innovations: (1) a rich
programming model that exposes relational algebra for
developers to express a wide variety of mining tasks; and
(2) a runtime engine that implements relational algebra
efficiently with tuple streaming. A comparison between
RStream and four state-of-the-art distributed mining/Dat-
alog systems — Arabesque, ScaleMine, DistGraph, and
BigDatalog — demonstrates that RStream outperforms
all of them, running on a 10-node cluster, e.g., by at least
a factor of 1.7×, and can process large graphs on an inex-
pensive machine.

1 Introduction
There are two major types of analytical problems over
large graphs: graph computation and graph mining.
Graph computation includes a set of problems that can
be represented through linear algebra over an adjacency
matrix based representation of the graph. As a typical
example of graph computation, PageRank [52] can be
modeled as iterative sparse matrix and vector multiplica-
tions. Due to their importance in information retrieval
and machine learning, graph computation problems have
been extensively studied in the past decade; practical so-
lutions have been implemented in a wide variety of graph
systems [31, 27, 30, 33, 43, 39, 63, 48, 85, 58, 75, 83, 34,
57, 69, 84], most of which follow the “think like a vertex”
programming paradigm pioneered by Pregel [46]. These
systems have been highly optimized for locality, partition-
ing, and communication in order to deliver efficiency and
scalability for processing very large graphs.

While this programming model makes it easy for de-
veloping computation algorithms, it is not designed for
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mining algorithms that aim to discover complex structural
patterns of a graph rather than perform value computa-
tions. Fitting such algorithms into this model requires
significant reformulation. For many mining tasks such as
frequent subgraph mining (FSM), their patterns are not
known a priori; hence, it is impossible to express these
tasks using a vertex-centric model.

There is a body of work that uses declarative models to
solve mining problems. Representative examples are Dat-
alog [2, 40, 73, 62, 61], Arabesque [66], ScaleMine [4],
or DistGraph [65]. For instance, due to its support for
relational algebra, Datalog provides simple interfaces for
developing mining tasks [40, 61]. A Datalog program for
Triangle Counting, for example, needs only the following
two lines of code, with R representing the relation of
edges and U representing a new relation of triangles:

1 U(a,b,c) <- R(a,b), R(b,c), R(a,c)

2 count U(a,b,c)

However, Datalog’s support for graph mining is rather
limited since the declarative nature of its programming
model dictates that only mining algorithms whose pat-
terns are known a priori can be expressed by Datalog.
Arabesque is a Giraph-based graph mining system that
presents developers a view of “embeddings”. Embed-
dings are subgraphs that developers can easily check to
find structural patterns. Using a filter-process program-
ming model, Arabesque provides full support for devel-
oping a broad set of mining algorithms. For example,
Arabesque enumerates all possible subgraphs and invokes
the user-defined filter function on each subgraph. The
user logic in the function determines whether the given
subgraph is an instance of the specified motif (for motif
counting) or turns the subgraph into a canonical form to
count the number of instances of the form (for FSM).

Specialized systems have been developed for FSM due
to its broad applications. Examples are ScaleMine [4] and
DistGraph [65], but these systems do not work for other
mining algorithms such as Triangle Counting or Cliques.

1.1 Problems with State-of-the-Art Systems

Typical mining workloads are memory-intensive. Even
simple mining algorithms can generate an enormous
amount of intermediate data, which cannot fit into the
main memory of any single machine. Early single-
machine techniques such as gSpan [78] and GraMi [29]
can analyze only small graphs as they are fundamen-



tally limited by the size of the main memory of the ma-
chine on which they run. Recent mining tools such as
Arabesque [66], ScaleMine [4], and DistGraph [65] are
distributed systems — they leverage distributed memory
resources to store intermediate mining data.

Mining Systems Distributed mining systems have sev-
eral drawbacks that significantly impact their practicality.
First, they commonly suffer from large startup and com-
munication overhead. For small graphs, it is difficult for
the startup/communication overhead to get amortized over
the processing. For example, when FSM was executed on
Arabesque to process a small graph (CiteSeer, with 4K
edges) on a 10-node cluster, it took Arabesque 35 seconds
to boost the system and load the graph, while executing
the algorithm itself only took 3 seconds.

Second, in order to scale to large graphs, mining sys-
tems often need enterprise clusters with large amounts
of memory. This is because the amount of intermediate
data for a typical mining algorithm grows exponentially
with the size of the graph. For example, built on top of
MPI, a recent mining system DistGraph [65], using 128
IBM BlueGene/Q compute nodes, could only run 3-FSM
with support = 250001 on a million-edge graph — even
on such a small graph, the computation requires a total
of 128 × 256 = 32,768GB memory. Obviously, not all
users have access to such enterprise clusters. Even if they
do, running a simple mining algorithm on a relatively
small graph does not seem to justify very well the cost
of blocking hundreds or even thousands of machines for
several hours.

When many compute nodes are employed primarily to
offer memory, their CPU resources are often underutilized.
Unlike the “think-like-a-vertex” computation algorithms
that are amenable to the bulk synchronous parallel (BSP)
model, mining workloads are not massively parallel by
nature — a mining algorithm enumerates subgraphs of
increasing sizes to find those that match a pattern; finer-
grained partitioning of the input graph to exploit paral-
lelism often does not scale well with increased CPU re-
sources because subgraphs often cross partitions, creating
great numbers of dependencies between tasks.

Load balancing in a distributed mining system is an-
other major challenge. Algorithms such as FSM have dy-
namic working sets. Their search space is often unknown
in advance and it is thus hard to partition the graph and
distribute the workload appropriately before the execu-
tion. When we executed FSM on DistGraph, we observed
that some nodes had high memory pressure and ran out
of memory in several minutes while the memory usage of
some other nodes was below 10%.

125000 is a very large frequency threshold for FSM — a subgraph
is considered frequent only if its frequency exceeds this threshold. The
smaller the support is, the more computation is needed.

Dataflow/Datalog Systems The major problem of
dataflow systems or Datalog engines is that they do not
have a programming model flexible enough for express-
ing complex graph mining algorithms. For example, for
mining frequent subgraphs whose structures have to be
dynamically discovered, none of the Datalog systems can
directly support it.

A Strawman Approach A possible way to develop a
more cost-effective graph mining system is to add sim-
ple support for data spilling in an existing system (such
as Arabesque or DistGraph) rather than developing a
new system from scratch — if intermediate data can be
swapped between memory and disk, the amount of com-
pute resources needed may be significantly reduced. In
fact, data spilling is already implemented in many exist-
ing systems: Arabesque is based on Giraph, which places
on disk partitions that do not fit in memory; BigDatalog
is based on Spark, which spills data throughout the execu-
tion. However, generic data spilling does not work well
due to the lack of semantic information of how each data
partition is used in the program.

To understand whether semantics-agnostic data spilling
is effective, we ran transitive closure computation on
BigDatalog over the MiCo graph [29] (with 1.1M edges)
using a cluster of 10 nodes each with 32GB memory.
Despite Spark’s disk support, which spilled a total of
6.006GB of data to disk across all executors, BigDatalog
still crashed in 1375 seconds.

1.2 Challenges and Contributions

To address the shortcomings of the existing mining tools,
we developed RStream, the first disk-based, out-of-core
system that supports efficient mining of large graphs. Our
key insight is consistent with the recent trend on building
single-machine graph computation systems [39, 58, 75,
70, 45, 83, 8, 81] — given the increasing accessibility
of high-volume SSDs, a disk-based system can satisfy
the large storage requirement of mining algorithms by
utilizing disk space available in modern machines; yet
it does not suffer from any startup and communication
inefficiencies that are inherent in distributed computing.

Building RStream has two major challenges. The first
challenge is how to provide a programming interface
rich enough to support a wide variety of mining algo-
rithms. The design of RStream’s programming model is
inspired from both Datalog and the gather-apply-scatter
(GAS) model used widely in the existing computation
systems [30, 39, 58]. On the one hand, the relational op-
erations in Datalog enable the composition of structures
of smaller sizes into a structure of a large size, making
it straightforward for the developer to program mining
algorithms. On the other hand, GAS is a powerful pro-
gramming model that supports iterative graph processing
with a well-defined termination semantics. To enable



easy programming of mining algorithms with and without
statically-known structural patterns, we propose a novel
programming model (§3), referred to as GRAS, which
adds relational algebra into GAS. We show, with several
examples, that under GRAS, many mining algorithms,
including FSM, Triangle and Motif Counting, or Clique,
can all be easily developed with less than 80 lines of code.

The second challenge is how to implement relational
operators (especially join) efficiently for graphs. Since
join is expensive, its efficiency is critical to the system
performance. Instead of treating edges and vertices gener-
ically as relational tables as in Datalog, we take inspi-
rations from graph computation systems to leverage the
domain knowledge in graphs. In particular, we are in-
spired by recent systems (e.g., X-Stream [58] and Grid-
Graph [85]) that use streaming to reduce I/O costs.

The scatter/gather phase in these systems loads vertices
into memory and streams in edges/updates to generate
updates/new vertex values. The insight behind streaming
is that since the number of edges/updates is much larger
than the number of vertices for a graph, edge streaming
provides efficiency by sequentially accessing edge data
from disk (as edges are sequentially read but not stored
in memory) and randomly accessing vertex data held
in memory. Streaming essentially provides an efficient,
locality-aware join implementation. RStream leverages
this insight (§4) to implement relational operations.

1.3 Summary of Results

We have implemented RStream and made it publicly
available at https://github.com/rstream-system.
We evaluated it using 6 mining algorithms over 6 real-
world graphs. With a rich programming model and an
efficient implementation of the model using streaming,
RStream, running on a single machine with 32GB mem-
ory and 5.2TB disk space, outperformed 4 state-of-the-art
distributed mining and Datalog systems — Arabesque,
ScaleMine, DistGraph, and BigDatalog by at least a factor
of 1.7×, when they each ran on a 10-node cluster.

These results do not necessarily suggest that RStream
has better scalability than a distributed system, which may
be able to scale to larger graphs if sufficient memory is
provided. However, RStream is indeed a better choice if
a user has only a limited amount of computing resources,
since its disk requirement is easier to fulfill and yet it can
scale to large enough real-world graphs.

2 Background and Overview
Since RStream builds on streaming, we provide a brief
discussion of this idea and the related systems. We then
use a concrete example to overview RStream’s design.

2.1 Background

RStream’s tuple streaming idea is inspired by a number
of prior works, and in particular, the X-Stream graph com-

putation system [58] that uses edge streaming to reduce
I/O. X-Stream partitions a graph into streaming parti-
tions based on vertex intervals. Each streaming partition
consists of (1) a vertex set, which contains vertices in
a logical interval and their values, (2) an edge set, con-
taining edges whose source vertices are in its vertex set,
as well as (3) an update set, containing updates over the
edges whose destinations are in its vertex set. X-Stream’s
design is based on the GAS model. It first conducts the
scatter phase, which, for each partition, loads its vertex
set into memory and streams in edges from the edge set to
generate updates (i.e., propagate the value of the source
to the destination for each edge).

The update over each edge is shuffled into the update
set of the partition containing the destination of the edge.
This enables an important locality property — for each
vertex in a streaming partition, updates from all of its
incoming edges are present in the update set of the same
partition. The property leads to an efficient gather-apply
phase, because vertex computation can be performed lo-
cally in each partition without accessing other partitions.

The following gather-apply phase loads the vertex set
for each partition into memory, streams in updates from
the update set of the partition, and invokes the user vertex
function to compute a new value for each vertex. During
scatter and gather-apply, edges/updates are streamed in
sequentially from disk while in-memory vertices are ran-
domly accessed to compute vertex values. This design
leads to high performance because the number of edges
is much larger than that of vertices.

2.2 RStream Overview

We use X-Stream’s partitioning technique as the starting
point to build RStream. RStream adds a number of rela-
tional (R) phases into the GAS programming/execution
model, resulting in a new model referred to as GRAS
in the paper. To accommodate the relational semantics,
RStream’s programming interface treats vertex set, edge
set, and update set all as relational tables. From this point
on, we use vertex table, edge table, and update table to
refer to these sets.

Since edges do not carry data, the edge table has a
fixed schema of two columns (source and destination) –
its numbers of rows and columns never change. Both the
vertex and update table may change their schema during
computation. For example, the vertex table, initially with
two columns (ID and initial value), may grow to have
multiple columns (due to joins) where each vertex cor-
responds to a row with multiple elements; an example
can be found shortly in Figure 2. In the update table, one
vertex may have multiple corresponding rows since the
vertex can receive values from multiple edges. The update
table can also change due to joins. Tuples in these tables
remain unsorted throughout the execution.

https://github.com/rstream-system
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Figure 1: A Triangle Counting example in RStream; high-
lighted in each table is its key column. For each table,
only a small number of relevant tuples are shown.

RStream first conducts scatter to generate the update
table. Similarly to X-Stream, the vertex table is loaded
into memory in this phase; edges are streamed in and
updates are shuffled. The user-defined relational phases
are then performed over the update table and the edge
table in each streaming partition. What and how many
relational phases are needed is programmable. These re-
lational phases produce a new set of update tables, which
will be fed as input to the gather-apply phase to compute
new tuples for each vertex. The new tuples are saved into
the vertex table at the end of an iteration.

Example We use Triangle Counting as an example. Al-
though Triangle Counting is also supported by many com-
putation systems, it is a typical structure mining algorithm
that has a simple logic and thus provides a good intro-
ductory example. Figure 1 depicts the dataflow of the
computation while the RStream code is shown in Fig-
ure 2. The execution contains three phases: scatter and
two additional relational phases. The scatter phase has
the same semantics as in X-Stream — the vertex table is
loaded into memory; edges are streamed in and updates
are shuffled. The relational phases are user-defined and
their implementations are shown in Line 13–49. RStream
lets the developer register the dataflow by connecting
phases (Line 4–8). Each node on the dataflow graph is a
Phase object. Class TCScatter is a scatter phase with
a standard semantics; its definition is omitted for brevity.
The developer adds relational phases into the dataflow.

Initially, we let the value of each vertex be its own
ID (shown in the vertex table in Figure 1). The scatter

1 class TriangleCounting : public Application {
2 void run(Engine e){
3 /* Create a dataflow graph*/
4 TCScatter s;
5 e.set_start (&s);
6 R1 r1; R2 r2;
7 e.insert_phase(r1 , s);
8 e.insert_phase(r2 , r1);
9 e.run();

10 }
11 };
12

13 class R1 : public RPhase{
14 /* Called from join: only keep such <a, b, c>

that b < a < c */
15 bool filter(Tuple t1, Tuple t2){
16 if(t1.element (1) > t1.element (0))
17 return FALSE;
18 if(t2.element (0) > t2.element (2))
19 return FALSE;
20 return TRUE;
21 }
22

23 /* Called from join: new key column */
24 int new_key (){
25 return 2; /* set ‘C3’ as key*/
26 }
27

28 /*The main entry point */
29 void execute(StreamingPartition sp){
30 UpdateTable ut = sp.update_table;
31 ut.set_key (0); //set ‘VID’ as key
32 EdgeTable et = sp.edge_table;
33 /*Join ut with et; et’s key is ‘Src ’;

generated tuples are shuffled on
new_key */

34 super::join(sp);
35 }
36 };
37

38 class R2: public RPhase{
39 bool filter(Tuple t1, Tuple t2){
40 if(t2.element (1) != t1.element (0))
41 return FALSE;
42 return TRUE;
43 }
44

45 void execute(StreamingPartition sp){
46 super::join(sp);
47 super:: aggregate(sp , COUNT , null);
48 }
49 };

Figure 2: Triangle counting in RStream.

phase streams edges in from the edge table. For each
edge e, RStream retrieves the tuple from the vertex table
corresponding to e’s source vertex and produces an update
based on it. In the beginning, since each vertex has only
one value (i.e., its own ID), the update over each edge
e is essentially e’s source vertex ID. These updates are
shuffled into the update tables (#1 in Figure 1) across the
streaming partitions. Specifically, the update for e, which
is e’s source vertex ID, goes into the update table of the
partition that contains e’s destination.

The program has two relational phases R1 and R2. R1
essentially joins all such edges (a, b) with (b, c) to produce
relation (a, b, c), while R2 joins (a, b, c) with (c, a) to
detect triangles. To implement R1, the developer invokes
the join function defined in class RPhase. This function
takes a streaming partition (sp) as input and implements
a fixed semantics of joining sp’s update table (ut) with



its own edge table (et) on their key columns. The key
column for the update table can be set by using set key,
while the edge table always uses the source vertex column
as its key column.

Joining the two tables also conducts (1) filtering, (2)
tuple reshuffling, and (3) updating of sp’s update table.
Filtering uses the user-defined filter function (Line 15–
21). Tuples produced by this join form the new update
table of each partition. The user can override the function
new key to specify the key column of this new table.
If the new key is different than the current key of the
update table, the generated tuples need to be reshuffled
across partitions — each tuple is sent to the partition that
contains the key element of the tuple.

For instance, the invocation of join in Line 34 joins
the update table #1 with the edge table in Figure 1 using
the filter defined in Line 15 of Figure 2. Specifically, it
joins (a, b) with (b, c) and produces tuples of the form
(a, b, c). The filter function specifies that we select
only rows (a, b, c) with b < a < c, to filter out duplicates.
Next, since function new key specifies C3 as the new key
column, each generated (a, b, c) will be shuffled to the
streaming partition whose vertex table contains vertex ID
c. This provides a benefit of locality for the next join,
which will be performed on column C3 of the update
table and Src of the edge table. Finally, the update table
of each streaming partition sp is updated to the new table
containing such (a, b, c) tuples.

The second invocation of join in Line 46 joins the
update table resulting from R1 (i.e., #2 in Figure 1) and
the same edge table with the filtering condition defined in
Line 39–43. The goal of this join is to find tuples of the
form (a, b, c) and (c, b) to confirm that (a, b, c) indeed
forms a triangle. After R2, the new update table (#3) in
each partition contains triangles that can be counted using
the aggregation function aggregate (Line 47). Here
we do not need a cycle in the dataflow graph and the
algorithm ends after the two joins.

Since the example aims to count the total number of
triangles, a gather-apply phase is not needed. However,
if one wants to count the number of distinct triangles for
each vertex, an additional gather-apply phase would be
required to stream in triangle tuples from the update table
#3 and gather them based on their key element to compute
per-vertex triangle counts. The gather phase essentially
implements a group-by operation. More details can be
found in §3.

Observation on Expressiveness We make several ob-
servations with the example. The first one is the expres-
siveness of the GRAS model. Joins performed by the
relational phases over the update table and the edge table
enable us to “grow” existing subgraphs we have found
(i.e., stored in the update table) with edges (i.e., stored
in the edge table) to form larger subgraphs. This is the

key ability enabling Datalog and Arabesque to express
mining algorithms. Our GRAS model is as expressive as
Arabesque’s filter-process model – the filter function
in a relational phase achieves the same functionality as
Arabesque’s filter while Arabesque’s embedding enumer-
ation and processing can be achieved with relational joins
between the update and edge tables.

Clearly GRAS is more expressive than Datalog – the
combination of dataflow cycles and relational joins allows
RStream to express algorithms that aim to discover struc-
tures whose shapes cannot be described a priori, such as
subgraph mining.

A surprising side effect of building our programming
model on top of GAS is that RStream can also support
graph computation algorithms and even the transitive clo-
sure computation, which none of the existing mining sys-
tems can support. Developing computation algorithms
such as PageRank is easy — they need the traditional scat-
ter, gather, and apply, rather than any relational phases.

Observation on Efficiency The locality property of X-
Stream is preserved in RStream. Tuple shuffling per-
formed at the end of each join (based on new key) makes
it possible for joins to occur locally within each stream-
ing partition sp. This is because (1) all the update tuples
whose key column contains a vertex ID belonging to sp
have been shuffled into the sp’s update table, and (2) all
the edges whose source vertex (i.e., key column) belong-
ing to sp are already in sp’s edge table. Random accesses
may occur only during shuffling; accesses are conducted
sequentially in all other phases. Our join is implemented
efficiently by tuple streaming (§4) – since the update table
is often orders of magnitude larger than the edge table,
RStream loads the edge table in memory and streams in
tuples from the update table.

Limitation A limitation of RStream is that it currently
assumes a static graph and does not deal with graph up-
dates without restarting the computation. Hence, it cannot
be used for interactive mining tasks at this moment.

3 Programming Model
This section provides a detailed description of RStream’s
programming model. Figure 3 shows the data struc-
tures and interface functions provided by RStream. An
RStream program is made up of a dataflow graph con-
structed by the developer. The main entry of an RStream
application is a subclass of Application, which the de-
veloper needs to provide to implement a given algorithm.

Adding Structural Info A special function to be im-
plemented in an application is need structure, which,
by default, returns FALSE. As shown in Figure 1, each
join grows an existing group of vertices with a new edge,
generating a new (larger) structure. However, since each
tuple currently only contains vertex IDs, the structural



information of these vertices (i.e., edges connecting them)
is missing. This will not create a problem for applications
such as Triangle Counting because the structure of a tri-
angle is known a priori. However, for applications like
FSM, the shape of a frequent subgraph needs to be dis-
covered dynamically. Missing structural information in
tuples would create two challenges for these applications.
First, tuples with identical elements may represent differ-
ent structures. For example, a tuple 〈1,2,3,4〉 may come
from the joining of 〈1,2,3〉 and 〈3,4〉 or of 〈1,2,3〉 and
〈2,4〉; these are clearly two different subgraphs. The lack
of structural information causes RStream to recognize
them as the same subgraph instance, leading to incorrect
aggregation.

Conversely, missing structural information makes it
difficult for RStream to find and merge identical (auto-
morphic) subgraphs that are represented by different tu-
ples. For instance, joining 〈1,2,4〉 and 〈2,3〉 on the two
columns #1 and #0 generates the same subgraph instance
as joining 〈1,2,3〉 and 〈2,4〉 on the columns (#1, #0), al-
though the tuples produced look different (〈1,2,4,3〉 and
〈1,2,3,4〉). Failing to identify such duplicates would lead
not only to mis-aggregation but also inefficiencies.

To develop applications requiring structural infor-
mation, a RStream developer can override function
need structure to make it return TRUE. This informs
RStream to append a piece of information regarding each
join to each tuple produced by the join. For example, join-
ing 〈1,2〉 with 〈2,3〉 on the columns (#1, #0) produces
a tuple 〈1,2,3,(1)〉, where (1) indicates that this tuple
comes from expanding a previous tuple with an edge on
its 2nd column.

A further join between 〈1,2,3,(1)〉 and 〈2,4〉 on the
columns (#1, #0) generates tuple 〈1,2,3,4,(1,1)〉, which
indicates that this tuple comes from first expanding the
second column with an edge and then the second column
with another edge. This piece of information is added
(implicitly) at the end of each tuple, encoding the history
of joins, which, in turn, represents the edges that connect
the vertices in the tuple.

This structural information is needed in the following
two scenarios. First, it is used to encode a subgraph rep-
resented by a tuple into a coordination-free canonical
form, which can be used by the function is isomorphic

(defined in Tuple) during aggregation to find isomorphic
subgraphs. Two subgraphs (i.e., tuples) are isomorphic
iff there exists a one-to-one mapping between their ver-
tices and between their edges, s.t. (1) each vertex/edge
in one subgraph has one matching vertex/edge in another
subgraph, and (2) each matching edge connects match-
ing vertices. Tuples are aggregated at the end based on
isomorphism-induced equivalence classes.

Second, the structural information is used to identify
tuples representing the same subgraph instance (i.e., by

1 /*Data structures */
2 template <class T>
3 class Tuple {
4 int num_elements () {...}
5 T element(int i){...}
6 virtual bool is_automorphic(Tuple t){...}
7 virtual bool is_isomorphic(Tuple t){...}
8 };
9 class Edge : public Tuple {...};

10 class Vertex: public Tuple {...};
11

12 class Table {
13 int get_key (){...}
14 void set_key(int i) {...}
15 };
16 class UpdateTable : public Table {...};
17 class EdgeTable : public Table {...};
18 class VertexTable : public Table {...};
19 struct StreamingPartition {
20 UpdateTable update_table;
21 EdgeTable edge_table;
22 VertexTable vertex_table;
23 virtual void set_init_value(Vertex v);
24 };
25

26 class Application{
27 /* Dataflow graph registered here */
28 virtual void run();
29 /* Whether we need structural info*/
30 virtual bool need_structure () {return FALSE;}
31 };
32

33 /* Phases */
34 class Phase {
35 virtual bool converged(TerminationLogic l);
36 };
37 class Scatter : public Phase {
38 virtual Tuple generate_update(Edge e){...};
39 };
40 class GatherApply : public Phase {
41 virtual void apply_update(Vertex v, Tuple

update);
42 };
43

44 class RPhase : public Phase{
45 /* Functions called from join or select */
46 virtual bool filter(Tuple t1, Tuple t2) {

return TRUE;}
47 virtual int new_key ();
48

49 /* Called from the engine */
50 virtual void execute(StreamingPartition p);
51

52 /* == A set of relational functions ==*/
53 /* Join ut and et of p and updates ut*/
54 void join(StreamingPartition p){...}
55 /* Join ut and et of p on all columns of ut

and updates ut*/
56 void join_on_all_columns(StreamingPartition p)

{...}
57 /* Select rows from ut of p and updates ut*/
58 void select(StreamingPartition p){...}
59 /* Aggregate rows from ut of p*/
60 void aggregate(StreamingPartition p, int type)

{...}
61 };

Figure 3: Major data structures and API functions.

is automorphic). Two subgraphs are automorphic iff
they contain the same edges and vertices. Tuples that
represent the same subgraph instance need to be merged
during computation for correctness and performance. The
implementation of these functions is discussed in §4.

RStream tuples are essentially vertex-based represen-
tations of subgraphs. Edges are represented as structural
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information appended at the end of each tuple. Com-
pared to Arabesque where each subgraph (embedding)
has an edge-based representation, RStream’s representa-
tion allows the application to express whether the edge
information is needed, providing space efficiency for ap-
plications that aim to find statically-known patterns and
thus do not need the edge information.

Relational Phases Operations that can be performed
in a relational phase include join, select, aggregate,
and join on all columns. join joins the update table
with the edge table of each streaming partition on their
key columns; select selects rows from the update table
based on the user-defined filter; and aggregate aggre-
gates values from all rows in the update table. The “type”
parameter of aggregate indicates the type of aggrega-
tion such as MAX, MIN, SUM, COUNT, or STRUC-
TURE SUM. A special type is STRUCTURE SUM,
which counts the number of subgraphs that belong to
the same isomorphism class. If a programmer needs
to aggregate over a subset of rows, she can first in-
voke select and then aggregate. join and select

change the update table while aggregate does not.
join on all columns will be discussed shortly.

The two callback functions filter and new key

in class RPhase are invoked by join, select, and
join on all columns to determine what rows need to
be considered and how results should be shuffled, respec-
tively. For either join or select, changing the key col-
umn of the update table (i.e., using new key) will trigger
tuple shuffling across streaming partitions.

Note that RPhase does not provide a group-by func-
tion, because group-by can be essentially implemented by
a gather-apply phase. During a gather-apply, the vertex

table is loaded into memory and tuples from the update
table (produced either by a scatter phase or by a relational
phase) are streamed in. RStream gathers tuples that have
the same key element (i.e., vertex ID) and invokes the
user-defined apply update function at Line 41 to com-
pute a new tuple for the vertex. These new tuples are then
saved into the vertex table, which is written back to disk
at the end of each iteration. In other words, gather-apply
produces a new vertex table.
join on all columns is the same as join except

that it joins the update table with the edge table multi-
ple times, each time using a different column from the
update table as key. The key of the edge table remains un-
changed (i.e., source vertex column). The number of joins
performed by this function equals the number of columns
in the update table. This function is necessary to imple-
ment mining algorithms that need to grow a subgraph
from all of its vertices, such as Clique or FSM.

Figure 4 illustrates join on all columns. Since it
changes the key of the update table for each join, RStream
shuffles tuples twice after a join — the first one, referred to
as input shuffle (I-shuffle), shuffles tuples from the update
table based on the next key to be used to prepare for the
next join; the second one, referred to as output shuffle
(O-shuffle), shuffles the result tuples based on the new
key defined by new key to prepare for the final output,
which will eventually become the new update table (UT′).

Termination Class Phase contains an abstract function
converged that needs to be implemented in user-defined
phases. This function defines termination logic for iter-
ative computation algorithms (with back edges on the
dataflow graph). Note that RStream invokes this function



1 class FSMProgram : public Application {
2 /*FSM needs structural info*/
3 bool need_structure () { return TRUE; }
4

5 void run(Engine e){
6 Scatter cs;
7 e.set_start(cs);
8 FSMPhase fsm;
9 e.insert_phase(fsm , cs);

10 /* This forms a cycle */
11 e.insert_phase(fsm , fsm);
12 e.run();
13 }
14 };
15

16 class AggregateFilter : public RowFilter{
17 AggregationStream aggStream;
18 int threshold;
19

20 bool filter_out_row(Tuple t){
21 int support = get_support(aggStream , t);
22 if(support >= threshold) return FALSE;
23 /*It couldn ’t be a frequent subgraph.*/
24 return TRUE;
25 }
26 };
27

28 class FSMPhase : public RPhase{
29 static int MAX_ITE = MAX_FSM_SIZE * (

MAX_FSM_SIZE - 1)/2;
30

31 bool converged(TerminationLogic l) {
32 if(l.get_ite_id () == MAX_ITE) return TRUE;
33 return FALSE;
34 }
35

36 int new_key (){ return LAST_COLUMN ;}
37

38 void execute(StreamingPartition sp){
39 UpdateTable ut = sp.update_table;
40 ut.set_key (0);
41 EdgeTable et = sp.edge_table;
42 et.set_key (0);
43 super:: join_on_all_columns(sp);
44 super:: aggregate(sp , STRUCTURE_SUM);
45 AggregateFilter af;
46 super:: select(sp, af);
47 }
48 };

Figure 5: An FSM program; structural info is needed.

only for the phases that are sources of dataflow back edges
to determine whether further iterations are needed.

Example: FSM on RStream We use one more exam-
ple — frequent subgraph mining — to demonstrate the
power of RStream’s programming model, and in par-
ticular, the usage of dataflow cycles and the function
join on all columns. Figure 5 shows the computa-
tion logic. It consists of two phases: a (standard) scatter
phase and an iterative relational phase FSMPhase. The
basic idea is that each execution of FSMPhase performs
join on all columns between the update and edge ta-
ble. Each tuple in the update table represents a new sub-
graph we have found. This special join attempts to “grow”
each subgraph with one edge on each vertex in the sub-
graph. For example, for a tuple (a,b,c,d), this join will
join it with the edge table four times, each on a differ-
ent column. Each join generates five-tuples of the form
(a,b,c,d,e), which is keyed at e (i.e., LAST COLUMN

specified in Line 36). Such tuples are shuffled into the
partitions to which e belongs.

Given the max size of subgraphs to be considered
(e.g., MAX FSM SIZE = 4), all we need is to execute
FSMPhase for a fixed number of times; this number equals
the maximum number of edges that can be involved in
the largest FSM: MAX FSM SIZE×(MAX FSM SIZE−
1)/2, as shown in Line 29.

At the end of each FSMPhase, we aggregate all tu-
ples in the update table (Line 44) to count the number of
each distinct structural pattern. After the aggregation, a
select is performed to filter out tuples corresponding to
infrequent subgraphs (Line 46). This function takes as
input a variable of class AggregateFilter, which con-
tains a function filter out row that will be applied to
each tuple. This function eliminates tuples that represent
structural patterns whose supports are not high enough
(Lines 20-25). The intuition here is that if a subgraph is
infrequent, then any supergraphs generated based on it
must be infrequent — referred to as the Downward Clo-
sure Property [7]. These infrequent tuples can be safely
ignored in the next iteration. Similarly to Arabesque [66],
we use the minimum image-based support metric [22] as
it can be efficiently computed. This metric defines the
frequency of a structural pattern as the minimum number
of distinct mappings for any vertex in the pattern over all
instances of the pattern.

4 RStream Implementation
RStream’s implementation has an approximate of 7K
lines of C++ code and is available on Github.

4.1 Preprocessing

For graphs that cannot fit into memory, they are first parti-
tioned by a preprocessing step. The graph is in the edge-
list or adjacency-list format on disk. RStream divides
vertices into logical intervals. One interval in RStream
defines a partition that contains edges whose source ver-
tices fall into the interval. Edges that belong to the same
partition do not need to be further sorted. To achieve
work balance, we ensure that partitions have similar sizes.
Since our join implementation (discussed shortly) needs
to load each edge table entirely into memory, the num-
ber of streaming partitions is determined automatically to
guarantee that the edge table for each streaming partition
does not exceed the memory capacity while memory can
still be fully utilized.

For graphs that can be fully loaded, RStream generates
one single partition and no tuple shuffling will be incurred
for joins. However, unlike share-memory graph compu-
tation systems that can hold all computations in memory,
mining algorithms in RStream can cause update tables
to keep increasing — even for very small graphs, their
update tables can grow to be several orders of magnitude



larger than the size of the original graph. Hence, RStream
requires disk support regardless of the initial graph size.

4.2 Join Implementation

As the update table grows quickly, to implement join, we
load the edge table into memory and stream in tuples from
the update table for each streaming partition. RStream
performs sequential disk accesses to both the update table
and the edge table, and random memory accesses to the
loaded edge data.

Note that the edge table represents the original graph
while the update table contains intermediate data gen-
erated during computation. Since the edge table never
changes, the amount of memory required by RStream is
bounded by the maximum size of a partition in the origi-
nal graph, not the intermediate computation data, which
can be much larger than the graph size.

Scatter and gather-apply are implemented in the same
way as in X-Stream — for scatter, the vertex table is
loaded while edges are streamed in; for gather-apply, the
vertex table is loaded while updates are streamed in.

Filtering is performed by invoking the user-defined
filter function upon the generation of a new tuple. When
join on all columns is used, different tuples generated
may represent identical (automorphic) structures. Simi-
larly to Arabesque, we define tuple canonicality by select-
ing a unique (canonical) tuple from its automorphic set
as a representative and remove all other tuples. Details of
this step are discussed shortly in §4.3.

Multi-threading RStream uses a producer-consumer
paradigm for implementing join. The main thread pushes
the IDs of the streaming partitions to be processed into
a worklist as tasks, and starts multiple producer and con-
sumer threads. Each producer thread pops a task off the
list, loads its edge table, and streams in its update ta-
ble into the producer’s thread-local buffer. The producer
thread joins each “old” update tuple with the edge table
and produces a “new” update tuple.

We allocate a reshuffling buffer, for each streaming
partition, to store new update tuples entering this parti-
tion. Producers and consumers synchronize using locks
to ensure concurrent accesses to reshuffling buffers. Each
producer sends each generated tuple to its corresponding
reshuffling buffer when the buffer has room, while each
consumer flushes a buffer into its corresponding “new”
update table on disk when the buffer is full.

Figure 6 illustrates multiple producers and consumers.
There are four producer threads and two consumer threads.
Eight tasks are pushed onto the task worklist. Each pro-
ducer takes one task from the list, loads its edge parti-
tion, and streams in its update partition. Each producer
conducts the computation and generates output updates
locally. Reshuffling is synchronized using std::mutex.
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Figure 6: A graphical illustration of multiple producers,
multiple consumers and reshuffling buffers.

Load (Re)balancing Unlike X-Stream where the size
of each streaming partition stays unchanged, in RStream,
the size of each partition can grow significantly for two
reasons. First, mining algorithms keep looking for graph
patterns of increasing sizes, leading to the ever-growing
update table. Second, tuple reshuffling at the end of each
join can result in unbalanced partitions. These unbal-
anced partitions, if handled inappropriately, can result in
significant inefficiencies (e.g., underutilized CPU).

One possible solution would be to repartition the
streaming partitions at the end of each relational phase for
load rebalancing. However, repartitioning can incur sig-
nificant disk I/O, slowing down the computation. Rather
than repartition the graph, we use fine-grained tasks by
dividing each update table into multiple smaller update
chunks. Instead of pushing an entire update partition into
the list, we push one chunk at a time. For work balanc-
ing, we also order these tasks based on their sizes so that
“larger” tasks have a higher priority to be processed.

Enumeration Note that, by joining the update table
with the edge table, RStream performs breadth-first enu-
meration of subgraphs. While this approach requires more
storage to materialize tuples compared to a depth-first ap-
proach, it enables easier parallelization as all tuples of a
given size are materialized and available for processing.
Further, as a disk-based approach, RStream’s breadth-first
enumeration increases disk usage rather than memory us-
age — As shown in Figure 6, the enumeration delivers
each newly generated tuple to a shuffling buffer and once
the buffer is full, RStream flushes the buffer to disk.

4.3 Redundancy Removal via Automorphism
Checks

Since different workers can reach identical (automorphic)
tuples during processing, we need to identify and filter
out such tuples. RStream adopts the idea of embedding
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Figure 7: A graph and its canonical tuples of size 3.

canonicality used in Arabesque [66]. We select exactly
one of the automorphic tuples and elect it as “canoni-
cal”. RStream runs a tuple canonicality check to verify
whether a tuple t can be pruned. This algorithm runs
on a single tuple without coordination. It starts with an
existing canonical tuple t and checks, when t is grown
with a new vertex v into a new tuple t ′, whether t ′ is also
canonical. The basic idea is based on a notion of unique-
ness: given the set Sm of all tuples automorphic to a tuple
m, there exists exactly one canonical tuple tc in Sm. The
goal of this algorithm is, thus, to check whether the newly
generated tuple t ′ is this tc.

The tuple t ′ is canonical if and only if its vertices are
visited in an order that is consistent with their IDs: a
vertex with a smaller ID is visited earlier than one with a
larger ID. In other words, RStream characterizes a tuple
as the list of its vertices sorted by the order in which they
are visited. When we check the canonicality of tuple t ′

that comes from growing an existing canonical tuple t
with a vertex v, we first find the first neighbor v′ of v,
and then verify that there is no vertex ∈ t after v′ with
a larger ID than v. Figure 7 shows a simple graph and
its canonical tuples of size 3. Because RStream only
processes canonical tuples, uniqueness is maintained in
our tuple encoding (with structural information). A more
detailed description can be found in [67].

4.4 Pattern Aggregation via Isomorphism Checks

For mining algorithms, aggregation needs to be done on
tuples to count the number of each distinct shape (i.e.,
structural pattern) at the end of the computation. Aggre-
gation boils down to isomorphism checks — among all
non-automorphic tuples, we count the number of those
that belong to each isomorphism class. A challenge here
is that isomorphism checks are expensive to compute — it
is known to be isomorphism (GI)-complete and the bliss
library [3] we use employs an exponential time algorithm.

RStream adopts the aggregation idea from Arabesque
by turning each tuple into a quick pattern and then into
a canonical pattern [16, 66]. The canonical pattern of
a subgraph, which is different than the canonical tuple
described earlier for automorphism checks, encodes the
shape of the subgraph with all vertex information re-
moved. Two tuples are isomorphic iff they have the same

1（a）
2（b）

3（c）

1（a）
3（c）

4（b）

3（c）

2（b）

5（a）

Tuple 1 Tuple 2 Tuple 3

Figure 8: Aggregation example of three isomorphic tuples.

canonical patterns. The quick pattern of a subgraph is
simply a total order of edges in the subgraph with ver-
tex information removed. Two tuples may have different
quick patterns even if they are isomorphic.

Given that canonical checks are expensive, we use the
same two-step aggregation as in Arabesque — the first
step uses quick patterns that can be efficiently computed
to perform coarse-grained pattern aggregation, while the
second step takes as input results from the first step, con-
verts them into canonical patterns, based on which fine-
grained aggregation is done. The aggregation conducts a
two-stage MapReduce computation — the first on quick
patterns and the second on canonical forms — across
all streaming partitions. Although the aggregation idea
originates from Arabesque [66], we provide a detailed ex-
ample in the rest of this section to make this paper more
self-contained.

Example The map phase takes quick patterns and
canonical forms as input, performs local aggregation, and
shuffles them into hash buckets defined by the hash value
of these patterns. The reduce phase aggregates key/value
pairs in the same bucket. Figure 8 depicts an example
with three tuples: tuple1 : 〈1(a),2(b),3(c),(0)〉, tuple2 :
〈1(a),3(c),4(b),(0)〉, and tuple3 : 〈5(a),3(c),2(b),(0)〉.
Here numbers represent vertex IDs and characters repre-
sent labels for each vertex. Note that mining algorithms
often require graphs to have vertices and edges explicitly
labeled. These labels represent vertex/edge properties that
never change during the computation and they are needed
for isomorphism checks. (0) represents the structural
information obtained from the past joins.

RStream first turns each tuple into a quick pattern to
reduce the number of distinct tuples. A quick pattern is
obtained by simply extracting the label information and re-
naming vertex IDs in a given tuple, with vertex ID always
starting at 1 and increasing consecutively. In the previous
example, the quick patterns for the three tuples are qp1 :
〈1(a),2(b),3(c),(0,0)〉, qp2 : 〈1(a),2(c),3(b),(0,0)〉,
qp3 : 〈1(a),2(c),3(b),(0,0)〉, respectively. In the map
phase, RStream emits three quick pattern pairs: (qp1, 1),
(qp2, 1), (qp3, 1); the reduce phase further aggregates
them into (qp1, 1), (qp2, 2) as qp2 and qp3 are identical.



Graphs #Edges #Vertices Description
CiteSeer [29] 4,732 3,312 CS pub graph

MiCo [29] 1.1M 100K Co-authorship graph
Patents [32] 14.0M 2.7M US Patents graph

LiveJournal [17] 69M 4.8M Social network
Orkut [1] 117M 3M Social network

UK-2005 [20] 936M 39.5M Web graph
Table 1: Real world graphs.

Program LoC Description
Triangle Counting (TC) 75 Counting # triangles

Closure 68 Computing transitive closure
N-Clique 36 Identify cliques of size N
N-Motif 36 Counting motifs of size N

Frequent Subgraph Mining (FSM) 40 Identify FSM of size N
Connected Components (CC) 40 Identify connected components

Table 2: Algorithms experimented.

Due to the coarse-grained modeling of quick patterns,
tuples that are actually isomorphic may correspond to
different quick patterns. As a next step, quick patterns
are turned into canonical forms (by bliss) to perform fine-
grained aggregation. A canonical form uniquely identifies
a class of isomorphic subgraphs. In the example, the two
quick patterns correspond to the same canonical form cf1 :
〈1(a),2(b),3(c),(0,0)〉. RStream eventually reports (cf1,
3) as the final result. Since the number of quick patterns
is much smaller than the number of distinct tuples, the
cost of isomorphic checks can be significantly reduced.

One possible optimization is to perform eager aggrega-
tion — tuples are aggregated as they are being streamed
into their respective partitions. We have implemented this
optimization, but our experimental results showed only
a minor improvement (5% in the aggregation phase and
less than 2% for the overall execution).

5 Evaluation
Our evaluation focuses on three research questions:

• Q1: How does RStream compare to state-of-the-art
graph mining systems? (§5.1)
• Q2: How does RStream compare to state-of-the-art

Datalog engines? (§5.2)
• Q3: What is RStream’s overall and I/O throughput

and how quickly does data grow for mining algo-
rithms? (§5.3)

Experimental Setup We ran our experiments using six
algorithms (Table 2) over six real-world graphs (Table 1).
CiteSeer, MiCo, and Patents are the graphs that were used
by Arabesque and DistGraph in their evaluations. We
used them primarily for comparisons with the mining
systems. Similarly, Orkut and LiveJournal were used by
BigDatalog [61] and we used them to compare RStream
with BigDatalog. UK-2005 has almost a billion edges and
is much larger than all the graphs used by Arabesque [66].

For mining algorithms, we developed Triangle Count-
ing (TC), Clique, Motif Counting (MC), Transitive Clo-

CS MC PA

TC

RS 0.04 15.8 6.7
AR-10 38.1 43.1 114.9
AR-5 39.8 44.9 116.4
AR-1 34.2 40.7 131.5

5-C

RS 0.01 115.1 35.3
AR-10 42.8 132.0 174.5
AR-5 39.3 171.7 183.0
AR-1 34.9 404.3 227.9

3-M

RS 0.02 43.0 89.1
AR-10 40.6 51.7 116.0
AR-5 39.7 52.8 110.5
AR-1 32.7 47.0 132.9

4-M

RS 1.41 52926 8849
AR-10 41.7 - -
AR-5 40.4 - -
AR-1 34.2 - -

3-F

RS 0.89 402.1 517.4

300

AR-10 35.9 - -
AR-5 39.3 - -
AR-1 33.7 - -
SM-10 2.1 69431.7 -
SM-5 2.6 66604.3 -
SM-1 3.5 77332.7 -
DG-10 12.3 - -
DG-5 4.1 - -
DG-1 5.2 - -

CS MC PA

3-F

RS 0.10 384.3 502.1

500

AR-10 35.7 - -
AR-5 39.3 - -
AR-1 34.4 - -
SM-10 2.0 15867.5 -
SM-5 2.3 15209.4 -
SM-1 3.2 21043.3 -
DG-10 0.4 - -
DG-5 0.12 - -
DG-1 0.11 - -

3-F

RS 0.06 351.7 383.7

1K

AR-10 35.6 5790.1 -
AR-5 39.9 5397.9 -
AR-1 33.9 5848.2 -
SM-10 1.2 802.6 -
SM-5 1.1 790.8 -
SM-1 1.1 1175.1 -
DG-10 0.4 - -
DG-5 0.12 - -
DG-1 0.10 - -

3-F

RS 0.02 51.0 376.4

5K

AR-10 41.6 120.8 -
AR-5 37.7 192.7 -
AR-1 31.8 610.3 -
SM-10 1.0 12.1 -
SM-5 1.1 11.6 -
SM-1 1.3 14.5 -
DG-10 0.3 - -
DG-5 0.05 - -
DG-1 0.08 - -

Table 3: Comparisons between RStream (RS), Arabesque
(AR-n), ScaleMine (SM-n), and DistGraph(DG-n) on four
mining algorithms — triangle counting (TC), Clique (k-
C), Motif Counting (k-M), and FSM (k-F) — over three
graphs CiteSeer (CS), MiCo (MC), and Patents (PA); n
represents the number of nodes the distributed systems
use; k is the size of the structure to be mined; ‘-’ indicates
execution failures. For FSM, four different support pa-
rameters (300, 500, 1K, and 5K) are used and explicitly
shown in each 3-F row. Highlighted rows are the shortest
times (in seconds).

sure Computation (Closure), and Frequent Subgraph Min-
ing (FSM). Closure is a typical Datalog workload, and
hence, we used it specifically to compare RStream with
Datalog. Connected Components (CC) is a graph compu-
tation algorithm. Since RStream can also support compu-
tation (with just GAS and no relational phases), we added
CC into our algorithm set to help us develop a deep un-
derstanding of the behavioral differences between graph
computation and graph mining (§5.3).

Our experiments were conducted on a 10-node cluster,
each with 2 Xeon(R) CPU E5-2640 v3 processors, 32GB
memory, and 3 SSDs with a total of 5.2TB disk space,
running CentOS 6.8. Data was split evenly on the three
disks. RStream ran on one single node with 32 threads
to fully utilize CPU resources and disk bandwidth, while
distributed systems used all the nodes.

5.1 Comparisons with Mining Systems

Systems and Algorithms We compared RStream
with three state-of-the-art distributed mining systems:
Arabesque [66], ScaleMine [4], and DistGraph [65].



Other distributed mining systems such as G-thinker [77]
are not publicly available and hence not considered in our
experiments. We ran these three systems with 10 nodes,
5 nodes, and 1 node to have a precise understanding of
where RStream stands. In this first set of experiments,
all Motif executions were run with a maximum size of 4;
Clique was run with a maximum size of 5; and FSM was
run with size of 3.

As discussed earlier, to run FSM we used the minimum
image-based support metric [22], which defines the fre-
quency of a pattern as the minimum number of distinct
mappings for any vertex in the pattern, over all instances
of the pattern. We explicitly state the support, denoted S,
used in each experiment since this parameter is sensitive
to the input graph. Clearly, the smaller S is, the more
computation is needed.

In this experiment, we used CiteSeer, MiCo, and Patent
as our input graphs. These three graphs came with labels2

and were also used to evaluate Arabesque, ScaleMine,
and DistGraph. Our initial goal was to evaluate RStream
with all graphs used in prior works, but other graphs were
either unavailable or do not have labels. Although these
are relatively small graphs from the perspective of graph
computation, running mining algorithms on them can
generate orders-of-magnitude more data (see Table 5).

Table 3 reports the running times of the four systems.
Note that ScaleMine and DistGraph were designed specif-
ically to mine frequent subgraphs, and hence we could
obtain only FSM’s performance for these two systems. It
is clear that RStream outperforms all three systems in
all cases but 3-FSM with support = 5000. Arabesque,
ScaleMine, and DistGraph failed when the size of a pat-
tern increases. These failures were primarily due to their
high memory requirement (for storing intermediate data)
that could not be fulfilled by our cluster.

For FSM, on small graphs such as CiteSeer, DistGraph
appears to be more efficient than the other two systems.
However, DistGraph could not scale to the MiCo graph
on our 10-node cluster. ScaleMine successfully processed
MiCo, but took a long time, because ScaleMine trades off
computation for memory; instead of caching intermediate
results in memory, it always re-computes from scratch,
which explains why it has better scalability but lower
efficiency. None of these three systems could process
FSM over the Patents graph even when support = 5000.
By contrast, RStream successfully executed FSM over all
the graphs under all the configurations.

RStream underperforms ScaleMine in only one case:
3-FSM (S=5000) over MiCo. RStream outperforms
Arabesque (on 10 nodes) by an overall (GeoMean) of
60.9×, ScaleMine by an overall of 12.1×, and DistGraph
by an overall of 7.2×. As Arabesque was developed in

2Mining algorithms require labeled graphs (i.e., vertices and edges
have semantic labels).

0	
200	
400	
600	
800	

1000	
1200	
1400	
1600	
1800	
2000	

3-10K	 3-15K	 3-20K	 4-15K	 4-20K	 4-25K	 5-15K	 5-20K	 5-25K	

Rstream	

ScaleMine	

Arabesque	

Figure 9: FSM performance comparisons with different
pattern sizes and supports over the Patents graph. Tall
red bars on the right of each group represent Arabesque
failures.

Java, the 60.9× speedup may be partly due to RStream’s
use of an efficient language (C++). ScaleMine and Dist-
Graph were both C++ applications and, hence, the wins
over them provide a closer approximation of the benefit a
disk-based system could offer.

UK Graph To understand RStream’s performance on
larger graphs, we ran 3-FSM on RStream to process the
UK-2005 graph that has almost a billion edge. Note that
none of the three distributed systems could process the
graph when running 3-FSM with even a 5K support on
our 10-node cluster. In all prior works, the only evidence
of a mining system successfully processing a billion-edge
graph was reported in [65] where DistGraph, using 512–
2048 IBM BlueGene/Q machines each with 16 cores and
256GB memory, processed several synthetic graphs with
1B–4B edges in 2000 – 7000 seconds (with varying sup-
ports). Here we experimented RStream with four support
parameters – 2K, 3K, 4K, and 5K – on one single ma-
chine with only 32GB memory. RStream successfully
processed all of them, e.g., in 4080.9, 3016.3, 2228.9, and
2146.2 seconds, respectively.

RStream ran out of memory when a relatively small
support was used (i.e., ≤1000) to compute frequent sub-
graphs over UK. After spending a great amount of time
investigating the problem, we found that the large mem-
ory consumption was potentially due to memory leaks in
the bliss library rather than RStream, which guarantees
that the amount of data to be loaded from each streaming
partition never exceeds the memory capacity.

Larger FSMs To evaluate how RStream performs on
k-FSMs with larger k, we conducted a set of experiments
over the Patents graph with various k and supports. Since
DistGraph failed in most cases when we increased k, this
set of experiments focused on RStream, ScaleMine, and
Arabseque, and the results of the comparisons are re-
ported in Figure 9. Both Arabesque and ScaleMine were
executed with 10 nodes. Overall, RStream is 2.46× and
2.28× faster than ScaleMine and Arabesque.



Support Patents Mico
RStream GraMi RStream GraMi

5K 504.6 - 51.0 -
10K 286.7 - 23.2 36.5
15K 213.3 - 14.3 18.7
20K 190.8 - 8.6 9.2

Table 4: FSM performance comparisons between
RStream and GraMi over Patents and Mico; time is mea-
sured in seconds.

We have also compared RStream with GraMi [29],
which is a specialized graph mining library designed to
perform single-machine shared-memory FSM computa-
tion, over the Patents and Mico graphs. Table 4 reports
the results. Note that, for each support, GraMi reports pat-
terns of all sizes with respect to the support. RStream was
executed in a similar way to provide a fair comparison.
GraMi ran out of memory for all cases over the Patents
graph. On the Mico graph, RStream outperforms GraMi
even for large (e.g., 20K) supports.

There are two reasons that could explain RStream’s
superior efficiency. First, joins performed by RStream
grow subgraphs in batch while the other systems enumer-
ate and grow embeddings individually. Second, the three
systems RStream was compared against are all distributed
systems that have a large startup and communication over-
head. While the data size quickly grows to be larger than
the memory capacity of a single machine, this size is of-
ten small in an early stage of the execution. Distributed
systems suffer from communication overhead throughout
the execution, while RStream does not have heavy I/O in
this early stage.

The fact that the three distributed systems failed in
many cases does not necessarily indicate that RStream
can scale to larger graphs than them. We believe that these
systems, if given enough memory, should have performed
better than what is reported in Table 3. However, their
exceedingly high memory requirement is very difficult to
satisfy — the 10-node cluster we used is the only cluster
to which we have exclusive access. According to [66],
running 4-motif on a 200M-edge graph took Arabesque
6 hours consuming 20 × 110GB = 2200GB memory.
As a reference point, the most memory-optimized clus-
ter (x1.32xlarge) Amazon EC2 offers has only 1952GB
memory, which is still not enough to run the algorithm.

These results do suggest, though, that if a user has
only a limited amount of computing resources, RStream
should be a better choice than these other systems because
RStream’s disk requirement is much easier to fulfill and
yet it can scale to large enough real-world graphs.

5.2 Comparisons with Datalog Engines

Since our GRAS model is inspired partly by the way Dat-
alog enables easy programming of mining algorithms,
we have also compared RStream with the state-of-the-art
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Figure 10: (a) Comparisons between RStream (RS), Big-
Datalog (BD-n), and SociaLite (SL) on TC and CC; (b)
Closure comparison over CiteSeer.

Datalog engines. We use BigDatalog [61] with Spark
joins and SociaLite [40], a shared memory Datalog en-
gine. We used the LiveJournal and Orkut graphs, which
were initially used to evaluate BigDatalog [61] to evaluate
BigDatalog. We used three algorithms: Triangle Counting
(TC), Connected Components (CC), and Closure Compu-
tation (Closure). Although CC and Closure are not typical
mining algorithms, they are Datalog programs regularly
used to evaluate the performance of a Datalog engine.
Hence, we included them in this experiment. Note that
BigDatalog has been shown to outperform vanilla Spark
over these workloads due to several optimizations imple-
mented over Spark joins [61].

Figure 10(a) compares the performance of RStream
with that of BigDatalog and SociaLite. For TC and CC,
RStream outperforms BigDatalog (with 10 nodes) by a
GeoMean of 1.37×, while SociaLite failed in most cases.
For transitive closure, CiteSeer was the only graph that
RStream, BigDatalog, and SociaLite could all success-
fully process. Their performance comparison is shown in
Figure 10(b): RStream is 4× faster than BigDatalog run-
ning on 10 nodes, while it took SociaLite a large amount
of time (8021 seconds) to finish closure computation.

These results appear to be different from what was
reported in the prior works [61] and [40]. We found that
the difference was primarily due to the input graphs —
both the works [61] and [40] used synthetic acyclic graphs
for transitive closure, while real graphs have both cycles
and very high density that synthetic graphs do not have.
Neither BigDatalog nor SociaLite could finish closure
computation for any graph other than CiteSeer, while
RStream successfully computed closure for LiveJournal
in 4578 seconds.

5.3 RStream Performance Breakdown

To fully understand RStream’s performance, throughput,
I/O efficiency, and disk usage, we have conducted a set of
experiments using various graphs and algorithms.

Intermediate Data Generation Table 5 reports, for
4-Motif (over the Patents graph) and 4-FSM (over the
Patents graph), the number of tuples generated at the end



0

20

40

60

80

100

120

W
ri
te
(M

B
/S
)

0

200

400

600

800

1000

R
e
ad

s 
(M

B
/S
)

0

20

40

60

80

100

120

W
ri
te
s 
(M

B
/S
)

Ave-Read = 135.1

Ave-Write = 59.4
(a) RStream scalability

0

200

400

600

800

1000

R
e
ad

(M
B
/S
)

Ave-Write = 74.5
(b) I/O throughput - CC over UK (c) I/O throughput - TC over UK 

Ave-Read = 41.5

0

100

200

300

400

500

600

700

800

900

2 4 8 16 32

Ti
m
e
 (
Se

co
n
d
s)

Number of Threads

3‐Motif (Patents)

5‐Clique(MiCo)

3‐FSM (MiCo)

Figure 11: RStream’s scalability (a), I/O throughput when running CC over UK (b), and I/O throughput when running
TC over UK (c). I/O was measured with iostat.

Phase #Tuples TS #MB

4-Motif 0 1,080,156 16 16.5

MiCo 1 91,151,339 24 2,086.3
2 29,044,509,725 32 886,378.1
3 17,621,170,674 40 672,194.3

Total 4.7×1010 - 1,560,675.2 (1.49TB)

4-FSM, S=10K

0 13,965,409 16 213.1

Patents

1 625 28 0.02
2 5,861,830 16 89.4
3 93,313,116 24 2,135.8
4 13,764 36 0.5
5 29,462,761 24 674.3
6 816,909,842 32 24,930.1
7 101,254 44 4.2
8 633,673,981 32 19,338.2
9 57,361,813 40 2,188.2

10 30,283 52 1.5
11 509,304 40 19.4

Total 1.65×109 - 49,594.72 (48.4GB)

Table 5: The number of tuples (Tuples) generated for
each phase execution, the size of each tuple (TS), and
the number of bytes (#MB) shuffled for 4-Motif over the
Patents graph and 4-FSM, S=10K over the Mico graph.

of each phase, the size of each tuple, as well as the storage
consumption of these tuples. The amount of data gener-
ated during the execution can easily exceed the memory
capacity. For 4-Motif, the total amount of intermediate
data generated requires 1.21TB of disk space. This moti-
vates our out-of-core design that leverages large SSDs to
store these intermediate subgraphs.

FSM(300) FSM(500) FSM(1000) 3-Motif 4-Motif 5-Clique
CiteSeer 129 110 76 83 1914 26

MiCo 2388 2366 2285 1206 12408 6968
Patents 1234 1151 936 110 2791 275

UK 1367 2379 1461 1001 8914 7231

Table 6: Ratios between the final disk usage and original
graph size (in the binary format).

To understand how large the total amount of data gen-
erated is, Table 6 further reports, for each graph, the ratio
between the amount of storage needed at the end of each
execution and the original size of the graph. This growth
can be as large as 5 orders of magnitude (4-Motif over
the MiCo graph). These ratios also reflect (1) the density
of each graph (regardless of the size of the graph), which
determines how difficult the graph is to process; and (2)
the computation complexity of each algorithm, which
determines how difficult the algorithm is to run. The
MiCo graph is the one with the highest density, although
it is relatively small in size. 4-Motif is the algorithm
that needs the most computations as it generates the most
intermediate data compared to other algorithms.

Scalability and I/O Figure 11(a) shows RStream’s run-
ning time for varying numbers of threads. In general,
RStream scales with the number of threads. However,
RStream’s scalability decreases when the number of
threads exceeds 8 because the disk bandwidth was almost
saturated when 8 threads were used.

To understand how RStream performs for mining and
computation algorithms, Figure 11(b) and (c) depict
RStream’s I/O throughput for a computation program
(CC) and a mining program (TC), respectively. For CC,
we monitored I/O in a full scatter-gather-apply iteration,
while for TC, our measurement covered the full cycle
of a join – loading the edge table, streaming in update
tuples, performing joining, and writing back to the update
table. The file system cache was flushed during monitor-
ing. Note that the high read throughput (e.g., 800+MB/s)



achieved by RStream was primarily due to data stripped
across the SSDs.

These two plots reveal the differences of these two
types of algorithms: computation algorithms such as CC
are dominated by I/O — e.g., disk reads/writes occur
throughout the iteration. By contrast, relational joins in
the mining algorithms such as TC are more compute-
intensive, as most of the reads occur in an early stage
of the join and the rest of the time is all spent on the
in-memory computation (of joining and aggregation). For
TC, writes still scatter all over the window due to the
producer-consumer model used in RStream— the number
of consumer threads is often small and hence many of the
disk writes overlap with the computation.

6 Related Work
RStream is the first single-machine, out-of-core graph
mining system. Since graph processing is an extensively
studied topic, we focus on work that is closely related.

Distributed Mining Systems Arabesque [66] is a dis-
tributed system designed to support mining algorithms.
Arabesque presents to the developer an “embedding” view.
Arabesque enumerates all possible embeddings with in-
creasing sizes and the developer processes each embed-
ding with a filter-process programming model. RStream
is more efficient than Arabesque because we join tuples in
batch rather than enumerating them individually. ScaleM-
ine [4] is a parallel frequent subgraph mining system that
contains two phases. The first phase computes an ap-
proximate solution by quickly identifying subgraphs that
are frequent with high probability and collecting various
statistics. The second phase computes the exact solution
by using the results of the approximation to prune the
search space and achieve load balancing. DistGraph [65]
is an MPI-based distributed mining system that uses a set
of optimizations and efficient operations to minimize com-
munication costs. With these optimizations, DistGraph
scales to billion-edge graphs with 2048 IBM BlueGene/Q
nodes. G-thinker [77] is another distributed mining sys-
tem that provides an intuitive graph-exploration API and
a runtime engine. However, G-thinker does not support
FSM and Motif-counting, which are arguably the most
important mining algorithms. In addition, G-thinker’s
implementation is not publicly available.

Specialized Graph Mining Algorithms gSpan [78] is
an efficient frequent subgraph mining algorithm designed
for mining multiple input graphs. Michihiro et al. [38]
uses an anti-monotonic definition of support based on
the maximal independent set to find edge-disjoint em-
beddings. GraMi [29] is an effective method for min-
ing large input graph. Ribeiro et al. [55] proposes an
approach for counting frequencies of motifs [54]. Max-
imal clique is a well-studied problem. There exist a lot

of approaches to this problem, among which work from
Bron-Kerbosch [23] has the highest efficiency. Recently, a
body of algorithms have been developed to leverage paral-
lel [28, 12, 59, 64], distributed systems (such as Map/Re-
duce) [35, 19, 41, 44, 71, 6, 36, 82, 18], or GPUs [37].

Single-Machine Graph Computation Sys-
tems Single-machine graph computation sys-
tems [39, 58, 85, 75, 42, 83, 74, 34, 70, 45, 8]
have become popular as they do not need expensive
computing resources and free developers from man-
aging clusters and developing/maintaining distributed
programs. State-of-the-art single-machine systems
include Ligra [63], Galois [51], GraphChi [39], X-
Stream [58], GridGraph [85], raphQ [75], MMap [42],
FlashGraph [83], TurboGraph [34], Mosaic [45], and
Graspan [74].

Ligra [63] provides a shared memory abstraction for
vertex algorithms. The abstraction is suitable for graph
traversal. Galois [51] is a shared-memory implementation
of graph DSLs on a generalized Galois system, which has
been shown to outperform their original implementations.
GRACE [72], a shared-memory system, processes graphs
based on message passing and supports asynchronous
execution by using stale messages.

Efforts have been made to improve scalability
for systems over semi-external memory and SSDs.
GraphChi [39] uses shards and a parallel sliding algo-
rithm to reduce disk I/O for out-of-core graph processing.
Bishard Parallel Processor [49] reduces non-sequential
I/O by using separate shards to contain incoming and
outgoing edges. X-Stream [58] uses an edge-centric ap-
proach in order to minimize random disk accesses. Grid-
Graph [85] uses partitioned vertex chunks and edge blocks
as well as a dual sliding window algorithm to process
graphs residing on disks. Vora et al. from [70] reduces
disk I/O using dynamic shards.

FlashGraph [83] is a semi-external memory graph en-
gine that stores vertex states in memory and edge-lists on
SSDs. It is built on the assumption that all vertices can be
held in memory and a high-speed user-space file system
for SSD arrays is available to merge I/O requests to page
requests. TurboGraph [34] is an out-of-core engine for
graph database to process graphs using SSDs. Pearce
et al. [53] uses an asynchronous approach to execute
graph traversal algorithms with semi-external memory. It
utilizes in-memory prioritized visitor queues to execute
algorithms like breadth-first search and shortest paths.

Distributed Graph Computation Systems Google’s
Pregel [46] provides a synchronous vertex centric frame-
work for large scale graph processing. Many other dis-
tributed systems [46, 43, 30, 26, 57, 27, 84, 80, 60, 69,
48, 76, 24, 68] have been developed on top of the same
graph-parallel abstraction.



GraphLab [43] is a framework for distributed asyn-
chronous execution of machine learning and data mining
algorithms on graphs. PowerGraph [30] provides effi-
cient distributed graph placement and computation by ex-
ploiting the structure of power-law graphs. Cyclops [26]
provides a distributed immutable view, granting vertices
read-only accesses to their neighbors and allowing uni-
directional communication from master vertices to their
replicas. Chaos [57] utilizes disk space on multiple ma-
chines to scale graph processing. PowerLira [27] is a
system that dynamically applies different computation
and partitioning strategies for different vertices. Gem-
ini [84] is a distributed system that adapts Ligras hybrid
push-pull computation model to a distributed form, facil-
itating efficient vertex-centric data update and message
passing. Cube [80] uses a 3D partitioning strategy to re-
duce network traffic for certain machine learning and data
mining problems. KickStarter [69] and Naiad [48] are
systems that deal with streaming graphs.

GraphX [31] is a distributed graph system built on top
of Spark, which is a general-purpose dataflow framework.
GraphX provides a middle layer that offers a graph ab-
straction and “think like a vertex” interface for graph
computation using low-level dataflow operators such as
join and group-by available in Spark. GraphX’s design
goal is completely opposite to that of RStream— GraphX
aims to hide the relational representation of data and op-
erations in the underlying dataflow system to provide a
user-familiar graph computation interface while RStream
aims to expose relational representation of data and op-
erations over the underlying graph engine to enable the
expression and processing of graph mining algorithms
that focus on patterns and structures.

Datalog Engines There exists a great deal of work that
aims to improve efficiency and scalability for Datalog
engines [13, 40, 73, 56, 61, 47]. These existing graph
computation and Datalog systems are orthogonal to our
work because none of them could support full graph min-
ing. LogicBlox [13] is a system designed to reduce the
complexity of software development for modern appli-
cations. It provides a LogiQL language, a unified and
declarative language based on Datalog, for developers
to express relations and constraints. SociaLite [40] is a
Datalog engine designed for social network analysis. So-
ciaLite programs are evaluated by parallel workers that
use message passing to communicate.

Myria [73] provides runtime support for Datalog eval-
uation using a pipelined, parallel, distributed execution
engine that evaluates a graph of operators. Datasets are
sharded and stored in PostgreSQL instances at worker
nodes. Both SociaLite and Myria support monotonic
aggregation inside recursion using aggregate semantics
based on the lattice-semantics of Ross and Sagiv [56].
BigDatalog [61] is a distributed Datalog engine built

on top of Spark. It bases its monotonic aggregate (op-
erational and declarative) semantics on work [47] that
uses monotonic w.r.t. set-containment semantics. While
RStream takes inspiration from Datalog, our experimen-
tal results show that RStream is much more efficient than
existing Datalog engines on graph mining workloads.

Dataflow Systems Many dataflow systems [79, 11, 9,
21, 25] were developed. Systems such as Spark [79]
and Asterix [10] provide relational operations for dataset
transformations. While RStream takes inspiration from
these systems, it is built specifically for graph mining, and
thus has to overcome unique challenges that do not exist
in existing systems.

At first glance, RStream’s GRAS model is similar to a
chain of MapReduce tasks — e.g., the input data first gets
shuffled into streaming partitions; relational expressions
are next applied and the generated data is re-shuffled be-
fore the next relational phase comes. The key difference
between these two model lies in the semantics — the
GRAS abstraction that we built enables developers to eas-
ily develop and reason about mining algorithms by com-
posing structures of smaller sizes into large sizes, while
generic MapReduce tasks do not have any semantics. Join
is a critical relational operation that has been extensively
studied in the database community [5, 50, 15, 14]. While
there exist many efficient join implementations such as
worst-case optimal join [50], RStream is largely orthog-
onal to these prior works — future work could improve
RStream with a more efficient join implementation.

7 Conclusion

This paper presents RStream, the first single-machine,
out-of-core graph mining system. RStream employs a
new GRAS programming model that uses a combination
of GAS and relational algebra to support a wide variety of
mining algorithms. At the low level, RStream leverages
tuple streaming to efficiently implement relational opera-
tions. Our experimental results demonstrate that RStream
can be more efficient than state-of-the-art distributed min-
ing systems. We hope that these promising results will
encourage future work that builds disk-based systems to
scale expensive mining algorithms.
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