
PerfDebug: Performance Debugging of Computation Skew in
Dataflow Systems

Jason Teoh
jteoh@cs.ucla.edu

University of California, Los Angeles

Muhammad Ali Gulzar
gulzar@cs.ucla.edu

University of California, Los Angeles

Guoqing Harry Xu
harryxu@cs.ucla.edu

University of California, Los Angeles

Miryung Kim
miryung@cs.ucla.edu

University of California, Los Angeles

ABSTRACT
Performance is a key factor for big data applications, and much
research has been devoted to optimizing these applications. While
prior work can diagnose and correct data skew, the problem of
computation skew—abnormally high computation costs for a small
subset of input data—has been largely overlooked. Computation
skew commonly occurs in real-world applications and yet no tool
is available for developers to pinpoint underlying causes.

To enable a user to debug applications that exhibit computa-
tion skew, we develop a post-mortem performance debugging tool.
PerfDebug automatically finds input records responsible for such
abnormalities in a big data application by reasoning about devia-
tions in performance metrics such as job execution time, garbage
collection time, and serialization time. The key to PerfDebug’s
success is a data provenance-based technique that computes and
propagates record-level computation latency to keep track of abnor-
mally expensive records throughout the pipeline. Finally, the input
records that have the largest latency contributions are presented to
the user for bug fixing. We evaluate PerfDebug via in-depth case
studies and observe that remediation such as removing the single
most expensive record or simple code rewrite can achieve up to
16X performance improvement.

CCS CONCEPTS
• Information systems → MapReduce-based systems; • The-
ory of computation → Data provenance; • Software and its
engineering → Software testing and debugging; Software per-
formance; • General and reference → Performance.

KEYWORDS
Performance debugging, big data systems, data intensive scalable
computing, data provenance, fault localization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362727

ACM Reference Format:
Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim.
2019. PerfDebug: Performance Debugging of Computation Skew in Dataflow
Systems. In ACM Symposium on Cloud Computing (SoCC ’19), November
20–23, 2019, Santa Cruz, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3357223.3362727

1 INTRODUCTION
Dataflow systems are prevalent in today’s big data ecosystems and
continue to grow in popularity. Since these systems ingest terabytes
of data as input, they inherently suffer from long execution times
and it is important to optimize their performance. Consequently,
studying and improving the performance of dataflow systems such
as Apache Hadoop [2] and Apache Spark [4] has been a major
research area. For example, Ousterhout et al. [23] study perfor-
mance across system resources such as network, disk, and CPU and
conclude that CPU is the primary source of performance bottle-
necks. Several prior works aim to optimize system configurations
to achieve better resource utilization [7, 10, 26, 27], while others
improve parallelization of workloads [17]. To find the source of
performance bottlenecks, PerfXplain [15] performs a differential
analysis across several Hadoop workloads.

Computation Skew. When an application shows signs of poor
performance through an increase in general CPU time, garbage
collection (GC) time, or serialization time, the first question a user
may ask is “what caused my program to slow down?” While strag-
glers—slow executors in a cluster—and hardware failures can often
be automatically identified by existing dataflow system monitors,
many real-world performance issues are not system problems; in-
stead, they stem from a combination of certain data records from
the input and specific logic of the application code that incurs much
longer latency when processing these records—a phenomenon re-
ferred to as computation skew. Computation skew commonly occurs
in real-world applications [16, 18]. For example, in a StackOverflow
post [1] a Stanford Lemmatizer pre-processes customer reviews.
The task fails to process a relatively small dataset because certain
sentences trigger excessive memory consumption and garbage col-
lection, leading to large memory usage and execution time. This
example is described in detail in Section 2.1. Although there is a
body of work [6, 16, 17] that attempts to mitigate data skew, compu-
tation skew has been largely overlooked and tools that can identify
and diagnose computation skew, unfortunately, do not exist.

465

https://doi.org/10.1145/3357223.3362727
https://doi.org/10.1145/3357223.3362727

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

PerfDebug. The pervasive existence of computation skew in
real-world applications as well as the lack of effective tooling
strongly calls for development of new debugging techniques that
can help developers quickly identify skew-inducing records. In
response to this call, we developed PerfDebug, a novel runtime
technique that aims to pinpoint expensive records (“needles") from
potentially billions (“haystack") of records in the input.

In this paper, we focus on Apache Spark as it is the de-facto
data-parallel framework deployed widely in industry. Spark hosts a
range of applications in machine learning, graph analytics, stream
processing, etc., making it worthwhile to build a specialized per-
formance debugging tool which can provide immediate benefit
to all applications running on it. Although PerfDebug was built
for Spark, our idea is applicable to other dataflow systems as well.
PerfDebug provides fully automated support for postmortem de-
bugging of computation skew. At its heart are a novel notion of
record-level latency and a data-provenance-based technique that
computes and propagates record-level latency along a dataflow
pipeline.

A typical usage scenario of PerfDebug consists of the follow-
ing three steps. First, PerfDebug monitors coarse-grained per-
formance metrics (e.g., CPU, GC, or serialization time) and uses
task-level performance anomalies (e.g., certain tasks have much
lower throughput than other tasks) as a signal for computation
skew. Second, upon identification of an abnormal task, PerfDebug
re-executes the application in the debugging mode to collect data
lineage as well as record-level latency measurements. Finally, using
both lineage and latency measurements, PerfDebug computes the
cumulative latency for each output record and isolates the input
records contributing most to these cumulative latencies.

We have performed a set of case studies to evaluate PerfDebug’s
effectiveness. These case studies were conducted on three Spark
applications with inputs that come from industry-standard bench-
marks [5], public institution datasets [22], and prior debugging
work [8]. For each application, we demonstrate how PerfDebug
can identify the source of computation skew within 86% of the
original job time on average. Applying appropriate remediations
such as record removal or application rewriting leads to 1.5X to 16X
performance improvement across three applications. On a locally
simulated setting, PerfDebug identifies delay-inducing records
with 100% accuracy while achieving 102 to 106 orders of magnitude
precision improvement compared to an existing solution [12], at
the cost of 30% instrumentation overhead. To the best of our knowl-
edge, PerfDebug is the first debugging technique to diagnose and
reason about computation skew in dataflow applications.

Large performance gains can be obtained by appropriately re-
mediating expensive records (e.g., breaking a long sentence into
multiple short ones or even deleting them, if appropriate). PerfDe-
bug delegates repair efforts to the user. In many cases, simple
modifications of expensive data records do not have much impact
on the correctness of program results for two major reasons: (1)
many big data workloads use sampled data as input and hence
their results are approximate anyway; and (2) the number of such
expensive records is often small and hence the delta in the final
result that comes from altering these records is marginal.

The rest of the paper is organized as follows: Section 2 provides
necessary background. Section 3 motivates the problem and Section

1 val data = "hdfs://nn1:9000/movieratings/*"
2 val lines = sc.textFile(data)
3 val ratings = lines.flatMap(s => {
4 val reviews_str = s.split(":")(1)
5 val reviews = reviews_str.split(",")
6 val counts = Map().withDefaultValue(0)
7 reviews.map(x => x.split("_")(1))
8 .foreach(r => counts(r) += 1)
9 return counts.toIterable
10 })
11 ratings.reduceByKey(_+_).collect()

Figure 1: Alice’s program for computing the distribution of
movie ratings.

4 describes the implementation of PerfDebug. Section 5 presents
experimental details and results.We conclude the paper with related
works and a conclusion in Sections 6 and 7 respectively.

2 BACKGROUND
In this section, we explain the difference between computation and
data skew along with a brief overview of the internals of Apache
Spark and Titian.

2.1 Computation Skew
Computation skew stems from a combination of certain data records
from the input and specific logic of the application code that incurs
much longer latency when processing these records. This definition
of computation skew includes some but not all kinds of data skew.
Similarly, data skew includes some but not all kinds of computation
skew. Data skew is concerned primarily with data distribution—e.g.,
whether the distribution has a long (negative or positive) tail—and
has consequences in a variety of performance aspects including
computation, network communication, I/O, scheduling, etc. In con-
trast, computation skew focuses on record-level anomalies—a small
number of data records for which the application (e.g., UDFs) runs
much slower, as compared to the processing time of other records.

As previously described, a StackOverflow question [1] employs
the Stanford Lemmatizer (i.e., part of a natural language processor)
to preprocess customer reviews before calculating the lemmas’
statistics. The task fails to process a relatively small dataset because
of the lemmatizer’s exceedingly large memory usage and long
execution time when dealing with certain sentences: due to the
temporary data structures used for dynamic programming, for
each sentence processed, the amount of memory needed by the
lemmatizer is three orders of magnitude larger than the sentence
itself. As a result, when a task processes sentences whose length
exceeds some threshold, its memory consumption quickly grows
to be close to the capacity of the main memory, making the system
suffer from extensive garbage collection and eventually crash. This
problem is clearly an example of computation skew, but not data
skew. The number of long sentences is small in a customer review
and different data partitions contain roughly the same number of
long sentences. However, the processing of each such long sentence
has a much higher resource requirement due to the combinatorial
effect of the length of the sentence and the exponential nature of
the lemmatization algorithm used in the application.

466

PerfDebug: Performance Debugging of Computation Skew in Dataflow Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

As another example of pure computation skew, consider a pro-
gram that takes a set of (key, value) pairs as input. Suppose that the
length of each record is identical, the same key is never repeated,
and the program contains a UDF with a loop where the iteration
count depends on f (value), where f is an arbitrary, non-monotonic
function. There is no data skew, since all keys are unique. A user
cannot simply find a large value v , since latency depends on f (v)
rather thanv and f is non-monotonic. However, computation skew
could exist because f (v) could be very large for some value v .

As an opposite example of data skew without computation skew,
a key-value system may encounter skewed partitioning and eventu-
ally suffer from significant tail latency if the input key-value pairs
exhibit a power-law distribution. This is an example of pure data
skew, because the latency comes from uneven data partitioning
rather than anomalies in record-level processing time.

Computation skew and data skew do overlap. In the above
review-processing example, if most long sentences appear in one
single customer review, the execution would exhibit both data skew
(due to the tail in the sentence distribution) and computation skew
(since processing these long sentences would ultimately need much
more resources than processing short sentences).

2.2 Apache Spark and Titian
Apache Spark [4] is a dataflow system that provides a program-
ming model using Resilient Distributed Datasets (RDDs) which
distributes the computations on a cluster of multiple worker nodes.
Spark internally transforms a sequence of transformations (logi-
cal plan) into a directed acyclic graph (DAG) (physical plan). The
physical plan consists of a sequence of stages, each of which is
made up of pipelined transformations and ends at a shuffle. Using
the DAG, Spark’s scheduler executes each stage by running, on
different nodes, parallel tasks each taking a partition of the stage’s
input data.

Titian [12] extends Spark to provide support for data prove-
nance—the historical record of data movement through transforma-
tions. It accomplishes this by inserting tracing agents at the start
and end of each stage. Each tracing agent assigns a unique identifier
to each record consumed or produced by the stage. These identifiers
are collected into agent tables that store the mappings between
input and output records. In order to minimize the runtime trac-
ing overhead, Titian asynchronously stores agent tables in Spark’s
BlockManager storage system using threads separated from those
executing the application. Titian enables developers to trace the
movement of individual data records forward or backward along
the pipeline by joining these agent tables according to their input
and output mappings.

However, Titian has limited usefulness in debugging computa-
tion skew. First, it cannot reason about computation latency for any
individual record. In the event that a user is able to isolate a delayed
output, Titian can leverage data lineage to identify the input records
that contribute to the production of this output. However, it falls
short of singling out input records that have the largest impact on
application performance. Due to the lack of a fine-grained com-
putation latency model (e.g., record-level latency used in PerfDe-
bug), Titian would potentially find a much greater number of input
records that are correlated to the given delayed output, as measured

Index ID Executor ID / Host Duration ▾ GC Time Input Size / Records

33 33 8 / 131.179.96.204 1.2 min 7 s 128.0 MB / 17793

34 34 1 / 131.179.96.211 51 s 11 s 128.0 MB / 1

35 35 5/ 131.179.96.212 44s 3 s 128.0 MB / 1

25 25 5 / 131.179.96.212 38 s 2 s 128.0 MB / 33602

36 36 9 / 131.179.96.206 36 s 4 s 128.0 MB / 1

130 130 1 / 131.179.96.211 36 s 9 s 128.0 MB / 33505

37 37 6 / 131.179.96.203 35s 4 s 128.0 MB / 1

22 22 3 / 131.179.96.209 35 s 2 s 128.0 MB / 33564

Figure 2: An example screenshot of Spark’s Web UI where
each row represents task-level performance metrics. From
left to right, the columns represent task identifier, the ad-
dress of the worker hosting that task, running time of the
task, garbage collection time, and the size (space and quan-
tity) of input ingested by the task, respectively.

in Section 5.5, while only a small fraction of them may actually
contribute to the observed performance problem.

3 MOTIVATING SCENARIO
Suppose Alice acquires a 21GB dataset of movies and their user
ratings. The dataset follows a strict format where each row consists
of a movie ID prefix followed by comma-separated pairs of a user
ID and a numerical rating (1 to 5). A small snippet of this dataset is
as follows:

127142:2628763_4,2206105_4,802003_3,...
127143:1027819_3,872323_3,1323848_4,...
127144:1789551_3,1764022_5,1215225_5,...

Alice wishes to calculate the frequency of each rating in the
dataset. To do so, she writes the two-stage Spark program shown
in Figure 1. In this program, line 2 loads the dataset and lines 3-10
extract the substring containing ratings from each row and finds the
distribution of ratings only for that row. Line 11 aggregates rating
frequencies from each row to compute the distribution of ratings
across the entire dataset. Alice runs her program using Apache
Spark on a 10-node cluster with the given dataset and produces the
final output in 1.2 minutes:

Rating Count
1 99487661
2 217437722
3 663482151
4 771122507
5 524004701

At first glance, the executionmay seem reasonably fast. However,
Alice knows from past experience that a 20GB job such as this
should typically complete in about 30 seconds. She looks at the
Spark Web UI and finds that the first stage of her job amounts for
over 98% of the total job time. Upon further investigation into Spark
performance metrics as seen in Figure 2, Alice discovers that task
33 of this stage runs for 1.2 minutes while the rest of the tasks finish
much early. The median task time is 11 seconds, but task 33 takes
over 50% longer than the next slowest task (51 seconds) despite
processing the same amount of input (128MB). She also notices
that other tasks on the same machine perform normally, which

467

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

.

.

.

Task	0	,	Stage	0 Worker	Node	0

Worker	Node	1	

Worker	Node	15	

TextFile

TextFile

TextFile

FlatMap

FlatMap

FlatMap

ReduceByKey

ReduceByKey

ReduceByKey

Task	1	,	Stage	0

Task	166	,	Stage	0

Task	0	,	Stage	1

Task	2	,	Stage	1

Task	4	,	Stage	1

Split

.

.

.
.
.
.

Input	Data	(21GB)

Figure 3: The physical execution of the motivating example
by Apache Spark.

eliminates existence of a straggler due to hardware failures. This is
a clear symptom of computation skew where the processing times
for individual records differs significantly due to the interaction
between record contents and the code processing these records.

To investigate which characteristics of the dataset caused her
program to show disproportionate delays, Alice requests to see a
subset of original input records accountable for the slow task. Since
she has identified the slow task already, she may choose to inspect
the data partition associated with that task manually. Figure 3 il-
lustrates how this job is physically executed on the cluster. For
example, Alice identifies task 1 of stage 0 as the slowest correspond-
ing partition (i.e., Data Partition 1). Since it contains 128MB of
raw data and comprises millions of records, this manual inspection
is infeasible.

As Alice has already identified the presence of computation
skew, she enables PerfDebug’s debugging mode. PerfDebug re-
executes the applications and collects lineage as well as record-level
latency information. After collecting this information, PerfDebug
reports each output record’s computation time (latency) and its
corresponding slowest input:

Rating Count Latency (ms) Slowest Input
1 99487661 28906 “129707:..."
2 217437722 28891 “129707:..."
3 663482151 28920 “129707:..."
4 771122507 28919 “129707:..."
5 524004701 28842 “129707:..."

Alice notices that the reported latencies are fairly similar for
all output records. Furthermore, all five records report the same
slowest delay-inducing input record with movie id 129707. She
inspects this specific input record and finds that it has far more
ratings (91 million) than any other movie. Because Alice’s code
iterates through each rating to compute a per-movie rating count
(lines 6-9 of Figure 1), this particular movie significantly slows
down the task in which it appears. Alice suspects this unusually
high rating count to be a data quality issue of some sort. As a result,
she chooses to handle movie 129707 by removing it from the input
dataset. In doing so, she finds that the removal of just one record
decreases her program’s execution time from 1.2 minutes to 31
seconds, which is much closer to her initial expectations.

Note that Alice’s decision to remove movie 129707 is only one
example of how she may choose to address this computation skew.
PerfDebug is designed to detect and investigate computation skew,

but appropriate remediations will vary depending on use cases and
must be determined by the user.

4 APPROACH
When a sign of poor performance is seen, PerfDebug performs
post-mortem debugging by taking in a Spark application and a
dataset as inputs, and pinpoints the precise input record with the
most impact on the execution time. Once PerfDebug is enabled, it
is fully automatic and does not require any human judgment. Its ap-
proach is broken down into three steps. First, PerfDebug monitors
coarse-grained performance metrics as a signal for computation
skew. Second, PerfDebug re-executes the application on the entire
input to collect lineage information and latency measurements. Fi-
nally, the lineage and latency information is combined to compute
the time cost of producing individual output records. During this
process, PerfDebug also assesses the impact of individual input
records on the overall performance and keeps track of those with
the highest impact on each output.

Sections 4.2 and 4.3 describe how to accumulate and attribute
latencies to individual records throughout the multi-stage pipeline.
This record level latency attribution differentiates PerfDebug from
merely identifying the top-N expensive records within each stage
because the mappings between input records and intermediate
output records are not 1:1 in modern big data analytics. Operators
such as join, reduce, and groupByKey generate n:1 mappings,
while flatmap creates 1:n mappings. Thus, finding the top-N slow
records from each stage may work on a single stage program but
does not work for multi-stage programs with aggregation and data-
split operators.

4.1 Performance Problem Identification
When PerfDebug is enabled on a Spark application, it identifies
irregular performance by monitoring built-in performance metrics
reported by Apache Spark. In addition to the running time of in-
dividual tasks, we utilize other constituent performance metrics,
such as GC and serialization time, to identify irregular performance
behavior. Several prior works, such as Yak [21], have highlighted
the significant impact of GC on Big Data application performance.
They also report that GC can even account for up to 50% of the
total running time of such applications.

A high GC time can be observed due to two reasons: (1) millions
of objects are being created within a task’s runtime and (2) by the
sheer size of individual objects created by UDFs while processing
the input data. Similarly, a high serialization/deserialization time
is usually induced for the same reasons. In both cases, high GC or
serialization times are usually triggered by a specific characteristic
of the input dataset. Referring back to our motivating scenario, a
single row in the input dataset may comprise a large amount of
information and lead to the creation of many objects. As a dataflow
framework handles many such objects within a given task, both GC
and serialization for that particular task soar. Since stage bound-
aries represent blocking operations (meaning that each task has
to complete before moving to the next stage), the high volume
of objects holds back the whole stage and leads to slower appli-
cation performance. This effect can be propagated over multiple

468

PerfDebug: Performance Debugging of Computation Skew in Dataflow Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

In Out Computation Latency
r1 o1 latency1
r2 o2 latency2

Titian PerfDebug

In Out
r1 o1
r2 o2

Figure 4: During program execution, PerfDebug also stores
latency information in lineage tables comprising of an addi-
tional column of ComputationLatency.
stages as objects are passed around and repeatedly serialized and
deserialized.

PerfDebug applies lightweight instrumentation to the Spark ap-
plication by attaching a custom listener that observes performance
metrics reported by Spark such as (1) task time, (2) GC time, and
(3) serialization time. Note that PerfDebug is not limited to only
these metrics and can be extended to support other performance
measurements. For example, we can implement a custom listener
to measure additional statistics described in [20] such as shuffle
object serialization and deserialization times. This lightweight mon-
itoring enables PerfDebug to avoid unnecessary instrumentation
overheads for applications that do not exhibit computation skew.
When an abnormality is identified, PerfDebug starts post-mortem
debugging to enable deeper instrumentation at the record level and
to find the root cause of performance delays. Alternatively, a user
may manually identify performance issues and explicitly invoke
PerfDebug’s debugging mode.

4.2 Capturing Data Lineage and Latency
As the first step in post-mortem debugging, PerfDebug re-executes
the application to collect latency (computation time of applying a
UDF) of each record per stage in addition to data lineage informa-
tion. For this purpose, PerfDebug extends Titian [12] and stores
the per-record latency alongside record identifiers.

4.2.1 Extending Data Provenance.
PerfDebug adopts Titian [12] to capture record level input-output
mapping. However, using off-the-shelf Titian is insufficient as it
does not profile the compute time of each intermediate recordwhich
is crucial for locating the expensive input records. To enable perfor-
mance profiling in addition to data provenance, PerfDebug extends
Titian by measuring the time taken to compute each intermediate
record and storing these latencies alongside the data provenance
information. Titian captures data lineages by generating lineage
tables that map the output record at one stage to the input of the
next stage. Later, it constructs a complete lineage graph by join-
ing the lineage tables, one at a time, across multiple stages. While
Titian generates lineage tables, PerfDebug measures the computa-
tional latency of executing a chain of UDFs in a given stage on each
record and appends it to the lineage tables in an additional column
as seen in Figure 4. This extension produces a data provenance
graph that exposes individual record computation times, which is
used in Section 4.3 to precisely identify expensive input records.

Titian stores each lineage table in Spark’s internal memory layer
(abstracted as a file system through BlockManager) to lower run-
time overhead of accessing memory. However, this approach is
not feasible for post-mortem performance debugging as it hogs the
memory available for the application and restricts the lifespan of lin-
eage tables to the liveliness of a Spark session. PerfDebug supports

post-mortem debugging in which a user can interactively debug
anytime without compromising other applications by holding too
many resources. To realize this, PerfDebug stores lineage tables
externally using Apache Ignite [3] in an asynchronous fashion. As
a persistent in-memory storage, Ignite decouples PerfDebug from
the session associated to a Spark application and enables PerfDe-
bug to support post-mortem debugging anytime in the future. We
choose Ignite for its compatibility with Spark RDDs and efficient
data access time, but PerfDebug can also be generalized to other
storage systems.

Figure 5 demonstrates the lineage information collected by
PerfDebug, shown as In and Out. Using this information, PerfDe-
bug can execute backward tracing to identify the input records for
a given output. For example, the output record o3 under the Out
column of ➌ post-shuffle can be traced backwards to [i3,i8]
(In column of ➌) through the Out column of ➋ pre-shuffle.
We further trace those intermediate records from In column of
pre-shuffle back to the program inputs [h1, h2, h3, h4, h5]
in the Out column of ➊ HDFS.

4.2.2 Latency Measurement.
Data provenance alone is insufficient for calculating the impact of
individual records on overall application performance. As perfor-
mance issues can be found both within stages (e.g., an expensive
filter) and between stages (e.g., due to data skew in shuffling),
PerfDebug tracks two types of latency. Computation Latency is
measured from a chain of UDFs in dataflow operators such as map
and filter, while Shuffle Latency is measured by timing shuffle-
based operations such as reduce and distributing this measurement
based on input-output ratios.

For a given record r , the total time to execute all UDFs of a
specific stage, StaдeLatency(r) is computed as:

StageLatency(r) =

ComputationLatency(r) + ShuffleLatency(r)

Computation Latency. As described in Section 2, a stage con-
sists of multiple pipelined transformations that are applied to input
records to produce the stage output. Each transformation is in turn
defined by an operator that takes in a UDF. To measure computa-
tion latency, PerfDebug wraps every non-shuffle UDF in a timing
function that measures the time span of that UDF invocation for
each record. We define non-shuffle UDFs as those passed as inputs
to operators that do not trigger a shuffle such as flatmap. Since
the pipelined transformations in a stage are applied sequentially
on each record, PerfDebug calculates the computation latency
ComputationLatency(r) of record r by adding the execution times
of each UDF applied to r within the current stage:

ComputationLatency(r) =
∑

f∈UDF

Time(f, r)

For example, consider the following program:

1 val f1 = (x: Int) => List(x, x*2) // 50ms
2 val f2 = (x: Int) => x < 100 // 10ms, 20ms
3 integerRdd.flatMap(f1).filter(f2).collect()

When executing this program for a single input 42, we obtain
outputs of 42 and 84. Suppose PerfDebug observes that f1(42) takes
50 milliseconds, while f2(42) and f2(84) take 10 and 20 milliseconds

469

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

Stage	
Latency

Total	
Latency

Most	Impactful
Source

Remediated	
Latency Out

- 0 h1 0 h1
- 0 h2 0 h2

- 0 h3 0 h3

Partition	0

Partition	1

Stage	
Latency

Total	
Latency

Most	Impactful
Source

Remediated	
Latency Out

- 0 h4 0 h4
- 0 h5 0 h5

In Stage	Latency Total	
Latency

Most	Impactful
Source

Remediated	
Latency Out

[h1,	h2] max(486,28848)	+	2/10*60	 28860 h2 498 i1
[h1,	h2] max(486,28848)+2/10*60 28860 h2 498 i2

[h1,	h2,	h3] max(486,28848,611)+3/10*60 28866 h2 629 i3

[h1,	h2] max(486,28848)+2/10*60 28860 h2 498 i4
[h1] max(239)+1/10*60 245 h1 0 i5
Partition	Latency	:	60ms

In Stage	Latency Total	Latency Most	Impactful Source Remediated	Latency Out
[i1,	i6] 2/4	*	60	=	30 max(28860,274)	+	30=28890 h2 304 o1
[i2,	i7] 2/4	*	60	=	30 max(28860,274)	+	30=28890 h2 304 o2

Partition	Latency	:	60ms

HDFS Pre-Shuffle

Post-Shuffle

In Stage	Latency Total	Latency Most	Impactful Source Remediated	Latency Out
[i3,	i8] 2/6	*	120	=	40 max(28866,284)	+	40=28906 h2 324 o3

[i4,	i9] 2/6	*	120	=	40 max(28860,284)+40=28900 h2 324 o4
[i5,	i10] 2/6	*	120	=	40 max(245,170)+40=285 h1 210 o5

Partition	Latency	:	120ms

In Stage	Latency Total	
Latency

Most	Impactful
Source

Remediated	
Latency Out

[h5] max(264)	+1/7*70 274 h5 0 i6
[h5] max(264)	+	1/7*70 274 h5 0 i7

[h4,	h5] max(160,264)+2/7*70 284 h5 180 i8
[h4,	h5] max(160,264)+2/7*70 284 h5 180 i9
[h4] max(160)+1/7*70 170 h4 0 i10
Partition	Latency	:	70ms

1 2

3

Figure 5: The snapshots of lineage tables collected by PerfDebug. ➊, ➋, and ➌ illustrate the physical operations and their
corresponding lineage tables in sequence for the given application. In the first step, PerfDebug captures the Out, In, and Stage
Latency columns, which represent the input-output mappings as well as the stage-level latencies per record. During output
latency computation, PerfDebug calculates three additional columns (Total Latency, Most Impactful Source, and Remediated
Latency) to keep track of cumulative latency, the ID of the original input with the largest impact on Total Latency, and the
estimated latency if the most impactful record did not impact application performance.

respectively. PerfDebug computes the computation latency for the
first output, 42, as 50 + 10 = 60 milliseconds. Similarly, the second
output, 84, has a computation latency of 50 + 20 = 70 milliseconds.

In stages preceding a shuffle, multiple input records may be
pre-aggregated to produce a single output record. In the ➋-
Pre-Shuffle lineage table shown in Figure 5, the In column and
the left term in the StageLatency column reflect these multiple
input identifiers and computation latencies. As the Spark applica-
tion’s execution proceeds through each stage, PerfDebug captures
StaдeLatency for each output record per stage and includes it into
the lineage tables under the Stage Latency column as seen in Fig-
ure 5. These lineage tables are stored in PerfDebug’s Ignite storage
where each table encodes the computation latency of each record
and the relationship of that record to the output records of the
previous stage.

Shuffle Latency. In Spark, a shuffle at a stage boundary comprises
of two steps: a pre-shuffle step and a post-shuffle step. In the pre-
shuffle step, each task’s output data is sorted or aggregated and then
stored in the local memory of the current node. We measure the
time it takes to perform the pre-shuffle step on the whole partition

as pre-shuffle latency. In the post-shuffle step, a node in the next
stage fetches this remotely stored data from individual nodes and
sorts (or aggregates) it again. Because of this distinction, PerfDe-
bug’s shuffle latency is categorized into pre-shuffle and post-shuffle
estimations.

As both pre- and post- shuffle operations are atomic and per-
formed in batches over each partition, we estimate the latency of an
individual output record in a pre-shuffle step by (1) measuring the
proportion of the input records consumed by the output record and
then (2) multiplying it with the total shuffle time of that partition.

ShuffleLatency(r) =

|Inputsr |

|Inputs|
∗ PartitionLatency(stager)

staдer represents the stage of the record r , |Inputs | is the size of a
partition, and |Inputr | is the size of input consumed by output r . For
example, the topmost lineage table under➋-pre-shuffle in Figure
5 has a pre-shuffle latency of 60ms. Because output i1 is computed
from two of the partition’s ten inputs, ShuffleLatency(i1) is

470

PerfDebug: Performance Debugging of Computation Skew in Dataflow Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

equal to two tenths of partition latency i.e., 2
10 ∗60. Similarly, output

i3 is computed from three inputs so its shuffle latency is 3
10 ∗ 60.

4.3 Expensive Input Isolation
To identify the most expensive input for a given application and
dataset, PerfDebug analyzes data provenance and latency infor-
mation from Section 4.2 and calculates three values for each output
record: (1) the total latency of the output record, (2) the input record
that contributes most to this latency (most impactful source), and (3)
the expected output latency if that input record had zero latency
or otherwise did not affect application performance (remediated
latency). Once calculated, PerfDebug groups these values by their
most impactful source and compares each input’s maximum latency
with its maximum remediated latency to identify the input with
the most impact on application performance.

Output Latency Calculation. PerfDebug estimates the total la-
tency for each output record as a sum of associated stage latencies
established by data provenance based mappings. By leveraging the
data lineage and latency tables collected earlier, it computes the
latency using two key insights:

• In dataflow systems, records for a given stage are often com-
puted in parallel across several tasks. Assuming all inputs for
a given record are computed in this parallel manner, the time
required for all the inputs to be made available is at least the
time required for the final input to arrive. This corresponds
to the maximum of the dependent input latencies.

• A record can only be produced when all its inputs are made
available. Thus, the total latency of any given record must be
at least the sum of its stage-specific individual record latency,
described in Section 4.2, and the slowest latency of its inputs,
described above.

The process of computing output latencies is inspired by the for-
ward tracing algorithm from Titian, starting from the entire input
dataset.1 PerfDebug recursively joins lineage tables to construct
input-output mappings across stages. For each recursive join in
the forward trace, PerfDebug computes the accumulated latency
TotalLatency(r) of an output r by first finding the latency of the
slowest input (SlowestInputLatency(r)) among the inputs from the
preceding stage onwhich the output depends upon, and then adding
the stage-specific latency StaдeLatency(r) as described in Section
4.2:

SlowestInputLatency(r) =

max(∀i ∈ Inputsprev_stage : TotalLatency(i))
TotalLatency(r) =

SlowestInputLatency(r) + StageLatency(r)

Once TotalLatency is calculated for each record at each step of
recursive join, it is added in the corresponding lineage tables under
the new column, Total Latency. For example, the output record i1
in ➋-Pre-Shuffle lineage table of Figure 5 has two inputs from
the previous stage, h1 and h2 with their total latencies of 486ms
and 28848ms respectively. Therefore, its SlowestInputLatency(i1)
is the maximum of 70 and 28848 which is then added to its
1PerfDebug leverages lineage-based backward trace to remove inputs that do not
contribute to program outputs while computing output latencies.

Shu f f leLatency(i1) = 2
10 ∗ 60ms, making the total latency of i1

28860ms.

Tracing Input Records. Based on the output latency, a user can
select an output and use PerfDebug to perform a backward trace
as described in Section 4.2. However, the input isolated through
this technique may not be precise as it relies solely on data lineage.
For example, Alice uses PerfDebug to compute the latency of
individual output records, shown in Figure 5. Next, Alice isolates
the slowest output record, o3. Finally, she uses PerfDebug to trace
backward and identify the inputs for o3. Unfortunately, all five
inputs contribute to o3. Because there is only one significant delay-
inducing input record (h2) which contributes to o3’s latency, the
lineage-based backward trace returns a super-set of delay-inducing
inputs and achieves a low precision of 20%.

Tracking Most Impactful Input. To improve upon the low pre-
cision of lineage-based backward traces, PerfDebug propagates
record identifiers during output latency computation and retains
the input records with the most impact on an output’s latency.
We define the impact of an input record as the difference between
the maximum latency of all associated output records in program
executions with and without the given input record. Intuitively,
this represents the degree to which a delay-inducing input is a
bottleneck for output record computation.

To support this functionality, PerfDebug takes an approach
inspired by the Titian-P variant described in [12]. In Titian-P (re-
ferred to as Titian Piggy Back), lineage tables are joined together
as soon as the lineage table of the next stage is available during a
program execution. This obviates the need for a backward trace as
each lineage table contains a mapping between the intermediate
or final output and the original input, but also requires additional
memory to retain a list of input identifiers for each intermediate or
final output record. PerfDebug’s approach differs in that it retains
only a single input identifier for each intermediate or final output
record. As such, its additional memory requirements are constant
per output record and do not increase with larger input datasets.
Using this approach, PerfDebug is able to compute a predefined
backward trace with minimal memory overhead while avoiding the
expensive computation and data shuffles required for a backward
trace.

As described earlier, the latency of a given record is dependent
on the maximum latency of its corresponding input records. In
addition to this latency, PerfDebug computes two additional fields
during its output latency computation algorithm to easily support
debugging queries about the impact of a particular input record on
the overall performance of an application.

• Most Impactful Source: the identifier of the input record
deemed to be the top contributor to the latency of an inter-
mediate or final output record. We pre-compute this so that
debugging queries do not need a backward trace and can
easily identify the single most impactful record for a given
output record.

• Remediated Latency: the expected latency of an interme-
diate or final output record ifMost Impactful Source had zero
latency or otherwise did not affect application performance.
This is used to quantify the impact of the Most Impactful
Source on the latency of the output record.

471

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

As with TotalLatency, these fields are inductively updated (as
seen in Figure 5) with each recursive join when computing output
latency. During recursive joins,Most Impactful Source field becomes
theMost Impactful Source of the input record possessing the highest
TotalLatency, similar to an argmax function. Remediated Latency
becomes the current record’s StageLatency plus the maximum la-
tency over all input records except the Most Impactful Source. For
example, the output o3 has the highest TotalLatency with the most
impactful source of h2. This is reported based on the reasoning that,
if we remove h2, the latencies of input i3 and i8 drop the most
compared to removing either h1 or h3.

In addition to identifying the most impactful record for an in-
dividual program output, PerfDebug can also use these extended
fields to identify input records with the largest impact on overall
application performance. This is accomplished by grouping the
output latency table byMost Impactful Source and finding the group
with the largest difference between its maximum TotalLatency and
maximum Remediated Latency. In the case of Figure 5, input record
h2 is chosen because its difference (28906ms - 324ms) is greater
than that of h1 (285ms - 210ms).

5 EXPERIMENTAL EVALUATION
Our applications and datasets are described in Table 1. Our inputs
come from industry-standard PUMA benchmarks [5], public insti-
tution datasets [22], and prior work on automated debugging of
big data analytics [8]. Case studies described in Sections 5.3, 5.2,
and 5.4 demonstrate when and how a user may use PerfDebug.
PerfDebug provides diagnostic capability by identifying records
attributed to significant delays and leaves it to the user to resolve
the performance problem, e.g., by re-engineering the analytical
program or refactoring UDFs.

5.1 Experimental Setup
All case studies are executed on a cluster consisting of 10 worker
nodes and a single master, all running CentOS 7 with a network
speed of 1000 Mb/s. The master node has 46GB available RAM, a
4-core 2.40GHz CPU, and 5.5TB available disk space. Each worker
node has 125GB available RAM, a 8-core 2.60GHz CPU, and 109GB
available disk space.

Throughout our experiments, each Spark Executor is allocated
24GB ofmemory. ApacheHadoop 2.2.0 is used to host all datasets on
HDFS (replication factor 2), with the master configured to run only
the NameNode. Apache Ignite 2.3.0 servers with 4GB of memory
are created on each worker node, for a total of 10 ignite servers.
PerfDebug creates additional Ignite client nodes in the process
of collecting or querying lineage information, but these do not
store data or participate in compute tasks. Before running each
application, the Ignite cluster memory is cleared to ensure that
previous experiments do not affect measured application times.

5.2 Case Study A: NYC Taxi Trips
Alice has 27GB of data on 173 million taxi trips in New York [22],
where she needs to compute the average cost of a taxi ride for
each borough. A borough is defined by a set of points represent-
ing a polygon. A taxi ride starts in a given borough if its starting
coordinate lies within the polygon defined by a set of points, as

1 val avgCostPerBorough = lines.map { s =>
2 val arr = s.split(',')
3 val pickup = new Point(arr(11).toDouble,
4 arr(10).toDouble)
5 val tripTime = arr(8).toInt
6 val tripDistance = arr(9).toDouble
7 val cost = getCost(tripTime, tripDistance)
8 val b = getBorough(pickup)
9 (b, cost)}
10 .aggregateByKey((0d, 0))(
11 {case ((sum, count), next) => (sum + next, count+1)},
12 {case ((sum1, count1), (sum2, count2)) =>

(sum1+sum2,count1+count2)}
13).mapValues({case (sum, count) => sum.toDouble/count}).collect()

Figure 6: A Spark application computing the average cost of
a taxi ride for each borough.

computed via the ray casting algorithm. This program is written as
a two-stage Spark application shown in Figure 6.

Alice tests this application on a small subset of data consisting
of 800,000 records in a single 128MB partition, and finds that the
application finishes within 8 seconds. However, when she runs the
same application on the full data set of 27GB, it takes over 7 minutes
to compute the following output:

Borough Trip Cost($)
1 56.875
2 67.345
3 97.400
4 30.245

This delay is higher than her expectation, since this Spark appli-
cation should perform data-parallel processing and computation
for each borough is independent of other boroughs. Thus, Alice
turns to the Spark Web UI to investigate this increase in the job
execution time. She finds that the first stage accounts for almost all
of the job’s running time, where the median task takes 14 seconds
only, while several tasks take more than one minute. In particular,
one task runs for 6.8 minutes. This motivates her to use PerfDe-
bug. She enables a post-mortem debugging mode and resubmits
her application to collect lineage and latency information. This
collection of lineage and latency information incurs 7% overhead,
after which PerfDebug reports the computation latency for each
output record as shown below. In this output, the first two columns
are the outputs generated by the Spark application and the last
column, Latency (ms), is the total latency calculated by PerfDebug
for each individual output record.

Borough Trip Cost($) Latency (ms)
1 56.875 3252
2 67.345 2481
3 97.400 2285
4 30.245 9448

Alice notices that borough #4 is much slower to compute than
other boroughs. She uses PerfDebug to trace lineage for borough
#4 and finds that the output for borough #4 comes from 1001 trip
records in the input data, which is less than 0.0006% of the entire
dataset. To understand the performance impact of input data for
borough #4, Alice filters out the 1001 corresponding trips and reruns
the application for the remaining 99.9994% of data. She finds that
the application finishes in 25 seconds, significantly faster than
the original 7 minutes. In other words, PerfDebug helped Alice

472

PerfDebug: Performance Debugging of Computation Skew in Dataflow Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

Subject Programs Source Input
Size

of
Ops

Program Description Input Data Description

S1 Movie Ratings PUMA 21 GB 2
Computes the number of ratings per
rating score (1-5), using flatMap and
reduceByKey.

Movies with a list of corresponding
rater and rating pairs

S2 Taxi
NYC Taxi and
Limousine
Commission

27 GB 3
Compute the average cost of taxi trips
originating from each borough, using
map and aggregateByKey.

Taxi trips defined by fourteen fields, in-
cluding pickup coordinates, drop-off co-
ordinates, trip time, and trip distance.

S3 Weather Analysis Custom 15 GB 3

For each (1) state+month+day and
(2) state+year: compute the median
snowfall reading, using flatMap,
groupByKey, and map.

Daily snowfall measurements per zip-
code, in either feet or millimeters.

Table 1: Subject programs with input datasets.

1 val pairs = lines.flatMap { s =>
2 val arr = s.split(',')
3 val state = zipCodeToState(arr(0))
4 val fullDate = arr(1)
5 val yearSplit = fullDate.lastIndexOf("/")
6 val year = fullDate.substring(yearSplit+1)
7 val monthdate =
8 fullDate.substring(0, yearSplit)
9 val snow = arr(2).toFloat
10 Iterator(((state, monthdate), snow),
11 ((state , year) , snow))}
12 val medianSnowFall =
13 pairs.groupByKey()
14 .mapValues(median).collect()

Figure 7: A weather data analysis application

discover that removing 0.0006% of the input data can lead to an
almost 16X improvement in application performance. Upon further
inspection of the delay-inducing input records, Alice notes that
while the polygon for most boroughs is defined as an array of 3 to
5 points, the polygon for borough #4 consists of 20004 points in a
linked list—i.e., a neighborhood with complex, winding boundaries,
thus leading to considerably worse performance in the ray tracing
algorithm implementation.

We note that currently there are no easy alternatives for iden-
tifying delay-inducing records. Suppose that a developer uses a
classical automated debugging method in software engineering
such as delta debugging (DD) [28] to identify the subset of delay-
inducing records. DD divides the original input intomultiple subsets
and uses a binary-search like procedure to repetitively rerun the
application on different subsets. Identifying 1001 records out of
173 million would require at least 17 iterations of running the ap-
plication on different subsets. Furthermore, without an intelligent
way of dividing the input data into multiple subsets based on the
borough ID, it would not generate the same output result.

Furthermore, although the Spark Web UI reports which task has
a higher computation time than other tasks, the user may not be
able to determine which input records map to the delay-causing
partition. Each input partition could map to millions of records,
and the 1001 delay-inducing records may be spread over multiple
partitions.

5.3 Case Study B: Weather
Alice has a 15GB dataset consisting of 470 million weather data
records and she wants to compute the median snowfall reading
for each state on any day or any year separately by writing the
program in Figure 7.

Alice runs this application on the full dataset, with PerfDebug’s
performance monitoring enabled. The application takes 9.3 minutes
to produce the following output. She notices that there is a straggler
task in the second stage that ran for 4.4minutes, where 2minutes are
attributed to garbage collection time. In contrast, the next slowest
task in the same stage ran for only 49 seconds, which is 5 times
faster than the straggler task. After identifying this computation
skew, PerfDebug re-executes the program in the post-mortem
debugging mode and produces the following results along with the
computation latency for each output record, shown on the third
column:

(State,Date) Median Snowfall Latency (ms)
or (State,Year)

(28,2005) 3038.3416 1466871
(21,4/30) 2035.3096 89500
(27,9/3) 2033.828 89500

(11,1980) 3031.541 67684
(36,3/18) 3032.2273 67684

...
Looking at the output from PerfDebug, Alice realizes that pro-

ducing the output (28,2005) is a bottleneck and uses PerfDebug
to trace the lineage of this output record. It finds that approximately
45 million input records, in other words almost 10% of the input,
map to the key (28, 2005), causing data skew in the intermediate
results. PerfDebug reports that the majority of this latency comes
from shuffle latency, as opposed to the computation time taken
in applying UDFs to the records. Based on this symptom of the
performance delays, Alice replaces the groupByKey operator with
the more efficient aggregateByKey operator. She then runs her
new program, which now completes in 45 seconds. In other words,
PerfDebug aided in the diagnosis of performance issues, which re-
sulted in a simple application logic rewrite with 11.4X performance
improvement.

5.4 Case Study C: Movie Ratings
The Movie Ratings application is described in Section 3 as a moti-
vating example. The numbers reported in Section 3 are the actual
numbers found through our evaluation. To avoid redundancy, this
subsection quickly summarizes the evaluation results from the case
study of this application. The original job time for 21GB data takes
1.2 minutes, which is much longer than what the user would nor-
mally expect. PerfDebug reports task-level performance metrics
such as execution time that indicate computation skew in the first
stage. Collecting latency information during the job execution in-
curs 8.3% instrumentation overhead. PerfDebug then analyzes the

473

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

collected lineage and latency information and reports the computa-
tion latency for producing each output record. Upon recognizing
that all output records have the same slowest input, which has an
abnormally high number of ratings, Alice decides to remove the
single culprit record contributing the most delay. By doing so, the
execution time drops from 1.2 minutes to 31 seconds, achieving
1.5X performance gain.

5.5 Accuracy and Instrumentation Overhead
For the three applications described below, we use PerfDebug to
measure the accuracy of identifying delay-inducing records, the
improvement in precision over a data lineage trace implemented
by Titian, and the performance overhead in comparison to Titian.
The results for these three applications indicate the following: (1)
PerfDebug achieves 100% accuracy in identifying delay-inducing
records where delays are injected on purpose for randomly chosen
records; (2) PerfDebug achieves 102 to 106 orders of magnitude
improvement in precision when identifying delay-inducing records,
compared to Titian; and (3) PerfDebug incurs an average overhead
of 30% for capturing and storing latency information at the fine-
grained record level, compared to Titian.

The three applications we use for evaluation are Movie Ratings,
College Student, and Weather Analysis. Movie Ratings is identical to
that used in Section 3, but on a 98MB subset of input consisting
of 2103 records. College Student is a program that computes the
average student age by grade level using map and groupByKey on a
187MB dataset of five million records, where each record contains
a student’s name, sex, age, grade, and major. Finally, Weather Anal-
ysis is similar to the earlier case study in Section 5.3 but instead
computes the delta between minimum and maximum snowfall read-
ings for each key, and is executed on a 52MB dataset of 2.1 million
records. All three applications described in this section are executed
on a single MacBook Pro (15-inch, Mid-2014 model) running macOS
10.13.4 with 16GB RAM, a 2.2GHz quad-core Intel Core i7 processor,
and 256GB flash storage.

Identification Accuracy. Inspired by automated fault injection
in the software engineering research literature, we inject artificial
delays for processing a particular subset of intermediate records
by modifying application code. Specifically, we randomly select a
single input record r and introduce an artificial delay of ten seconds
for r using a Thread.sleep(). As such, we expect r to be the
slowest input record. This approach of inducing faults (or delays)
is inspired by mutation testing in software engineering, where code
is modified to inject known faults and then the fault detection
capability of a newly proposed testing or debugging technique is
measured by counting the number of detected faults. This method
is widely accepted as a reliable evaluation criteria [13, 14].

For each application, we repeat this process of randomly select-
ing and delaying a particular input record for ten trials and report
the average accuracy in Table 2. PerfDebug accurately identifies
the slowest input record with 100% accuracy for all three applica-
tions.

Precision Improvement. For each trial in the previous section, we
also invoke Titian’s backward tracing on the output record with

Benchmark Accuracy
Precision

Improvement
Overhead

Movie Ratings 100% 2102X 1.04X
College Student 100% 1250000X 1.39X
Weather Analysis 100% 294X 1.48X

Average 100% 417465X 1.30X

Table 2: Identification Accuracy of PerfDebug and instru-
mentation overheads compared to Titian, for the subject
programs described in Section 5.5.

the highest computation latency. We measure precision improve-
ment by dividing the number of delay-inducing inputs reported by
PerfDebug by the total number of inputs mapping to the output
record with the highest latency reported by Titian. We then aver-
age these precision measurements across all ten trials, shown in
Table 2. PerfDebug isolates the delay-inducing input with 102-106
order better precision than Titian due to its ability to refine input
isolation based on cumulative latency per record. This fine-grained
latency profiling enables PerfDebug to slice the contributions of
each input record towards the computational latency of a given
output record substantially to identify a subset of inputs with the
most significant influence on performance delay.

Instrumentation Overhead. To measure instrumentation over-
head, we execute each application ten times for both PerfDebug
and Titian without introducing any artificial delay. To avoid unnec-
essary overheads, the Ignite cluster described earlier is created only
when using PerfDebug. The resulting performance multipliers are
shown in Table 2. We observe that the performance overhead of
PerfDebug compared to Titian ranges from 1.04X to 1.48X. Across
all applications, PerfDebug’s execution times average 1.30X times
as long as Titian’s. Titian reports an overhead of about 30% com-
pared to Apache Spark [12]. PerfDebug introduces additional over-
head because it instruments every invocation of a UDF to capture
and store the record level latency. However, such fine-grained pro-
filing differentiates PerfDebug from Titian in terms of its ability
to isolate expensive inputs. PerfDebug’s overhead to identify a
delay inducing record is small compared to the alternate method of
trial and error debugging, which requires multiple execution of the
original program.

6 RELATEDWORK
Kwon et al. present a survey of various sources of performance skew
in [16]. In particular, they identify data-related skews such as expen-
sive record skew and partitioning skew. Many of the skew sources
described in the survey influenced our definition of computation
skew and motivated potential use cases of PerfDebug.

Ernest [26], ARIA [27], and Jockey [7] model job performance
by observing system and job characteristics. These systems as well
as Starfish [10] construct performance models and propose system
configurations that either meet the budget or deadline requirements.
However, these systems focus on performance prediction rather
than performance debugging. Furthermore, none of these systems
focus on computation skew, nor do they provide visibility into
fine-grained computation at the individual record level.

PerfXplain [15] is a debugging tool that allows users to compare
two similar jobs under different configurations through a simple

474

PerfDebug: Performance Debugging of Computation Skew in Dataflow Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

query language. When comparing similar jobs or tasks, PerfXplain
automatically generates an explanation using the differences in
collected metrics. However, PerfXplain does not take into account
the computational latency of individual records and thus does not
report how performance delays could be attributed to a subset of
input records.

Sarawagi et al. [25] propose a discovery-driven exploration ap-
proach that preemptively analyzes data for statistical anomalies
and guides user analysis by identifying exceptions at various lev-
els of data cube aggregations. Later work [24] also automatically
summarizes these exceptions to highlight increases or drops in
aggregate metrics. However, both works focus on OLAP operations
such as rollup and drilldown which are insufficient for processing
the complex mappings between input and output records in a DISC
application. In addition, both of these works do not directly address
debugging of performance skews.

SkewTune [17] is an automatic skew mitigation approach which
elastically redistributes data based on estimated time to completion
for each worker node. It primarily focuses on data skew issues and
provides automatic re-balancing of data rather than providing per-
formance debugging assistance. As a result, application developers
cannot use SkewTune to answer performance debugging queries
about their jobs nor analyze performance or latency at the record
level.

Titian implements data provenance within Apache Spark and is
used as a foundation for PerfDebug. Other systems such as RAMP
[11] and Newt [19] also provide data provenance within dataflow
systems. However, none of these systems measure the performance
latency of individual data records alongside their data provenance.
Extensions of these data provenance tools include use cases such
as interactive debugging [9] and automated fault isolation [8], but
PerfDebug is unique in that it provides visibility into performance
issues at a fine-grained record level and it automates the diagnosis
of interaction between individual records and their influence on
the overall application performance.

7 CONCLUSION AND FUTURE WORK
PerfDebug is the first automated performance debugging tool to
diagnose the root cause of performance delays induced by inter-
action between data and application code. PerfDebug automati-
cally reports the symptoms of computation skew—abnormally high
computation costs for a small subset of data records—in terms of
garbage collection, serialization, and task execution time. It com-
bines a novel latency estimation technique with an existing data
provenance tool. Based on this novel notion of record-level latency,
PerfDebug isolates delay-inducing inputs automatically.

On average, we find that PerfDebug can detect injected delays
with a high accuracy (100%), improves the precision of isolating
delay-inducing records by orders of magnitude (102 to 106), and
incurs a reasonable instrumentation overhead (4% to 48% extra)
compared to an existing data provenance technique, Titian. Our
case studies show a user may achieve performance improvement
of 16X by simply removing the most expensive record from the
input data or through a simple code rewrite by investigating delay-
inducing input records reported by PerfDebug. In the future, we

plan to expand the scope of instrumentation and performance de-
bugging queries to account for performance delays caused by both
framework-level configurations and interaction between data and
application code.
Acknowledgments.We thank the anonymous reviewers for their
comments and Tim Harris for his guidance as a shepherd. The
participants of this research are in part supported by NSF grants
CCF-1723773, CCF-1764077, CCF-1527923, CCF-1460325, CNS-
1613023, CNS-1703598, CNS-1763172, ONR grants N00014-16-1-
2913, N00014-18-1-2037, Intel CAPA grant, Samsung grant, and
Google PhD Fellowship.

REFERENCES
[1] 2015. Out of memory error in customer review processing.

https://stackoverflow.com/questions/20247185.
[2] 2018. Apache Hadop. https://hadoop.apache.org/
[3] 2018. Apache Ignite. https://ignite.apache.org/
[4] 2018. Apache Spark. https://spark.apache.org/
[5] Faraz Ahmad, Seyong Lee, Mithuna Thottethodi, and TN Vijaykumar. 2012 .

TRECE-12-11. Puma: Purdue mapreduce benchmarks suite. Technical Report.
School of Electrical and Computer Engineering, Purdue University. https://
engineering.purdue.edu/~puma/datasets.htm

[6] Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, and Shan Lu. 2015. In-
terruptible Tasks: Treating Memory Pressure As Interrupts for Highly Scalable
Data-parallel Programs. In Proceedings of the 25th Symposium on Operating Sys-
tems Principles. 394–409.

[7] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo
Fonseca. 2012. Jockey: Guaranteed Job Latency in Data Parallel Clusters. In
Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys
’12). ACM, New York, NY, USA, 99–112. https://doi.org/10.1145/2168836.2168847

[8] Muhammad Ali Gulzar, Matteo Interlandi, Xueyuan Han, Mingda Li, Tyson
Condie, and Miryung Kim. 2017. Automated debugging in data-intensive scalable
computing. In Proceedings of the 2017 Symposium on Cloud Computing. ACM,
520–534.

[9] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali, Tyson
Condie, Todd D. Millstein, and Miryung Kim. 2016. BigDebug: Debugging Prim-
itives for Interactive Big Data Processing in Spark. In Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016. 784–795. https://doi.org/10.1145/2884781.2884813

[10] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-tuning System for
Big Data Analytics. In In CIDR. 261–272.

[11] Robert Ikeda, Hyunjung Park, and Jennifer Widom. 2011. Provenance for gener-
alized map and reduce workflows. In In CIDR. 273–283.

[12] Matteo Interlandi, Ari Ekmekji, Kshitij Shah, Muhammad Ali Gulzar, Sai Deep
Tetali, Miryung Kim, Todd Millstein, and Tyson Condie. 2018. Adding data
provenance support to Apache Spark. The VLDB Journal 27, 5 (01 Oct 2018),
595–615. https://doi.org/10.1007/s00778-017-0474-5

[13] Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (Sep. 2011),
649–678. https://doi.org/10.1109/TSE.2010.62

[14] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
654–665. https://doi.org/10.1145/2635868.2635929

[15] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. 2012. PerfXplain:
Debugging MapReduce Job Performance. Proc. VLDB Endow. 5, 7 (March 2012),
598–609. https://doi.org/10.14778/2180912.2180913

[16] Yongchul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2011. A
study of skew in mapreduce applications. In In the 5th Open Cirrus Summit.
Moskow.

[17] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2012. Skew-
Tune: Mitigating Skew in Mapreduce Applications. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data (SIGMOD ’12).
ACM, New York, NY, USA, 25–36. https://doi.org/10.1145/2213836.2213840

[18] YongChul Kwon, Kai Ren, Magdalena Balazinska, and Bill Howe. 2013. Managing
Skew in Hadoop. IEEE Data Eng. Bull. 36 (2013), 24–33.

[19] Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. 2013. Scalable
Lineage Capture for Debugging DISC Analytics. In Proceedings of the 4th Annual
Symposium on Cloud Computing (SOCC ’13). ACM, New York, NY, USA, Article
17, 15 pages. https://doi.org/10.1145/2523616.2523619

475

https://hadoop.apache.org/
https://ignite.apache.org/
https://spark.apache.org/
https://engineering.purdue.edu/~puma/datasets.htm
https://engineering.purdue.edu/~puma/datasets.htm
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2884781.2884813
https://doi.org/10.1007/s00778-017-0474-5
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.14778/2180912.2180913
https://doi.org/10.1145/2213836.2213840
https://doi.org/10.1145/2523616.2523619

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

[20] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Demsky, and
Shan Lu. 2018. Skyway: Connecting Managed Heaps in Distributed Big Data Sys-
tems. In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’18). ACM,
New York, NY, USA, 56–69. https://doi.org/10.1145/3173162.3173200

[21] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat
Alamian, and Onur Mutlu. 2016. Yak: A High-Performance Big-Data-Friendly
Garbage Collector. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 349–365. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen

[22] NYC Taxi and Limousine Commission. [n.d.]. NYC Taxi Trip Data 2013 (FOIA/-
FOIL). https://archive.org/details/nycTaxiTripData2013. Accessed: 2019-05-31.

[23] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making Sense of Performance in Data Analytics Frameworks.
In 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). USENIX Association, Oakland, CA, 293–307. https://www.usenix.org/
conference/nsdi15/technical-sessions/presentation/ousterhout

[24] Sunita Sarawagi. 1999. Explaining Differences in Multidimensional Aggregates.
In Proceedings of the 25th International Conference on Very Large Data Bases

(VLDB ’99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 42–53.
http://dl.acm.org/citation.cfm?id=645925.671500

[25] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. 1998. Discovery-driven
Exploration of OLAP Data Cubes. In In Proc. Int. Conf. of Extending Database
Technology (EDBT’98. Springer-Verlag, 168–182.

[26] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,
and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-scale
Advanced Analytics. In Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation (NSDI’16). USENIX Association, Berkeley,
CA, USA, 363–378. http://dl.acm.org/citation.cfm?id=2930611.2930635

[27] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. 2011. ARIA: Auto-
matic Resource Inference and Allocation for Mapreduce Environments. In Pro-
ceedings of the 8th ACM International Conference on Autonomic Computing (ICAC
’11). ACM, New York, NY, USA, 235–244. https://doi.org/10.1145/1998582.1998637

[28] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In Proceedings of the 7th European Software Engineering Conference Held Jointly
with the 7th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE-7). Springer-Verlag, Berlin, Heidelberg, 253–267. http:
//dl.acm.org/citation.cfm?id=318773.318946

476

https://doi.org/10.1145/3173162.3173200
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen
https://archive.org/details/nycTaxiTripData2013
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
http://dl.acm.org/citation.cfm?id=645925.671500
http://dl.acm.org/citation.cfm?id=2930611.2930635
https://doi.org/10.1145/1998582.1998637
http://dl.acm.org/citation.cfm?id=318773.318946
http://dl.acm.org/citation.cfm?id=318773.318946

	Abstract
	1 Introduction
	2 Background
	2.1 Computation Skew
	2.2 Apache Spark and Titian

	3 Motivating Scenario
	4 Approach
	4.1 Performance Problem Identification
	4.2 Capturing Data Lineage and Latency
	4.3 Expensive Input Isolation

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Case Study A: NYC Taxi Trips
	5.3 Case Study B: Weather
	5.4 Case Study C: Movie Ratings
	5.5 Accuracy and Instrumentation Overhead

	6 Related Work
	7 Conclusion and Future Work
	References

