
Load the Edges You Need: A Generic I/O Optimization for
Disk-based Graph Processing

Keval Vora
University of California, Riverside

kvora001@cs.ucr.edu

Guoqing Xu
University of California, Irvine

guoqingx@ics.uci.edu

Rajiv Gupta
University of California, Riverside

gupta@cs.ucr.edu

Abstract

Single-PC, disk-based processing of big graphs has re-
cently gained much popularity. At the core of an efficient
disk-based system is a well-designed partition structure
that can minimize random disk accesses. All existing
systems use static partitions that are created before pro-
cessing starts. These partitions have static layouts and are
loaded entirely into memory in every single iteration even
though much of the edge data is not changed across many
iterations, causing these unchanged edges to have zero
new impact on the computation of vertex values.

This work provides a general optimization that removes
this I/O inefficiency by employing dynamic partitions
whose layouts are dynamically adjustable. Our implemen-
tation of this optimization in GraphChi — a representa-
tive out-of-core vertex-centric graph system — yielded
speedups of 1.5—2.8× on six large graphs. Our idea is
generally applicable to other systems as well.

1 Introduction
As graphs have become increasingly important in mod-
ern computing, developing systems to efficiently process
large graphs has been a popular topic in the past few years.
While a distributed system is a natural choice for analyz-
ing large amounts of graph data, a recent trend initiated by
GraphChi [14] advocates developing out-of-core support
to process large graphs on a single commodity PC.

Out-of-core graph systems can be classified into two
major categories based on their computation styles:
vertex-centric and edge-centric. Vertex-centric computa-
tion, that originates from the “think like a vertex” model
of Pregel [17], provides an intuitive programming in-
terface. It has been used in most graph systems (e.g.,
[8, 16, 14, 10]).

Recent efforts (e.g., X-Stream [23] and Grid-
Graph [31]) develop edge-centric computation (or a hy-
brid processing model) that streams edges into memory
to perform vertex updates, exploiting locality for edges
at the cost of random accesses to vertices. Since a graph
often has many more edges than vertices, an edge-centric
system improves performance by reducing random ac-
cesses to edges.

Observation At the heart of both types of systems is a
well-designed, disk-based partition structure, along with

an efficient iterative, out-of-core algorithm that accesses
the partition structure to load and process a small por-
tion of the graph at a time and write updates back to disk
before proceeding to the next portion. As an example,
GraphChi uses a shard data structure to represent a graph
partition: the graph is split into multiple shards before pro-
cessing; each shard contains edges whose target vertices
belong to the same logical interval. X-Stream [23] parti-
tions vertices into streaming partitions. GridGraph [31]
constructs 2-dimensional edge blocks to minimize I/O.

Despite much effort to exploit locality in the parti-
tion design, existing systems use static partition layouts,
which are determined before graph processing starts. In
every single computational iteration, each partition is
loaded entirely into memory, although a large number of
edges in the partition are not strictly needed.

Consider an iteration in which the values for only a
small subset of vertices are changed. Such iterations are
very common when the computation is closer to conver-
gence and values for many vertices have already stabilized.
For vertices that are not updated, their values do not need
to be pushed along their outgoing edges. Hence, the val-
ues associated with these edges remain the same. The
processing of such edges (e.g., loading them and reading
their values) would be completely redundant in the next
iteration because they make zero new contribution to the
values of their respective target vertices.

Repeatedly loading these edges creates significant I/O
inefficiencies, which impacts the overall graph processing
performance. This is because data loading often takes
a major portion of the graph processing time. As an
example, over 50% of the execution time for PageRank is
spent on partition loading, and this percentage increases
further with the size of the input graph (cf. §2).

However, none of the existing out-of-core systems can
eliminate the loading of such edges. Both GraphChi and
X-Stream support vertex scheduling, in which vertices are
scheduled to be processed for the next iteration if they
have at least one incoming edge whose value is changed
in the current iteration. While this approach reduces un-
necessary computations, it cannot address the I/O ineffi-
ciency: although the value computation for certain ver-
tices can be avoided, shards still need to be entirely loaded
to give the system accesses to all vertices and edges. Sim-
ilarly, GridGraph’s 2-D partition structure remains static

throughout computation regardless of the dynamic behav-
ior of the algorithm — a partition has to be loaded entirely
even if only one vertex in it needs to be computed.

Contributions This paper aims to reduce the above I/O
inefficiency in out-of-core graph systems by exploring the
idea of dynamic partitions that are created by omitting
the edges that are not updated.

While our idea is applicable to all disk-based systems,
in this work we focus on dynamically adjusting the shard
structure used in GraphChi. We choose GraphChi as
the starting point because: (1) it is a representative of
extensively-used vertex-centric computation; (2) it is un-
der active support and there are a large number of graph
programs already implemented in it; and (3) its key algo-
rithm has been incorporated into GraphLab Create [1],
a commercial product of Dato, which performs both dis-
tributed and out-of-core processing. Hence, the goal of
this paper is not to produce a brand new system that
is faster than all existing graph systems, but instead, to
show the generality and effectiveness of our optimization,
which can be implemented in other systems as well.

Challenges Using dynamic partitions requires much
more than recognizing unnecessary edges and removing
them. There are two main technical challenges that need
to be overcome.

The first challenge is how to perform vertex computa-
tion in the presence of missing edges that are eliminated
during the creation of a dynamic partition. Although
these edges make no impact on the forward computation,
current programming/execution models all assume the
presence of all edges of a vertex to perform value up-
dates. To solve the problem, we begin with proposing a
delay-based computation model (cf. §3) that delays the
computation of a vertex with a missing edge until a spe-
cial shadow iteration in which all edges are brought into
memory from static partitions.

Since delays introduce overhead, to reduce delays, we
further propose an accumulation-based programming/ex-
ecution model (cf. §4) that enables incremental vertex
computation by expressing computation in terms of con-
tribution increments flowing through edges. As a result,
vertices that only have missing incoming edges can be pro-
cessed instantly without needing to be delayed because
the increments from missing incoming edges are guaran-
teed to be zero. Computation for vertices with missing
outgoing edges will still be delayed, but the number of
such vertices is often very small.

The second challenge is how to efficiently build par-
titions on the fly. Changing partitions during processing
incurs runtime overhead; doing so frequently would po-
tentially make overheads outweigh benefits. We propose
an additional optimization (cf. §5) that constructs dynamic
partitions only during shadow iterations. We show, the-

1	 0	 2	

4	 3	 5	 6	

(a) Example graph.

Src	 Dst	 Value	

0	 1	 e0	
1	 2	 e1	
3	 2	 e2	
4	 1	 e3	
5	 1	 e4	

2	 e5	
6	 2	 e6	

Src	 Dst	 Value	

0	 4	 e7	
1	 3	 e8	
2	 3	 e9	

5	 e10	
3	 4	 e11	

5	 e12	
4	 5	 e13	
5	 3	 e14	
6	 4	 e15	

Src	 Dst	 Value	

0	 6	 e16	
3	 6	 e17	
5	 6	 e18	

Shard	 0	 Shard	 1	 Shard	 2	

Iter	 0,	 1,	 2	
(b) Shards representation.

Figure 1: An example graph partitioned into shards.

oretically (cf. §5) and empirically (cf. §6), that this opti-
mization leads to I/O reductions rather than overheads.

Summary of Results Our experiments with five common
graph applications over six real graphs demonstrate that
using dynamic shards in GraphChi accelerates the overall
processing by up to 2.8× (on average 1.8×). While the
accelerated version is still slower than X-Stream in many
cases (cf. §6.3), this performance gap is reduced by 40%
after dynamic partitions are used.

2 The Case for Dynamic Partitions

Background A graph G = (V,E) consists of a set of ver-
tices, V , and a set of edges E. The vertices are num-
bered from 0 to |V |−1. Each edge is a pair of the form
e = (u,v), u,v ∈V . u is the source vertex of e and v is e’s
destination vertex. e is an incoming edge for v and an out-
going edge for u. The vertex-centric computation model
associates a data value with each edge and each vertex;
at each vertex, the computation retrieves the values from
its incoming edges, invokes an update function on these
values to produce the new vertex value, and pushes this
value out along its outgoing edges.

The goal of the computation is to “iterate around” ver-
tices to update their values until a global “fixed-point”
is reached. There are many programming models de-
veloped to support vertex-centric computation, of which
the gather-apply-scatter (GAS) model is perhaps the
most popular one. We will describe the GAS model and
how it is adapted to work with dynamic shards in §4. A
vertex-centric system iterates around vertices to update
their values until a global “fixed-point” is reached.

In GraphChi, the IDs of vertices are split into n disjoint
logical intervals, each of which defines a shard. Each
shard contains all edge entries whose target vertices be-
long to its defining interval. In other words, the shard only
contains incoming edges of the vertices in the interval.
As an illustration, given the graph shown in Figure 1a,
the distribution of its edges across three shards is shown
in Figure 1b where vertices 0–2, 3–5, and 6 are the three
intervals that define the shards. If the source of an edge
is the same as the previous edge, the edge’s src field is
empty. The goal of such a design is to reduce disk I/O by
maximizing sequential disk accesses.

Shard	 0	 Shard	 1	 Shard	 2	 Shard	 3	

	 	 Window	 0	 	 	 Window	 1	 	 	 Window	 2	 	 	 Window	 3	

(a) Shards and sliding windows
used in GraphChi.

0%

20%

40%

60%

80%

100%

LJ NF UK TT FT

%
 T

im
e

Load Compute Store

(b) Breakdown of PageRank ex-
ecution time into load, com-
pute, and store times.

Figure 2: An illustration of sliding windows and the
PageRank execution statistics.

 0%

20%

40%

60%

80%

100%

 10 20 30 40 50 60 70

%
 U

se
fu

l E
d

ge
s

Iteration

LJ
NF
UK
TT
FT

(a) Percentages of updated
edges across iterations for the
PageRank algorithm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10

Id
ea

l S
h

ar
d

 S
iz

e

Iteration

PR
MSSP

CC

(b) Ideal shard sizes normal-
ized w.r.t. the static shard size
for LJ input graph.

Figure 3: Useful data in static shards.

Vertex-centric computation requires the presence of
all (in and out) edges of a vertex to be in memory when
the update is performed on the vertex. Since edges of a
vertex may scatter to different shards, GraphChi uses an
efficient parallel sliding window (PSW) algorithm to min-
imize random disk accesses while loading edges. First,
edges in a shard s are sorted on their source vertex IDs.
This enables an important property: while edges in s can
come out of vertices from different intervals, those whose
sources are in the same interval i are located contiguously
in the shard defined by i.

When vertices v in the interval of s are processed,
GraphChi only needs to load s (i.e., memory shard, con-
taining all v’s incoming edges and part of v’s outgoing
edges) and a small block of edges from each other shard
(i.e., sliding shard, containing the rest of v’s outgoing
edges) – this brings into memory a complete set of edges
for vertices belonging to the interval.

Figure 2a illustrates GraphChi’s edge blocks. The four
colors are used, respectively, to mark the blocks of edges
in each shard whose sources belong to the four intervals
defining these shards.
Motivation While the PSW algorithm leverages disk lo-
cality, it suffers from redundancy. During computation, a
shard contains edges both with and without updated val-
ues. Loading the entire shard in every iteration involves
wasteful effort of loading and processing edges that are
guaranteed to make zero new contribution to the value

Src	 Dst	 Value	

0	 1	 e0	
1	 2	 e1	
3	 2	 e2	
4	 1	 e3	
5	 1	 e4	

2	 e5	
6	 2	 e6	

Shard	 0	

Iter	 0,	 1,	 2	

Src	 Dst	 Value	

1	 2	 e1	
3	 2	 e2	
4	 1	 e3	
5	 1	 e4	

2	 e5	
6	 2	 e6	

Shard	 0	
Src	 Dst	 Value	

1	 2	 e1	
5	 1	 e4	

2	 e5	
6	 2	 e6	

Shard	 0	
Src	 Dst	 Value	

3	 2	 e2	
4	 1	 e3	
5	 1	 e4	

2	 e5	

Shard	 0	

Initial	 Shards	 Iteration	 3	 Iteration	 4	 Iteration	 5	

Src	 Dst	 Value	

2	 3	 e9	
5	 e10	

3	 4	 e11	
5	 e12	

4	 5	 e13	
5	 3	 e14	

Src	 Dst	 Value	

1	 3	 e8	
2	 3	 e9	

5	 e10	
5	 3	 e14	
6	 4	 e15	

Src	 Dst	 Value	

1	 3	 e8	
2	 3	 e9	

5	 e10	
3	 4	 e11	

5	 e12	
4	 5	 e13	
5	 3	 e14	
6	 4	 e15	

Src	 Dst	 Value	

0	 4	 e7	
1	 3	 e8	
2	 3	 e9	

5	 e10	
3	 4	 e11	

5	 e12	
4	 5	 e13	
5	 3	 e14	
6	 4	 e15	

Shard	 1	

Iter	 0,	 1,	 2	

Shard	 1	 Shard	 1	 Shard	 1	

Shard	 2	

Iter	 0,	 1,	 2	

Shard	 2	 Shard	 2	 Shard	 2	
Src	 Dst	 Value	

0	 6	 e16	
3	 6	 e17	
5	 6	 e18	

Src	 Dst	 Value	

3	 6	 e17	
5	 6	 e18	

Src	 Dst	 Value	

5	 6	 e18	

Src	 Dst	 Value	

3	 6	 e17	
5	 6	 e18	

Figure 4: Dynamic shards for the example graph in Fig-
ure 1a created for iteration 3, 4 and 5.

computation. This effort is significant because (1) the ma-
jority of the graph processing cost comes from the loading
phase, and (2) at the end of each iteration, there are a large
number of edges whose values are unchanged. Figure 2b
shows a breakdown of the execution times of PageRank in
GraphChi for five real graphs, from the smallest LiveJour-
nal (LJ) with 69M edges to Friendster (FT) with 2.6B
edges. Further details for these input graphs can be found
in Table 3.

In these experiments, the I/O bandwidth was fully uti-
lized. Note that the data loading cost increases as the
graph becomes larger – for Friendster, data loading con-
tributes to over 85% of the total graph processing time. To
understand if the impact of data loading is pervasive, we
have also experimented with X-Stream [23]. Our results
show that the scatter phase in X-Stream, which streams
all edges in from disk, takes over 70% of the total pro-
cessing time for PageRank on these five graphs.

To understand how many edges contain necessary data,
we calculate the percentages of edges that have updated
values across iterations. These percentages are shown
in Figure 3a. The percentage of updated edges drops
significantly as the computation progresses and becomes
very low when the execution comes close to convergence.
Significant I/O reductions can be expected if edges not
updated in an iteration are completely eliminated from a
shard and not loaded in the next iteration.

Figure 3b illustrates, for three applications PageRank
(PR), MultipleSourceShortestPath (MSSP), and Connect-
edComponents (CC), how the size of an ideal shard
changes as computation progresses when the LiveJournal
graph is processed. In each iteration, an ideal shard only
contains edges that have updated values from the previous
iteration. Observe that it is difficult to find a one-size-fits-
all static partitioning because, for different algorithms,
when and where useful data is produced changes dramati-
cally, and thus different shards are needed.
Overview of Techniques The above observations strongly
motivate the need for dynamic shards whose layouts can
be adapted. Conceptually, for each static shard s and each
iteration i in which s is processed, there exists a dynamic
shard di that contains a subset of edges from s whose
values are updated in i.

Figure 4 shows the dynamic shards created for Iteration
3, 4 and 5 during the processing of the example graph
shown in Figure 1a. After the 2nd iteration, vertex 0
becomes inactive, and hence, its outgoing edges to 4 and
6 are eliminated from the dynamic shards for the 3rd

iteration. Similarly, after the 3rd iteration, the vertices 3
and 4 become inactive, and hence, their outgoing edges
are eliminated from the shards for Iteration 4. In Iteration
4, the three shards contain only 10 out of a total of 19
edges. Since loading these 10 edges involves much less
I/O than loading the static shards, significant performance
improvement can be expected. To realize the benefits of
dynamic shards by reducing I/O costs, we have developed
three techniques:

(1) Processing Dynamic Shards with Delays – Dynamic
shards are iteratively processed like static shards; however,
due to missing edges in a dynamic shard, we may have
to delay the computation of a vertex. We propose a de-
lay based shard processing algorithm that places delayed
vertices in an in-memory delay buffer and periodically per-
forms shadow iterations that process the delayed requests
by bringing in memory all edges for delayed vertices.

(2) Programming Model for Accumulation-Based Com-
putation – Delaying the computation of a vertex if any of
its edge is missing can slow the progress of the algorithm.
To overcome this challenge we propose an accumulation-
based programming model that expresses computation in
terms of incremental contributions flowing through edges.
This maximizes the processing of a vertex by allowing
incremental computations to be performed using available
edges and thus minimizes the impact of missing edges.

(3) Optimizing Shard Creation – Finally, we develop
a practical strategy for balancing the cost of creating dy-
namic shards with their benefit from reduced I/O by adapt-
ing the frequency of shard creation and controlling when
a shadow iteration is triggered.

In subsequent sections we discuss each of the above
techniques in detail.

3 Processing Dynamic Shards with Delays
Although dynamic shard provides a promising solution
to eliminating redundant loading, an immediate question
is how to compute vertex values when edges are missing.
To illustrate, consider the following graph edges: u→
v→ w. Suppose in one iteration the value of v is not
changed, which means v becomes inactive and the edge
v→w is not included in the dynamic shard created for the
next iteration. However, the edge u→ v is still included
because a new value is computed for u and pushed out
through the edge. This value will be reaching v in the next
iteration. In the next iteration, the value of v changes as it
receives the new contribution from u→ v. The updated
value of v then needs to be pushed out through the edge
v→ w, which is, however, not present in memory.

To handle missing edges, we allow a vertex to delay
its computation if it has a missing edge. The delayed
computations are batched together and performed in a
special periodically-scheduled iteration called shadow
iteration where all the (in- and out-) edges of the delayed
vertices are brought in memory. We begin by discussing
dynamic shard creation and then discuss the handling of
missing edges.

Creating Dynamic Shards Each computational iteration
in GraphChi is divided into three phases: load, compute,
and write-back. We build dynamic shards at the end of
the compute phase but before write-back starts. In the
compute phase, we track the set of edges that receive
new values from their source vertices using a dirty mark.
During write-back, these dirty edges are written into new
shards to be used in the next iteration. Evolving graphs
can be supported by marking the dynamically added edges
to be dirty and writing them into new dynamic shards.

The shard structure has two main properties contribut-
ing to the minimization of random disk accesses: (1)
disjoint edge partitioning across shards and (2) ordering
of edges based on source vertex IDs inside each shard.
Dynamic shards also follow these two properties: since
we do not change the logical intervals defined by static
partitioning, the edge disjointness and ordering properties
are preserved in the newly generated shards. In other
words, for each static shard, we generate a dynamic shard,
which contains a subset of edges that are stored in the
same order as in the static shard. Although our algorithm
is inexpensive, creating dynamic shards for every itera-
tion incurs much time overhead and consumes large disk
space. We will discuss an optimization in §5 that can
effectively reduce the cost of shard creation.

Processing Dynamic Shards Similar to static shards, dy-
namic shards can be iteratively processed by invoking
the user-defined update function on vertices. Although a
dynamic shard contains fewer edges than its static coun-
terpart, the logical interval to which the shard belongs is

Algorithm 1 Algorithm for a shadow iteration.

1: S = {S0,S1, ...,Sn−1}: set of n static shards
2: DSi = {DSi

0,DSi
1, ...,DSi

n−1}: set of n dynamic shards for
Iteration i

3: DS = [DS0,DS1, ...]: vector of dynamic shard sets for Iter-
ation 0, 1, . . .

4: Vi: set of vertex IDs belonging to Interval i
5: DB: delay buffer containing IDs of the delayed vertices
6: lastShadow: ID of the last shadow iteration
7: function SHADOW-PROCESSING(Iteration ite)
8: for each Interval k from 0 to n do
9: LOAD-ALL-SHARDS(ite,k)

10: par-for Vertex v ∈ DB∩Vk do
11: UPDATE(v) //user-defined vertex function
12: end par-for
13: produce S′k by writing updates to the static shard Sk
14: create a dynamic shard DSite

k for the next iteration
15: end for
16: remove DSlastShadow . . .DSite−1

17: lastShadow← ite
18: clear the delay buffer DB
19: end function
20:
21: function LOAD-ALL-SHARDS(Iteration ite, Interval j)
22: LOAD-MEMORY-SHARD(S j)
23: par-for Interval k ∈ [0,n] do
24: if k 6= j then
25: LOAD-SLIDING-SHARD(Sk)
26: end if
27: end par-for
28: for each Iteration k from lastShadow to ite−1 do =
29: LOAD-MEMORY-SHARD-AND-OVERWRITE(DSk

j)
30: par-for Interval i ∈ [0,n] do
31: if i 6= j then
32: LOAD-SLIDING-SHARD-AND-OVERWRITE(DSk

i)
33: end if
34: end par-for
35: if k = ite−1 then
36: MARK-DIRTY-EDGES()
37: end if
38: end for
39: end function

not changed, that is, the numbers of vertices to be updated
when a dynamic shard and its corresponding static shard
are processed are the same. However, when a dynamic
shard is loaded, it contains only subset of edges for ver-
tices in its logical interval. To overcome this challenge,
we delay the computation of a vertex if it has a missing
(incoming or outgoing) edge. The delayed vertices are
placed in an in-memory delay buffer. We periodically
process these delayed requests by bringing in memory all
the incoming and outgoing edges for the vertices in the
buffer. This is done in a special shadow iteration where
static shards are also loaded and updated.

pre-proc.

S0

S1

Sn-1

Sn

...

DS
0

0

DS
0

1

Iteration 0

DS
0

n-1

DS
0

n

...
DS

i
0

DS
i
1

DS
i
n-1

DS
i
n

Iteration i shadow

S0’, DS
i+1

0

S1’, DS
i+1

1

Sn-1’, DS
i+1

n-1

Sn’, DS
i+1

n

...

Figure 5: Processing using dynamic shards.

Since a normal iteration has similar semantics as those
of iterations in GraphChi, we refer the interested reader
to [14] for its details. Here we focus our discussion on
shadow iterations. The algorithm of a shadow iteration
is shown in Algorithm 1. A key feature of this algo-
rithm is that it loads the static shard (constructed during
pre-processing) to which each vertex in the delay buffer
belongs to bring into memory all of its incoming and
outgoing edges for the vertex computation. This is done
by function LOAD-ALL-SHARDS shown in Lines 21–39
(invoked at Line 9).

However, only loading static shards would not solve the
problem because they contain out-of-date data for edges
that have been updated recently. The most recent data are
scattered in the dynamic shards DSlastShadow . . .DSite−1

where lastShadow is the ID of the last shadow iteration
and ite is the ID of the current iteration. As an example,
consider Shard 0 in Figure 4. At the end of iteration 5,
the most recent data for the edges 1→ 2, 3→ 2, and
0→ 1 are in DS4

0, DS5
0, and S0, respectively, where DSi

j
represents the dynamic shard for interval j created for
iteration i, and S j denotes the static shard for interval j.

To guarantee that most recent updates are retrieved in
a shadow iteration, for each interval j, we sequentially
load its static shard S j (Line 22) and dynamic shards cre-
ated since the last shadow iteration DSlastShadow . . .DSite−1

(Line 29), and let the data loaded later overwrite the data
loaded earlier for the same edges. LOAD-ALL-SHARDS
implements GraphChi’s PSW algorithm by loading (static
and dynamic) memory shards entirely into memory (Lines
22 and 29) and a sliding window of edge blocks from other
(static and dynamic) shards (Lines 23–27 and 30–34). If
k becomes the ID of the iteration right before the shadow
iteration (Lines 35–37), we mark dirty edges to create
new dynamic shards for the next iteration (Line 14).

After the loop at Line 8 terminates, we remove all the in-
termediate dynamic shards (Line 16) and set lastShadow
to ite (Line 17). These shards are no longer needed, be-
cause the static shards are already updated with the most
recent values in this iteration (Line 13). One can think
of static shards as “checkpoints” of the computation and
dynamic shards as intermediate “increments” to the most
recent checkpoint. Finally, the delay buffer is cleared.

Figure 5 illustrates the input and output of each com-
putational iteration. Static shards S0 . . .Sn are statically

constructed. Each regular iteration i produces a set of
dynamic shards DSi

0 . . .DSi
n, which are fed to the next

iteration. A shadow iteration loads all static shards
and intermediate dynamic shards, and produces (1) up-
dated static shards S′0 . . .S′n and (2) new dynamic shards
DSi+1

0 . . .DSi+1
n to be used for the next iteration.

It may appear that the delay buffer can contain many
vertices and consume much memory. However, since the
amount of memory needed to represent an incoming edge
is higher than that to record a vertex, processing dynamic
shards with the delay buffer is actually more memory-
efficient compared to processing static shards where all
edges are available.

Delaying a vertex computation when any of its edge is
missing can cause too many vertices to be delayed and
negatively impact the the computation progress. For ex-
ample, when running PageRank on UKDomain, Twitter,
and Friendster graphs, immediately after the dynamic
shards are created, 64%, 70%, and 73% of active vertices
are delayed due to at least one missing incoming or outgo-
ing edge. Frequently running shadow iterations may get
data updated quickly at the cost of extra overhead, while
doing so infrequently would reduce overhead but slow
down the convergence. Hence, along with dynamically
capturing the set of edges which reflect change in values,
it is important to modify the computation model so that it
maximizes computation performed using available values.
§4 presents an optimization for our delay-based com-

putation to limit the number of delayed computations.
The optimization allows a common class of graph algo-
rithms to perform vertex computation if a vertex only has
missing incoming edges. While the computation for ver-
tices with missing outgoing edges still need to be delayed,
the number of such vertices is much smaller, leading to
significantly reduced delay overhead.

4 Accumulation-based Computation
This section presents an accumulation-based program-
ming/execution model that expresses computation in
terms of incremental contributions flowing through edges.
Our insight is that if a vertex is missing an incoming edge,
then the edge is guaranteed to provide zero new contribu-
tion to the vertex value. If we can design a new model
that performs updates based on contribution increments
instead of actual contributions, the missing incoming edge
can be automatically treated as zero increment and the
vertex computation can be performed without delay.

We discuss our approach based on the popular Gather-
Apply-Scatter (GAS) programming model [14, 16, 8]. In
the GAS model, vertex computation is divided in three
distinct phases: the gather phase reads incoming edges
and produces an aggregated value using a user-defined
aggregation function; this value is fed to the apply phase

to compute a new value for a vertex; in the scatter
phase, the value is propagated along the outgoing edges.

4.1 Programming Model

Our accumulation-based model works for a common class
of graph algorithms whose GAS computation is distribu-
tive over aggregation. The user needs to program the GAS
functions in a slightly different way to propagate changes
in values instead of actual values. In other words, the
semantics of vertex data remains the same while data on
each edge now encodes the delta between the old and the
new value of its source vertex. This semantic modifica-
tion relaxes the requirement that all incoming edges of a
vertex have to be present to perform vertex computation.

The new computation semantics requires minor
changes to the GAS programming model. (1) Extract
the gathered value using the old vertex value. This step
is essentially an inverse of the apply phase that uses its
output (i.e., vertex value) to compute its input (i.e., aggre-
gated value). (2) Gather edge data (i.e., from present in-
coming edges) and aggregate it together with the output of
extract. Since this output represents the contributions
of the previously encountered incoming edges, this step
incrementally adds new contributions from the present in-
coming edges to the old contributions. (3) Apply the new
vertex value using the output of gather. (4) Scatter
the difference between the old and the new vertex values
along the outgoing edges.

To turn a GAS program into a new program, one only
needs to add an extract phase in the beginning that uses
a vertex value v to compute backward the value g gath-
ered from the incoming edges of the vertex at the time
v was computed. g is then aggregated with a value gath-
ered from the present incoming edges to compute a new
value for the vertex. To illustrate, consider the PageRank
algorithm that has the following GAS functions:

[GATHER] sum← Σe∈in(v)e.data

[APPLY] v.pr← (0.15+0.85∗ sum)/
v.numOutEdges

[SCATTER] ∀e ∈ out(v) : e.data← v.pr

Adding the extract phase produces:

[EXTRACT] oldsum← (v.pr ∗ v.numOutEdges

−0.15)/0.85
[GATHER] newsum← oldsum+Σe∈in(v)e.data

[APPLY] newpr← (0.15+0.85×newsum)/
v.numOutEdges;

oldpr← v.pr; v.pr← newpr

[SCATTER] ∀e ∈ out(v) : e.data← newpr−oldpr

In this example, extract reverses the PageRank com-
putation to obtain the old aggregated value oldsum, on top
of which the new contributions of the present incoming
edges are added by gather. Apply keeps its original
semantics and computes a new PageRank value. Before
this new value is saved on the vertex, the delta between
the old and new is computed and propagated along the
outgoing edges in scatter.

An alternative way to implement the accumulation-
based computation is to save the value gathered from
incoming edges on each vertex (e.g., oldsum) together
with the vertex value so that we do not even need the
extract phase. However, this approach doubles the size
of vertex data which also negatively impacts the time cost
due to the extremely large numbers of vertices in real-
world graphs. In fact, the extract phase does not create
extra computation in most cases: after simplification and
redundancy elimination, the PageRank formulas using
the traditional GAS model and the accumulation-based
model require the same amount of computation:

pr =
{

0.15+0.85× sum . . . traditional
v.pr +0.85× sum . . .accumulation-based

Impact on the Delay Buffer Since the contribution of
each incoming edge can be incrementally added onto the
vertex value, this model does not need the presence of
all incoming edges to compute vertex values. Hence,
it significantly decreases the number of vertices whose
computation needs to be delayed, reducing the need to
frequently run shadow iterations.

If a vertex has a missing outgoing edge, delay is needed.
To illustrate, consider again the u→ v→ w example in
the beginning of §3. Since the edge v→ w is missing,
although v gets an updated value, the value cannot be
pushed out. We have to delay the computation until a
shadow iteration in which v→ w is brought into memory.
More precisely, v’s gather and apply can still be exe-
cuted right away; only its scatter operation needs to be
delayed, because the target of the scatter is unknown
due to the missing outgoing edge.

Hence, for each vertex, we execute gather and apply
instantly to obtain the result value r. If the vertex has a
missing outgoing edge, the vertex is pushed into the delay
buffer together with the value r. Each entry in the buffer
now becomes a vertex-value pair. In the next shadow
iteration, when this missing edge is brought into memory,
r will be pushed through the edge and be propagated.

Since a vertex with missing outgoing edges can be
encountered multiple times before a shadow iteration is
scheduled, the delay buffer may contain multiple entries
for the same vertex, each with a different delta value.
Naı̈vely propagating the most recent increment is incor-
rect due to the accumulative nature of the model; the con-

sideration of all the entries for the vertex is thus required.
Hence, we require the developer to provide an additional
aggregation function that takes as input an ordered list of
all delta values for a vertex recorded in the delay buffer
and generates the final value that can be propagated to its
outgoing edges (details are given in §4.2).

Although our programming model exposes the
extract phase to the user, not all algorithms need this
phase. For example, algorithms such as ShortestPath and
ConnectedComponents can be easily coded in a tradi-
tional way, that is, edge data still represent actual values
(i.e., paths or component IDs) instead of value changes.
This is because in those algorithms, vertex values are in
discrete domains and gather is done by monotonically
selecting a value from one incoming edge instead of ac-
cumulating values from all incoming edge values. For
instance, ShortestPath and ConnectedComponents use se-
lection functions (min/max) to aggregate contributions of
incoming edges.

To make the differences between algorithm implemen-
tations transparent to the users, we allow users to develop
normal GAS functions without thinking about what data
to push along edges. The only additional function the
user needs to add is extract. Depending on whether
extract is empty, our system automatically determines
the meaning of edge data and how it is pushed out.

4.2 Model Applicability and Correctness

It is important to understand precisely what algorithms
can and cannot be implemented under the accumulation-
based model. There are three important questions to ask
about applicability: (1) what is the impact of incremental
computation on graph algorithms, (2) what is the impact
of delay on those algorithms, and (3) is the computation
still correct when vertex updates are delayed?
Impact of Incremental Computation An algorithm can
be correctly implemented under our accumulation-based
model if the composition of its apply and gather
is distributive on some aggregation function. More
formally, if vertex v has n incoming edges e1,e2, . . .en, v’s
computation can be expressed under our accumulation-
based model iff there exists an aggregation function1 f s.t.

apply(gather(e1, . . . ,en)) =
f (apply(gather(e1)), . . . , apply(gather(en)))

For most graph algorithms, we can easily find a func-
tion f on which their computation is distributive. Table 1
shows a list of 24 graph algorithms studied in recent graph
papers and our accumulation-based model works for all
but two. For example, one of these two algorithms is
GraphColoring, where the color of a vertex is determined

1The commutative and associative properties from gather get natu-
rally lifted to the aggregation function f .

Iteration
V/E 0 1 2 3 4 (Shadow)

u [0, Iu] [Iu, Iu] [Iu,a] [a,b] [b,x]
No Delay u→ v [0, Iu] [Iu,0] [0,a− Iu] [a− Iu,b−a] [b−a,x−b]

v [0, Iv] [Iv,AP(EX(Iv)+Iu)] [AP(EX(Iv)+Iu), AP(EX(Iv)+Iu)] [AP(EX(Iv)+Iu), AP(EX(Iv)+a)] [AP(EX(Iv)+a), AP(EX(Iv)+b)]
Delay u→ v [0, Iu] [Iu,0] Missing Missing [b− Iu,x−b]

v [0, Iv] [Iv, AP(EX(Iv)+Iu)] [AP(EX(Iv)+Iu), AP(EX(Iv)+Iu)] [AP(EX(Iv)+Iu), AP(EX(Iv)+Iu)] [AP(EX(Iv)+Iu), AP(EX(Iv)+b)]

Table 2: A comparison between PageRank executions with and without delays under the accumulation-based model; for
each vertex and edge, we use a pair [a, b] to report its pre- (a) and post-iteration (b) value. Each vertex u (v) has a value
0 before it receives an initial value Iu (Iv) in Iteration 0; EX and AP represent function Extract and Apply, respectively.

Algorithms Aggr. Func. f

Reachability, MaxIndependentSet or
TriangleCounting, SpMV, PageRank,

sumHeatSimulation, WaveSimulation,
NumPaths
WidestPath, Clique max
ShortestPath, MinmialSpanningTree,

minBFS, ApproximateDiameter,
ConnectedComponents
BeliefPropagation product
BetweennessCentrality, Conductance, user-defined
NamedEntityRecognition, LDA, aggregation
ExpectationMaximization, function
AlternatingLeastSquares

GraphColoring, CommunityDetection N/A

Table 1: A list of algorithms used as subjects in the follow-
ing papers and their aggregation functions if implemented
under our model: GraphChi [14], GraphLab [16], AS-
PIRE [25], X-Stream [23], GridGraph [31], GraphQ [27],
GraphX [9], PowerGraph [8], Galois [19], Ligra [24],
Cyclops [5], and Chaos [22].

by the colors of all its neighbors (coming through its in-
coming edges). In this case, it is impossible to compute
the final color by applying gather and apply on differ-
ent neighbors’ colors separately and aggregating these
results. For the same reason CommunityDetection cannot
be correctly expressed as an incremental computation.

Once function f is found, it can be used to aggregate
values from multiple entries of the same vertex in the
delay buffer, as described earlier in §4.1. We provide a
set of built-in f from which the user can choose, includ-
ing and,or,sum,product,min,max,first, and last. For in-
stance, PageRank uses sum that produces the final delta
by summing up all deltas in the buffer, while ShortestPath
only needs to compute the minimum of these deltas using
min. The user can also implement her own for more com-
plicated algorithms that perform numerical computations.

For graph algorithms with non-distributive gather and
apply, using dynamic partitions has to delay computation
for a great number of vertices, making overhead outweigh
benefit. In fact, we have implemented GraphColoring in

our system and only saw slowdowns in the experiments.
Hence, our optimization provides benefit only for distribu-
tive graph algorithms.

Impact of Delay To understand the impact of delay, we
draw a connection between our computation model with
the staleness-based (i.e., relaxed consistency) computa-
tion model [25, 6]. The staleness-based model allows
computation to be performed on stale values but guaran-
tees correctness by ensuring that all updates are visible at
some point during processing (by either using refresh or
imposing a staleness upper-bound). This is conceptually
similar to our computation model with delays: for vertices
with missing outgoing edges, their out-neighbors would
operate on stale values until the next shadow iteration.

Since a shadow iteration “refreshes” all stale values, the
frequency of performing these shadow iterations bounds
the maximum staleness of edge values. Hence, any algo-
rithm that can correctly run under the relaxed consistency
model can also safely run under our model. Moreover,
the frequency of shadow iterations has no impact on the
correctness of such algorithms, as long as they do occur
and flush the delayed updates. In fact, all the algorithms
in Table 1 would function correctly under our delay-based
model. However, their performance can be degraded if
they cannot employ incremental computation.

Delay Correctness Argument While our delay-based
model shares similarity with the staleness-based model,
the correctness of a specific algorithm depends on the
aggregation function used for the algorithm. Here we pro-
vide a correctness argument for the aggregation functions
we developed for the five algorithms used in our eval-
uation: PageRank, BeliefPropagation, HeatSimulation,
ConnectedComponents, and MultipleSourceShortestPath;
similar arguments can be used for other algorithms in
Table 1.

We first consider our implementation of PageRank
that propagates changes in page rank values along edges.
Since BeliefPropagation and HeatSimulation perform sim-
ilar computations, their correctness can be reasoned in
the same manner. For a given edge u→ v, Table 2 shows,
under the accumulation-based computation, how the val-

ues carried by vertices and edges change across iterations
with and without delays.

We assume that each vertex u (v) has a value 0 before
it is assigned an initial value Iu (Iv) in Iteration 0 and
vertex v has only one incoming edge u→ v. At the end of
Iteration 0, both vertices have their initial values because
the edge does not carry any value in the beginning. We
further assume that in Iteration 1, the value of vertex u
does not change. That is, at the end of the iteration, u’s
value is still Iu and, hence, the edge will not be loaded in
Iteration 2 and 3 under the delay-based model.

We compare two scenarios in which delay is and is not
enabled and demonstrate that the same value is computed
for v in both scenarios. Without delay, the edge value in
each iteration always reflects the change in u’s values. v’s
value is determined by the four functions described earlier.
For example, since the value carried by the edge at the
end of Iteration 0 is Iu, v’s value in Iteration 1 is updated
to apply(gather(extract(Iv), Iu))). As gather is sum
in PageRank, this value reduces to AP(EX(Iv) + Iu). In
Iteration 2, the value from the edge is 0 and thus v’s value
becomes AP(EX(AP(EX(Iv) + Iu)) + 0). Because EX is an
inverse function of AP, this value is thus still AP(EX(Iv) +
Iu). Using the same calculation, we can easily see that in
Iteration 4 v’s value is updated to AP(EX(Iv) + b).

With delay, the edge will be missing in Iteration 2
and 3, and hence, we add two entries (u, a− Iu) and
(u, b− a) into the delay buffer. During the shadow
iteration, the edge is loaded back into memory. The
aggregation function sum is then applied on these two
entries, resulting in value b− Iu. This value is pushed
along u→ v, leading to the computation of the following
value for v:

AP(EX(AP(EX(Iv) + Iu)) + (b− Iu))
⇒ AP(EX(Iv) + Iu + b− Iu)
⇒ AP(EX(Iv) + b)

which is the same as the value computed without delay.
This informal correctness argument can be used as the

base case for a formal proof by induction on iterations.
This proof is omitted from the paper due to space limita-
tions. Although we have one missing edge in this example,
the argument can be easily extended to handle multiple
missing edges since the gather function is associative.

For ShortestPaths and ConnectedComponents, they do
not have an extract function and their contributions are
gathered by the selection function min. Since a dynamic
shard can never have edges that are not part of its cor-
responding static shard, vertex values (e.g., representing
path and component IDs) in the presence of missing edges
are always greater than or equal to their actual values. It is
thus easy to see that the aggregation function min ensures
that during the shadow iteration the value a of each vertex

will be appropriately overridden by the minimum value b
of the delayed updates for the vertex if b≤ a.

4.3 Generalization to Edge-Centricity

Note that the dynamic partitioning techniques presented
in this work can be easily applied to edge-centric systems.
For example, X-Stream [23] uses an unordered edge list
and a scatter-gather computational model, which first
streams in the edges to generate updates, and then streams
in the generated updates to compute vertex values. To
enable dynamic partitioning, dynamic edge lists can be
constructed based on the set of changed vertices from the
previous iterations. This can be done during the scatter
phase by writing to disk the required edges whose vertices
are marked dirty.

Hence, later iterations will stream in smaller edge lists
that mainly contain the necessary edges. Similarly to
processing dynamic shards, computations in the presence
of missing edges can be delayed during the gather phase
when the upcoming scatter phase cannot stream in the re-
quired edges. These delayed computations can be periodi-
cally flushed by processing them during shadow iterations
in which the original edge list is made available.

GridGraph [31] is a recent graph system that uses a
similar graph representation as used in GraphChi. Hence,
our shard-based techniques can be applied directly to
partitions in GridGraph. As GridGraph uses very large
static partitions (that can accommodate tens of millions
of edges), larger performance benefit may be seen if our
optimization is added. Dynamic partitions can be gener-
ated when edges are streamed in; computation that needs
to be delayed due to missing edges can be detected when
vertices are streamed in.

5 Optimizing Shard Creation
To maximize net gains, it is important to find a sweet
spot between the cost of creating a dynamic shard and
the I/O reduction it provides. This section discusses an
optimization and analyzes its performance benefit.

5.1 Optimization

Creating a dynamic shard at each iteration is an overkill
because many newly created dynamic shards provide only
small additional reduction in I/O that does not justify the
cost of creating them. Therefore, we create a new dy-
namic shard after several iterations, allowing the creation
overhead to be easily offset by the I/O savings.

Furthermore, to maximize edge reuse and reduce delay
frequencies, it is useful to include into dynamic shards
edges that may be used in multiple subsequent iterations.
We found that using shadow iterations to create dynamic
shards strikes a balance between I/O reduction and over-
head of delaying computations – new shards are created
only during shadow iterations; we treat edges that were
updated after the previous shadow iteration as dirty and

include them all in the new dynamic shards. The intuition
here is that by considering an “iteration window” rather
than one single iteration, we can accurately identify edges
whose data have truly stabilized, thereby simultaneously
reducing I/O and delays.

The first shadow iteration is triggered when the per-
centage of updated edges p in an iteration drops below
a threshold value. The frequency of subsequent shadow
iterations depends upon the size of the delay buffer d —
when the buffer size exceeds a threshold, a shadow itera-
tion is triggered. Hence, the frequency of shard creation
is adaptively determined, in response to the progress to-
wards convergence. We used p = 30% and d = 100KB
in our experiments and found them to be effective.

5.2 I/O Analysis

We next provide a rigorous analysis of the I/O costs. We
show that the overhead of shard loading in shadow itera-
tions can be easily offset from the I/O savings in regular
non-shadow iterations. We analyze the I/O cost in terms
of the number of data blocks transferred between disk
and memory. Let b be the size of a block in terms of the
number of edges and E be the edge set of the input graph.
Let AEi (i.e., active edge set) represent the set of edges in
the dynamic shards created for iteration i. Here we ana-
lyze the cost of regular iterations and shadow iterations
separately for iteration i.

During regular iterations, processing is done using the
static shards in the first iteration and most recently created
dynamic shards during later iterations. Each edge can be
read at most twice (i.e., when its source and target vertices
are processed) and written once (i.e., when the value of
its source vertex is pushed along the edge). Thus,

Ci ≤

{
3|E|

b with static shards
3|AEi|

b with dynamic shards
(1)

In a shadow iteration, the static shards and all intermediate
dynamic shards are read, the updated edges are written
back to static shards, and a new set of dynamic shards are
created for the next iteration. Since we only append edges
onto existing dynamic shards in regular iterations, there is
only one set of dynamic shards between any consecutive
shadow iterations. Hence, the I/O cost is:

Ci ≤
3|E|

b
+

2|AELS|
b

+
|AEi|

b
(2)

where AELS is the set of edges in the dynamic shards
created by the last shadow iteration. Clearly, Ci is larger
than the cost of static shard based processing (i.e., 3|E|

b).
Eq. 1 and Eq. 2 provide a useful insight on how the

overhead of a shadow iteration can be amortized across
regular iterations. Based on Eq. 2, the extra I/O cost
of a shadow iteration over a regular static-shard-based

iteration is 2|AELS|
b + |AEi|

b . Based on Eq. 1, the I/O saving
achieved by using dynamic shards in a regular iteration is
(3|E|

b −
3|AEi|

b).
We assume that d shadow iterations have been per-

formed before the current iteration i and hence, the fre-
quency of shadow iterations is i

d (for simplicity, we as-
sume i is multiple of d). This means, shadow iteration
occurs once every i

d −1 regular iterations.
In order for the overhead of a shadow iteration to be

wiped off by the savings in regular iterations, we need:

(
i
d
−1)× (

3|E|
b
− 3|AEi|

b
)≥ 2|AELS|

b
+
|AEi|

b

After simplification, we need to show:

(
i
d
−1)×3|E|− (

3i
d
−2)×|AEi|−2|AELS| ≥ 0 (3)

Since AELS is the set of edges in the dynamic shards
before Iteration i, we have |AELS| ≤ |AEi| as we only
append edges after that shadow iteration. We thus need to
show:

(
i
d
−1)×3|E|− (

3i
d
−2)×|AEi|−2|AEi| ≥ 0

=⇒ |E|
|AEi|

≥
i
d

i
d −1

The above inequality typically holds for any frequency of
shadow iterations i

d > 1. For example, if the frequency of
shadow iterations i

d is 3, |E||AEi| ≥ 1.5 means that as long as
the total size of static shards is 1.5 times larger than the
total size of (any set of) dynamic shards, I/O efficiency can
be achieved by our optimization. As shown in Figure 3a,
after about 10 iterations, the percentage of updated edges
in each iteration goes below 15%. Although unnecessary
edges are not removed in each iteration, the ratio between
|E| and |AEi| is often much larger than 1.5, which explains
the I/O reduction from a theoretical viewpoint.

6 Evaluation
Our evaluation uses five applications including PageRank
(PR) [20], MultipleSourceShortestPath (MSSP), Belief-
Propagation (BP) [11], ConnectedComponents (CC) [30],
and HeatSimulation (HS). They belong to different do-
mains such as social network analysis, machine learning,
and scientific simulation. They were implemented us-
ing our accumulation-based GAS programming model.
Six real-world graphs, shown in Table 3, were chosen as
inputs for our experiments.

All experiments were conducted on an 8-core com-
modity Dell machine with 8GB main memory, running
Ubuntu 14.04 kernel 3.16, a representative of low-end PCs
regular users have access to. Standard Dell 500GB 7.2K
RPM HDD and Dell 400GB SSD were used as secondary

Inputs Type #Vertices #Edges PMSize #SS
LiveJournal (LJ) [2] Social Network 4.8M 69M 1.3GB 3

Netflix (NF) [3] Recomm. System 0.5M 99M 1.6GB 20
UKDoman (UK) [4] Web Graph 39.5M 1.0B 16.9GB 20

Twitter (TT) [13] Social Network 41.7M 1.5B 36.3GB 40
Friendster (FT) [7] Social Network 68.3M 2.6B 71.6GB 80

YahooWeb (YW) [28] Web Graph 1.4B 6.6B 151.3GB 120

Table 3: Input graphs used; PMSize and SS report the peak in-memory size of each graph structure (without edge
values) and the number of static shards created in GraphChi, respectively. The in-memory size of a graph is measured
as the maximum memory consumption of a graph across the five applications; LJ and NF are relatively small graphs
while UK, TT, FT, YW are billion-edge graphs larger than the 8GB memory size; YW is the largest real-world
graph publicly available; all graphs have highly skewed power-law degree distributions.

G Version PR BP HS MSSP CC

LJ
BL 630 639 905 520 291

ADS 483 426 869 535 296
ODS 258 383 321 551 263

NF
BL 189 876 238 1,799 190

ADS 174 597 196 1,563 177
ODS 158 568 164 1,436 178

UK
BL 31,616 19,486 21,620 74,566 14,346

ADS 23,332 15,593 35,200 76,707 14,742
ODS 14,874 14,227 12,388 67,637 12,814

TT
BL 83,676 47,004 75,539 109,010 22,650

ADS 61,994 38,148 67,522 97,132 21,522
ODS 47,626 28,434 30,601 84,058 21,589

FT
BL 130,928 100,690 159,008 146,518 50,762

ADS 85,788 84,502 176,767 143,798 50,831
ODS 87,112 51,905 63,120 127,168 42,956

Table 4: A comparison on execution time (seconds)
among Baseline (BL), ADS, and ODS.

storage, both of which were connected via SATA 3.0Gb/s
interface. File system caches were flushed before running
experiments to make different executions comparable.

Two relatively small graphs LJ and NF were chosen
to understand the scalability trend of our technique. The
other four graphs UK, TT, FT, and YW are larger than
memory by 2.4×, 5.2×, 10.2×, and 21.6× respectively.

6.1 Overall Performance

We compared our modified GraphChi extensively with
the Baseline (BL) GraphChi that processes static shards
in parallel. To provide a better understanding of the im-
pact of the shard creation optimization stated in §5, we
made two modifications, one that creates dynamic shards
aggressively (ADS) and a second that uses the optimiza-
tion in §5 (ODS). We first report the performance of our
algorithms over the first five graphs on HDD in Table 4.

We ran each program until it converged to evaluate the
full impact of our I/O optimization. We observed that for
each program the numbers of iterations taken by Baseline

 1

 1.5

 2

 2.5

 20 30 40 50

Sp
ee

d
u

p

Iteration

ADS
ODS

(a) PR on LJ.

 1

 1.5

 2

 4 6 8 10 12

Iteration

(b) BP on FT.

 1

 1.5

 2

 2.5

 20 30 40 50 60 70

Iteration

(c) HS on TT.

Figure 6: Speedups achieved per iteration.

and ODS are almost the same. That is, despite the delays
needed due to missing edges, the accumulation-based
computation and shard creation optimizations minimize
the vertices that need to be delayed, yielding the same
convergence speed in ODS. ADS can increase the number
of iterations in a few cases due to the delayed convergence.
Due to space limitations, the iteration numbers are omitted
from the paper. On average, ADS and ODS achieve an
up to 1.2× and 1.8× speedup over Baseline.

PR, BP, and HS are computation-intensive programs
and they operate on large working sets. For these three
programs, on average ADS speeds up graph processing
by 1.53×, 1.50× and 1.22×, respectively. ODS performs
much better providing speedups of 2.44×, 1.94×, and
2.82× respectively. The optimized version ODS performs
better than the aggressive version ADS because ODS is
likely to eliminate edges after the computation of their
source vertices becomes stable, and thus edges that will
be useful in a few iterations are likely to be preserved
in dynamic shards. ODS consistently outperforms the
baseline. While ADS outperforms the baseline in most
cases, eliminating edges aggressively delays the algorithm
convergence for HS on UK (i.e., by 20% more iterations).

MSSP and CC require less computation and they op-
erate on smaller and constantly changing working sets.
Small benefits were seen from both ADS (1.15× speedup)
and ODS (1.30× speedup), because eliminating edges
achieves I/O efficiency at the cost of locality.

Figure 6 reports a breakdown of speedups on itera-
tions for PR, BP, and HS. Two major observations can

 0

 0.2

 0.4

 0.6

 0.8

 1

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

R
ea

d
 S

iz
e

LJ NF UK TT FT

Regular Reads

(a) Normalized read
size for PR.

 0

 0.2

 0.4

 0.6

 0.8

 1

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

LJ NF UK TT FT

Shadow Reads

(b) Normalized read
size for BP.

 0

 0.2

 0.4

 0.6

 0.8

 1

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

LJ NF UK TT FT

(c) Normalized read
size for HS.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

W
ri

te
 S

iz
e

LJ NF UK TT FT

 Regular Writes

(d) Normalized write
size for PR.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

LJ NF UK TT FT

 Shadow Writes

(e) Normalized write
size for BP.

 0

 0.5

 1

 1.5

 2

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

A
D

S
O

D
S

LJ NF UK TT FT

(f) Normalized write
size for HS.

Figure 7: Read and write size for different benchmarks
normalized w.r.t. the baseline.

be made here. First, the performance improvement in-
creases as the computation progresses, which confirms
our intuition that the amount of useful data decreases as
the computation comes close to the convergence. Second,
the improvements from ADS exhibit a saw-tooth curve,
showing the need of the optimizations in ODS: frequent
drops in speedups are due to frequent shard creation and
shadow iterations. These time reductions are entirely due
to reduced I/O because the numbers of iterations taken by
ODS and Baseline are almost always the same.

PR BP HS
BL 153h:33m 80h:19m 147h:48m
ODS 92h:26m 54h:29m 92h:7m

Speedup 1.66× 1.47× 1.60×
Table 5: PR, BP and HS on YW.

Since the YW graph is much larger and takes much
longer to run, we evaluate ODS for PR, BP and HS whose
performance is reported in Table 5. ODS achieves a 1.47
– 1.60× speedup over Baseline for PR, BP and HS.

Performance on SSD To understand whether the pro-
posed optimization is still effective when high-bandwidth
SSD is used, we ran experiments for PR and BP on a
machine with the same configuration except that SSD is
employed to store shards. We found that the performance
benefits are consistent when SSD is employed: on aver-
age, ADS accelerates PR, BP and HS by 1.25×, 1.18×
and 1.14× respectively, whereas ODS speeds them up by
1.67×, 1.52× and 1.91× respectively.

Our techniques are independent of the storage type and
the performance benefits are mainly achieved by reducing
shard loading time. This roughly explains why a lower
benefit is seen on SSD than on HDD – for example, com-
pared to HDD, the loading time for FT on SSD decreases
by 8%, 11% and 7% for PR, BP and HS, respectively.

6.2 I/O Analysis

Data Read/Written Figure 7 shows the amount of data
read and written during the graph processing in the mod-
ified GraphChi, normalized w.r.t. Baseline. Reads and
writes that occur during shadow iterations are termed
shadow reads and shadow writes. No shadow iteration
has occurred when some applications were executed on
the Netflix graph (e.g., in Figures 7 (b), (c), (e), and (f)),
because processing converges quickly and dynamic shards
created once are able to capture the active set of edges
until the end of execution.

Due to space limitations, we only show results for PR,
BP and HS; similar observations can be made for the other
applications. Clearly, ODS reads/writes much less data
than both Baseline and ADS. Although shadow iterations
incur additional I/O, this overhead can be successfully
offset from the savings in regular iterations. ADS needs
to read and write more data than Baseline in some cases
(e.g., Friendster in Figure 7c, Twitter in Figure 7d and
Figure 7e). This shows that creating dynamic shards too
frequently can negatively impact performance.

Size of Dynamic Shards To understand how well ADS
and ODS create dynamic shards, we compare the sizes
of intermediate dynamic shards created using these two
strategies. Figure 8 shows the change of the sizes of dy-
namic shards as the computation progresses, normalized
w.r.t. the size of an ideal shard. The ideal shard for a given
iteration includes only the edges which were updated in
the previous iteration, and hence, it contains the minimum
set of edges necessary for the next iteration. Note that
for both ADS and ODS, their shard sizes are close to the
ideal sizes. In most cases, the differences are within 10%.

It is also expected that shards created by ODS are of-
ten larger than those created by ADS. Note that patterns
exist in shard size changes for ADS such as HS on LJ
(Figure 8a) and FT (Figure 8e). This is because the pro-
cessing of delayed operations (in shadow iterations) over
high-degree vertices causes many edges to become active
and be included in new dynamic shards.

Edge Utilization Figure 9a reports the average edge uti-
lization rates (EUR) for ADS and ODS, and compares
them with that of Baseline. The average edge utilization
rate is defined as the percentage of updated edges in a dy-
namic shard, averaged across iterations. Using dynamic
shards highly improves the edge utilization: the EURs for
ADS and ODS are between 55% and 92%. For CC on
NF, the utilization rate is 100% even for ODS, because
computation converges quickly and dynamic shards are
created only once. Clearly, ADS has higher EURs than
ODS because of its aggressive shard creation strategy.
Using static shards throughout the execution leads to a
very low EUR for Baseline.

 0.99
 1

 1.01
 1.02
 1.03
 1.04
 1.05

 20 30 40 50 60 70

Sh
ar

d
 S

iz
e

Iteration

ADS
ODS

(a) HS on LJ

 1

 1.2

 1.4

 1.6

 1.8

 2

 3 4 5

Iteration

(b) HS on NF

 1

 1.1

 1.2

 1.3

 15 20 25 30 35 40 45

Iteration

(c) HS on UK

 0.99
 1

 1.01
 1.02
 1.03
 1.04
 1.05

 20 30 40 50 60 70

Iteration

(d) HS on TT

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 15 20 25 30 35 40

Iteration

(e) HS on FT

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

 7 8 9 10 11 12 13 14 15

Sh
ar

d
 S

iz
e

Iteration

(f) MSSP on LJ

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 3 4

Iteration

(g) MSSP on NF

 0.99
 1

 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07

 24 26 28 30 32

Iteration

(h) MSSP on UK

 0.998

 1

 1.002

 1.004

 1.006

 1.008

 7 8 9 10 11 12 13 14

Iteration

(i) MSSP on TT

 1

 1.005

 1.01

 1.015

 1.02

 12 14 16 18 20 22

Iteration

(j) MSSP on FT

Figure 8: The dynamic shard sizes normalized w.r.t. the ideal shard sizes as the algorithm progresses.

 0
 20

 40
 60

 80
 100

P
R

B
P

H
S

M
SS

P CC P
R

B
P

H
S

M
SS

P CC P
R

B
P

H
S

M
SS

P CC P
R

B
P

H
S

M
SS

P CC P
R

B
P

H
S

M
SS

P CC

A
ve

ra
ge

U
ti

li
za

ti
on

 E
ff

ic
ie

n
cy Baseline ODS ADS

FTTTUKNFLJ

(a) Edge utilization rates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

LJ NF UK TT FT

M
ax

. D
is

k
 S

p
ac

e
Co

n
su

m
p

ti
on

PR BP HS MSSP CC

(b) Max disk space used.

Figure 9: Edge and disk utilization statistics.

Disk Space Consumption Figure 9b reports the maxi-
mum disk space needed to process dynamic shards nor-
malized w.r.t. that needed by Baseline. Since we create
and use dynamic shards only after vertex computations
start stabilizing, the actual disk space it requires is very
close to (but higher than) that required by Baseline. This
can be seen in Figure 9b where the disk consumption
increases by 2-28%. Note that the maximum disk space
needed is similar for ADS and ODS, because dynamic
shards created for the first time take most space; subse-
quent shards are either smaller (for ADS), or additionally
include a small set of active edges (for ODS), which is
insignificant to affect the ratio.

Delay Buffer Size With the help of the accumulation-
based computation, the delay buffer often stays small

throughout the execution. Its size is typically less than
few 100KBs. The peak consumption was seen when
ConnectedComponent was run on the Friendster graph,
and the buffer size was 1.5MB.

6.3 Comparisons with X-Stream

Figure 10 compares the speedups and the per-iteration
savings achieved by ODS and X-Stream over Baseline
when running PR on large graphs. The saving per iter-
ation was obtained by (1) calculating, for each iteration
in which dynamic shards are created, Baseline−ODS

Baseline , and
(2) taking an average across savings in all such itera-
tions. While the per-iteration savings achieved by dy-
namic shards are higher than those by X-Stream, ODS
is overall slower than X-Stream (i.e., ODS outperforms
X-Stream on UK but underperforms it on other graphs).

This is largely expected due to the fundamentally differ-
ent designs of the vertex- and edge-centric computation
models. Our optimization is implemented in GraphChi,
which is designed to scan the whole graph multiple times
during each iteration, while X-Stream streams edges in
and thus only needs one single scan. Hence, although our
optimization reduces much of GraphChi’s loading time,
this reduction is not big enough to offset the time spent on
extra graph scans. Furthermore, in order to avoid captur-
ing a large and frequently changing edge set (as described
in §5.1), our optimization for creating and using dynamic

 0

 1

 2

 3

 4

UK TT FT

Sp
ee

d
u

p

ODS XStream

0%

25%

50%

75%

100%

UK TT FT

Sa
vi
n
gs

ODS XStream

Figure 10: Speedups achieved (left) and per-iteration
savings in execution time achieved (right) by ODS and
X-Stream over Baseline using PR.

shards gets activated after a certain number of iterations
(e.g., 20 and 14 for TT and FT, respectively), and these
(beginning) iterations do not get optimized.

Although X-Stream has better performance, the pro-
posed optimization is still useful in practice for two main
reasons. First, there are many vertex-centric systems
being actively used. Our results show that the use of
dynamic shards in GraphChi has significantly reduced
the performance gap between edge-centricity and vertex-
centricity (from 2.74× to 1.65×). Second, our perfor-
mance gains are achieved only by avoiding the loading
of edges that do not carry updated values and this type of
inefficiency also exists in edge-centric systems. Speedups
should be expected when future work optimizes edge-
centric systems using mechanisms proposed in §4.3.

7 Related Work
Single-PC Disk-based Graph Processing Single-PC
graph processing systems [14, 23, 31, 27, 15, 29, 10] have
become popular as they do not need expensive computing
resources and free developers from managing clusters and
developing/maintaining distributed programs.

GraphChi [14] pioneered single-PC-based out-of-core
graph processing systems. As mentioned in §1, shards are
created during pre-processing and never changed during
graph computation, resulting in wasteful I/O. This work
exploits dynamic shards whose data can be dynamically
adjustable to reduce I/O.

Efforts have been made to reduce I/O using semi-
external memory and SSDs. Bishard Parallel Proces-
sor [18] aims to reduce non-sequential I/O by using sepa-
rate shards to contain incoming and outgoing edges. This
requires replication of all edges in the graph, leading to
disk space blowup. X-Stream [23] uses an edge-centric
approach in order to minimize random disk accesses. In
every iteration, it streams and processes the entire un-
ordered list of edges during the scatter phase and ap-
plies updates to vertices in the gather phase.

Using our approach, dynamic edge-lists can be created
to reduce wasteful I/O in the scatter phase of X-Stream.
GridGraph [31] uses partitioned vertex chunks and edge
blocks as well as a dual sliding window algorithm to pro-
cess graphs residing on disks. It enables selective schedul-
ing by eliminating processing of edge blocks for which
vertices in the corresponding chunks are not scheduled.
However, the two-level partitioning is still done statically.
Conceptually, making partitions dynamic would provide
additional benefit over the 2-level partitioning.

FlashGraph [29] is a semi-external memory graph en-
gine that stores vertex states in memory and edge-lists
on SSDs. It is built based on the assumption that all
vertices can be held in memory and a high-speed user-
space file system for SSD arrays is available to merge
I/O requests to page requests. TurboGraph [10] is an

out-of-core computation engine for graph database to
process graphs using SSDs. Since TurboGraph uses an
adjacency list based representation, algorithms need to be
expressed as sparse matrix-vector multiplication, which
has a limited applicability because certain algorithms such
as triangle counting cannot be expressed in this manner.
Work from [21] uses an asynchronous approach to execute
graph traversal algorithms with semi-external memory. It
utilizes in-memory prioritized visitor queues to execute
algorithms like breadth-first search and shortest paths.
Shared Memory and Distributed Graph Systems
Google’s Pregel [17] provides a synchronous vertex
centric framework for large scale graph processing.
GraphLab [16] is a framework for distributed asyn-
chronous execution of machine learning and data min-
ing algorithms on graphs. PowerGraph [8] provides ef-
ficient distributed graph placement and computation by
exploiting the structure of power-law graphs. Cyclops [5]
provides a distributed immutable view, granting vertices
read-only accesses to their neighbors and allowing uni-
directional communication from master vertices to their
replicas. GraphX [9] maps graph processing back to the
dataflow framework and presents an abstraction that can
be easily implemented using common dataflow operators.
Chaos [22] utilizes disk space on multiple machines to
scale graph processing.

Ligra [24] provides a shared memory abstraction for
vertex algorithms. The abstraction is particularly suitable
for graph traversal. Work from [19] presents a shared-
memory implementation of graph DSLs on a general-
ized Galois system, which has been shown to outperform
their original implementations. GRACE [26], a shared-
memory system, processes graphs based on message pass-
ing and supports asynchronous execution by using stale
messages. Orthogonal to these shared memory systems,
this work aims to improve the I/O efficiency of disk-based
graph systems. Graph reduction techniques [12] can be
used to further reduce I/O by processing a small subgraph
first and then feeding values to the original graph.

8 Conclusion
We present an optimization that dynamically changes the
layout of a partition structure to reduce I/O for disk-based
graph systems. Our experiments with GraphChi demon-
strate that this optimization has significantly shortened its
I/O time and improved its overall performance.

Acknowledgments
We would like to thank our shepherd Byung-Gon Chun
as well as the anonymous reviewers for their valuable
and thorough comments. This work is supported by NSF
grants CCF-1524852 and CCF-1318103 to UC River-
side, NSF grants CNS-1321179 and CCF-1409423 to UC
Irvine, and ONR grant N00014-16-1-2149 to UC Irvine.

References
[1] GraphLab Create. https://dato.com/products/create/,

2016.

[2] BACKSTROM, L., HUTTENLOCHER, D., KLEIN-
BERG, J., AND LAN, X. Group formation in large
social networks: Membership, growth, and evolu-
tion. In KDD (2006), pp. 44–54.

[3] BENNETT, J., AND LANNING, S. The netflix prize.
In Proceedings of KDD cup and workshop (2007),
vol. 2007, p. 35.

[4] BOLDI, P., AND VIGNA, S. The WebGraph frame-
work I: Compression techniques. In WWW (2004),
pp. 595–601.

[5] CHEN, R., DING, X., WANG, P., CHEN, H., ZANG,
B., AND GUAN, H. Computation and communi-
cation efficient graph processing with distributed
immutable view. In HPDC (2014), pp. 215–226.

[6] CUI, H., CIPAR, J., HO, Q., KIM, J. K., LEE, S.,
KUMAR, A., WEI, J., DAI, W., GANGER, G. R.,
GIBBONS, P. B., GIBSON, G. A., AND XING, E. P.
Exploiting bounded staleness to speed up big data
analytics. In USENIX ATC (2014), pp. 37–48.

[7] Friendster network dataset, 2015.

[8] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON,
D., AND GUESTRIN, C. Powergraph: Distributed
graph-parallel computation on natural graphs. In
OSDI (2012), pp. 17–30.

[9] GONZALEZ, J. E., XIN, R. S., DAVE, A.,
CRANKSHAW, D., FRANKLIN, M. J., AND STO-
ICA, I. GraphX: Graph processing in a distributed
dataflow framework. In OSDI (2014), pp. 599–613.

[10] HAN, W.-S., LEE, S., PARK, K., LEE, J.-H., KIM,
M.-S., KIM, J., AND YU, H. TurboGraph: A fast
parallel graph engine handling billion-scale graphs
in a single PC. In KDD (2013), pp. 77–85.

[11] KANG, U., HORNG, D., AND FALOUTSOS, C.
Inference of beliefs on billion-scale graphs. In
Large-scale Data Mining: Theory and Applications
(2010).

[12] KUSUM, A., VORA, K., GUPTA, R., AND
NEAMTIU, I. Efficient processing of large graphs
via input reduction. In ACM HPDC (2016).

[13] KWAK, H., LEE, C., PARK, H., AND MOON, S.
What is Twitter, a social network or a news media?
In WWW (2010), pp. 591–600.

[14] KYROLA, A., BLELLOCH, G., AND GUESTRIN, C.
GraphChi : Large-scale graph computation on just a
PC. In OSDI, pp. 31–46.

[15] LIN, Z., KAHNG, M., SABRIN, K. M., CHAU, D.
H. P., LEE, H., , AND KANG, U. MMap: Fast
billion-scale graph computation on a pc via memory
mapping. In BigData (2014), pp. 159–164.

[16] LOW, Y., BICKSON, D., GONZALEZ, J.,
GUESTRIN, C., KYROLA, A., AND HELLERSTEIN,
J. M. Distributed GraphLab: A framework for ma-
chine learning and data mining in the cloud. Proc.
VLDB Endow. 5, 8 (2012), 716–727.

[17] MALEWICZ, G., AUSTERN, M. H., BIK, A. J. C.,
DEHNERT, J. C., HORN, I., LEISER, N., CZA-
JKOWSKI, G., AND INC, G. Pregel: A system for
large-scale graph processing. In SIGMOD (2010),
pp. 135–146.

[18] NAJEEBULLAH, K., KHAN, K. U., NAWAZ, W.,
AND LEE, Y.-K. Bishard parallel processor: A disk-
based processing engine for billion-scale graphs.
Journal of Multimedia & Ubiquitous Engineering 9,
2 (2014), 199–212.

[19] NGUYEN, D., LENHARTH, A., AND PINGALI, K.
A lightweight infrastructure for graph analytics. In
SOSP (2013), pp. 456–471.

[20] PAGE, L., BRIN, S., MOTWANI, R., AND WINO-
GRAD, T. The PageRank citation ranking: Bringing
order to the web. Tech. rep., Stanford University,
1998.

[21] PEARCE, R., GOKHALE, M., AND AMATO, N. M.
Multithreaded asynchronous graph traversal for in-
memory and semi-external memory. In SC (2010),
pp. 1–11.

[22] ROY, A., BINDSCHAEDLER, L., MALICEVIC, J.,
AND ZWAENEPOEL, W. Chaos: Scale-out graph
processing from secondary storage. In SOSP (2015),
pp. 410–424.

[23] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL,
W. X-Stream: Edge-centric graph processing using
streaming partitions. In SOSP (2013), pp. 472–488.

[24] SHUN, J., AND BLELLOCH, G. E. Ligra: A
lightweight graph processing framework for shared
memory. In PPoPP (2013), pp. 135–146.

[25] VORA, K., KODURU, S. C., AND GUPTA, R. AS-
PIRE: Exploiting asynchronous parallelism in iter-
ative algorithms using a relaxed consistency based
dsm. In OOPSLA (2014), pp. 861–878.

[26] WANG, G., XIE, W., DEMERS, A., AND GEHRKE,
J. Asynchronous large-scale graph processing made
easy. In CIDR (2013).

[27] WANG, K., XU, G., SU, Z., AND LIU, Y. D.
GraphQ: Graph query processing with abstraction
refinement—programmable and budget-aware ana-
lytical queries over very large graphs on a single PC.
In USENIX ATC (2015), pp. 387–401.

[28] Yahoo! Webscope Program. http://webscope.
sandbox.yahoo.com/.

[29] ZHENG, D., MHEMBERE, D., BURNS, R., VO-
GELSTEIN, J., PRIEBE, C. E., AND SZALAY, A. S.

FlashGraph: processing billion-node graphs on an
array of commodity ssds. In FAST (2015), pp. 45–
58.

[30] ZHU, X., AND GHAHRAMANI, Z. Learning from
labeled and unlabeled data with label propagation.
Tech. Rep. CALD-02-107, Carnegie Mellon Univer-
sity, 2002.

[31] ZHU, X., HAN, W., AND CHEN, W. GridGraph:
Large scale graph processing on a single machine
using 2-level hierarchical partitioning. In USENIX
ATC (2015), pp. 375–386.

