
Pointcut Rejuvenation: Recovering Pointcut Expressions in Evolving
Aspect-Oriented Software

Raffi Khatchadourian∗

Ohio State University
khatchad@cse.ohio-state.edu

Phil Greenwood, Awais Rashid
Lancaster University

{greenwop,awais}@comp.lancs.ac.uk

Guoqing Xu
Ohio State University

xug@cse.ohio-state.edu

Abstract—Pointcut fragility is a well-documented problem
in Aspect-Oriented Programming; changes to the base-code
can lead to join points incorrectly falling in or out of the
scope of pointcuts. We present an automated approach that
limits fragility problems by providing mechanical assistance
in pointcut maintenance. The approach is based on harnessing
arbitrarily deep structural commonalities between program el-
ements corresponding to join points selected by a pointcut. The
extracted patterns are then applied to later versions to offer
suggestions of new join points that may require inclusion. We
demonstrate the usefulness of our technique by rejuvenating
pointcuts in multiple versions of several open-source AspectJ
programs. The results show that our parameterized heuristic
algorithm was able to automatically infer new join points in
subsequent versions with an average recall of 0.93. Moreover,
these join points appeared, on average, in the top 4th percentile
of the suggestions, indicating that the results were precise.

Keywords-Software development environments; Software
maintenance; Software tools

I. INTRODUCTION

Aspect-Oriented Programming (AOP) [1] has emerged to
reduce the scattering and tangling of crosscutting concern
(CCC) implementations. This is achieved through specifying
that certain behavior (advice) should be composed at specific
(join) points during the execution of the underlying program
(base-code). Sets of join points are described by pointcuts
(PCEs), which are predicate-like expressions over various
characteristics of “events” that occur during the program’s
execution. In AspectJ [2], an extension of Java with support
for aspects, for instance, such characteristics may include
calls to certain methods, accesses to particular fields, and
modifications to the run time stack.

Consider an example PCE execution(∗ m∗(..)) that selects
the execution of all methods whose name begins with m,
taking any number and type of arguments, and returning
any type of value. Suppose that in a particular version of
the base-code, the above PCE selects the correct set of join
points in which a CCC applies. As the software evolves, this
set of join points may change as well. We say that a PCE

This material is based upon work supported in part by European Com-
mission grants IST-33710 (AMPLE) and IST-2-004349 (AOSD-Europe).

∗A portion of this work was administered during this author’s visit to
the Computing Department, Lancaster University, United Kingdom.

is robust if it, in its unaltered form, is able to continue to
capture the correct set of join points in future versions of the
base-code. Thus, the PCE given above would be considered
robust if the set of join points in which the CCC applies
always corresponded to executions of methods whose name
beings with m, taking any number and type of arguments,
and so forth. However, with the requirements of typical
software tending to change over time, the corresponding
source code may undergo many alterations to accommodate
such change, including the addition of new elements in
which existing CCCs should also apply. Without a priori
knowledge of future maintenance changes and additions,
creating robust PCEs is a daunting task. As such, there
may easily exist situations where the PCE itself must evolve
along with the base-code; in this case, we say that the PCE
is fragile. Hence, the fragile pointcut problem [3] manifests
itself in such circumstances where join points incorrectly fall
in or out of the scope of PCEs.

To alleviate such problems, we propose an approach
that provides automated assistance in rejuvenating PCEs
upon changes to the base-code. The technique is based
on harnessing unique and arbitrarily deep structural com-
monalities between program elements corresponding to join
points selected by a PCE in a particular software version.
To illustrate, again consider the example PCE given earlier
and suppose that, in a certain base-code version, the PCE
selects the execution of three methods, m1, m2, and m3.
Further suppose that facets pertaining to these methods
exhibit structural commonality, e.g., each of the methods’
bodies may (textually) include a call to a common method
y, or that each includes a call to three other methods x, y,
and z, respectively, all of which have method bodies that
include an assignment to a common field f . Likewise, each
method may be declared in three different classes A, B, and
C, respectively, all of which are contained in a package
p. Moreover, if such characteristics are shared between
program elements corresponding to join points selected by
a PCE in one base-code version, it is conceivable that these
relationships persist in subsequent versions. Consequently,
our proposal involves constructing patterns that describe
these kinds of relationships, assessing their expressiveness
in comparison with the PCE used to construct them, and

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.37

563

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.37

577

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.37

577

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.37

575

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.37

575

associating them with the PCE so that they may be applied
to later base-code versions to offer suggestions of new join
points that may require inclusion.

Our key contributions are as follows. First, we briefly
overview a parameterized heuristic algorithm that automat-
ically derives arbitrarily deep structural patterns inherent to
program elements corresponding to join points selected by
the original PCE. This allows join points to be suggested
that may require inclusion into a revised version of the
PCE, ensuring that changes can be correctly applied by
mechanically assisting the developer in maintaining PCEs.
Next, we establish that join points selected by a single PCE
typically portray a significant amount of unique structural
commonality by applying our algorithm to automatically
extract and analyze patterns using PCEs contained within
single versions of 23 AspectJ programs. Lastly, to ensure
the applicability and practicality of our approach, we imple-
mented our algorithm as an Eclipse IDE (http://eclipse.org)
plug-in and evaluated its usefulness by rejuvenating PCEs
in multiple versions of 3 of the aforementioned programs.

II. HARNESSING COMMONALITY

Due to space limitations, we briefly overview a parameter-
ized heuristic algorithm that assists developers in maintain-
ing PCEs upon changes to the base-code by inferring new
join points that may require inclusion; we invite to reader to
refer to [4] for a thorough treatment. The algorithm works
by discovering structural commonality between program
elements corresponding to join points captured by a PCE in
a particular software version. We capture such commonality
by constructing patterns that abstractly describe the kinds
of relations that the program elements have in common.
The extracted patterns are then applied to later versions to
offer suggestions of new join points that require inclusion
as similar commonality may be exhibited in the future.

Our approach is divided into two conceptual phases:
analysis and rejuvenation. The analysis phase is triggered
upon modifications to or creation of PCEs. A graph is
then computed which depicts structural relationships among
program elements currently residing in the base-code. Next,
patterns are derived from paths of the graph in which vertices
and/or edges representing program elements and/or relation-
ships are associated with join points selected by the PCE.
This is done by matching the shadows of the join points
captured by the input PCE. A join point shadow corresponds
to a point in the program text where the compiler may
actually combine the advice code with the base-code [5].

PCEs may be associated with certain dynamic conditions
placed upon the behavior of the base-code. Presently, we
conservatively treat these conditions as always being satis-
fied; future work may entail more accurately approximating
truth values associated with dynamic conditions, perhaps
through dynamic analysis and/or by leveraging techniques
from [6]. Furthermore, the maximum length of the paths

used to generate the patterns is an additional input to our
algorithm. Although the parameter value is arbitrary, larger
values result in greater analysis time. Consequently, the
parameter value is trade-off to be considered in practice.
We refer to this length as the maximum analysis depth.

Patterns are then themselves analyzed to evaluate the
confidence (as inspired by [7]) we have in using the pattern
to identify join points that should be captured by a revised
version of the PCE upon base-code evolution (see [4] for
details). Results produced by the pattern are correlated with
and ranked by this value when presented to the developer.
Finally, patterns along with their confidence are linked with
the PCE and persisted for later use in the next phase.

We envision our approach to be most helpful in scenarios
where the base-code is modified prior to updating PCEs to
reflect those changes so that new join points are captured
correctly. Thus, the rejuvenation phase is triggered before
the developer manually alters the PCE so that automated as-
sistance in performing the updates correctly can be provided.
Now, patterns previously linked with the PCE are retrieved
from storage and applied to a graph computed from the
new base-code version to unveil the suggested join points.
These join points are ones related to program elements that
share structural similarities with program elements related
to join points previously selected by the PCE in the original
base-code version. A list of suggestion, confidence pairs is
presented to the developer, with the confidence component
being the confidence of the pattern producing the suggestion.
Lastly, the list is sorted in decreasing order of confidence.

III. EXPERIMENTAL EVALUATION

In this section, we overview an experimental study con-
ducted to ascertain the usefulness of our rejuvenation ap-
proach in terms of its ability to accurately suggest shadows
to be incorporated into a revised version of a PCE given evo-
lutionary changes made to the base-code. Again, interested
readers are invited to refer to [4] for further details.

A. Implementation

We implemented our algorithm as a plug-in, called Re-
juvenate Pointcut (http://code.google.com/p/rejuvenate-pc),
to the popular Eclipse IDE. Eclipse abstract syntax trees
(ASTs) with source symbol bindings were used as an inter-
mediate program representation. Program element structural
relationships were resolved with the aid of the JayFX (http:
//tinyurl.com/mbwreh) fact extractor, which we extended for
use with Java 1.5 and AspectJ. JayFX generates “facts, ”
using class hierarchical analysis (CHA) [8], pertaining to
structural properties and relationships, e.g., field accesses,
method calls. These facts were used to construct the graph
mentioned in §I. Source code and transitively referenced
libraries (possibly in binary format) are analyzed during
graph building. The AJDT compiler (http://eclipse.org/ajdt)
was leveraged to associate the graph with a PCE. For a

564578578576576

given PCE, the AJDT compiler produces the Java program
elements, e.g., method declarations, method calls, field sets,
correlated with selected shadows. Both pattern extraction
and pattern-path matching was implemented via the Drools
(http://jboss.org/drools) rules engine, which makes use of a
modified version of the RETE algorithm [9]. The Drools
framework not only provides an efficient solution to the
many-to-many matching problem the tool is faced with, as
well as a natural query language, but also performance ben-
efits such as the caching. Pattern descriptions were persisted
as XML files, which were read and written to using the Java
Domain Object Model (JDOM; http://jdom.org) translation
framework.

B. Study Configuration

Our evaluation was conducted in two phases where subject
source code was used as input to our tool “as-is” with no
remarkable modifications made by the study designers. For
both phases, the maximum analysis depth (q.v. §II) was set
at 2. Although setting the parameter to a value < 2 would
theoretically improve performance, we chose a greater value
due to the inherent nature of PCEs to capture join points that
crosscut many heterogeneous architectural modules; thus,
we deemed it necessary to drive the analysis reasonably
deep through these layers. Evaluating trade-offs between
performance and depth has been designated for future work.

First, we aimed to show that the motivation behind our
proposal is well founded by demonstrating that shadows
selected by a single PCE typically portray a significant
amount of unique structural commonality. We did so by
generating and, subsequently, studying patterns from single
versions of 23 publicly available AspectJ benchmarks, ap-
plications, and libraries (including open-source projects) of
varying size, in terms of non-blank, non-commented lines of
code (LOC), and domain. Complete source code and descrip-
tions of the studied subjects can be found on our website
http://tinyurl.com/6ewl2r. To ensure that a certain level of
quality was maintained, we purposefully selected subjects
that have been used previously in the literature including
empirical studies [10]. This ensures that the subjects have
achieved a particular level of acceptance.

Table I lists the subjects along with associated KLOC
(column KL; excludes code contained within aspect files),
ranging from 0.07 for Quicksort to 44.0 for MySQL Con-
nector/J, PCEs (column PC) analyzed (includes only PCEs
bound to advice bodies), total selected shadows (column
shd.), and thousands of patterns (column KP.) extracted
(averaging 6.99 per shadow) and thereby evaluated. For each
subject, the pattern generation was repeated five times using
a 2.16 GHz Intel Core 2 Duo machine with a maximum
Java heap size of 1GB. Column t depicts the total running
time (excludes AST construction) in seconds, which itself
averaged 8.22 secs per KLOC and 4.80 secs per PCE,
indicating that the time required to generate our patterns is

subject KL. PC shd. KP. α β t (s)
AJHotDraw 21.8 32 90 3.36 0.32 0.06 101

Ants 1.57 22 297 1.25 0.15 0.23 43
Bean 0.12 2 4 0.02 0.24 0.23 4

Contract4J 10.7 15 350 1.80 0.26 0.44 115
DCM 1.68 8 343 2.47 0.15 0.45 4

Figure 0.10 1 6 0.02 0.11 0.45 8
Glassbox 26.0 55 208 2.62 0.1 0.29 228

HWatcher 5.72 27 122 1.00 0.21 0.16 22
Cactus 7.57 4 222 2.15 0.21 0.52 8

LoD 1.59 5 164 0.54 0.15 0.41 46
MPhoto 3.80 25 25 0.78 0.23 0.00 11
MySQL 44.0 2 3016 17.6 0.12 0.58 379

NullCheck 1.47 1 112 0.10 0.17 0.55 293
N-Version 0.55 4 9 0.08 0.19 0.24 1
Quicksort 0.07 4 7 0.06 0.19 0.15 3

RacerAJ 0.58 4 9 0.02 0.23 0.09 5
RCache 0.22 4 14 0.07 0.11 0.21 6

Spacewar 1.42 9 58 0.23 0.15 0.22 37
StarJ-Pool 38.2 1 3 0.07 0.25 0.00 75

Telecom 0.28 4 5 0.03 0.21 0.02 7
Tetris 1.04 18 27 0.50 0.16 0.01 14

TollSystem 5.20 35 85 1.68 0.26 0.06 20
Tracing 0.37 16 132 0.68 0.17 0.4 1

Totals: 174 298 5308 37.1 0.18 0.16 1431

Table I
PHASE I: CORRELATION ANALYSIS EXPERIMENT RESULTS.

subject vers. PC trg. rec. pr. t (s)
Contract4J 5 13 317 0.81 0.05 1046

HealthWatcher 8 6 30 1.00 0.13 146
MobilePhoto 7 39 33 0.97 0.02 266

Totals: 20 49 380 0.93 0.04 1458

Table II
PHASE II: REJUVENATION EXPERIMENT RESULTS.

practical even for large applications. The remaining columns
will be discussed later in §III-C.

Our goal in the second phase of the experiment was to
demonstrate the usefulness of our technique in a real-world
setting. We did so by rejuvenating PCEs in multiple versions
of 3 of the aforementioned subjects. As this task was rather
involved, we chose a proper subset of the subjects listed
in Table I that were ripe for the analysis in a number of
ways. These subjects, listed in Table II, were comprised of
a series of discrete releases (column vers.) which allowed
the accuracy of the shadows mechanically suggested by our
tool to be evaluated against actual modifications to PCEs,
in terms of included shadows, made by human developers
in subsequent versions. For our approach to be successfully
evaluated, a complete set of changes was required to be
considered in isolation. It was often the case that subsequent
versions in SVN/CVS repositories did not contain complete
changes, e.g., the base-code was modified and committed
with the PCE modified and committed in a later version. This
made reasoning about units of discrete modifications diffi-
cult; thus, we considered major releases as units of evolution.
Moreover, we were solely interested in rejuvenating PCEs
between versions that exhibited non-trivial modifications.

We defined the following conditions for PCEs regarding

565579579577577

All Shadows in New Program

PCE

PCE'

Figure 1. Comparing a PCE with its revision in the new program.

subsequent versions, which ensured that the performance of
our tool was evaluated only in situations where the PCE
recovery due to modifications to the base-code was non-
trivial. We say that a PCE contained in a version A evolved
between a version B iff

• the textual representation of the PCE in A differs from
the textual representation of the PCE in B,

• the set of shadows selected by the PCE in A is disjoint
from the set of shadows selected by the PCE in B, and

• the set of shadows selected by the PCE in B is
disjoint from the set of shadows selected by the old
representation of the PCE in B.

The last criterion asserts that the region designated by the
light-shaded arrow in the Venn diagram depicted in Fig. 1,
where the outer region symbolizes all shadows in B, PCE
the shadows in B selected by the old representation, and
PCE′ the shadows selected in B by the new representation,
is non-empty. We evaluated the performance of our tool only
in situations where a textual modification to the PCE was
required to allow the PCE to continue to capture intended
join points. Column PC, Table II shows the number of PCEs
across versions which met this criteria and were, conse-
quently, selected to be rejuvenated by our tool. Determining
the region marked as PCE in Fig. 1 required carefully
copying the original PCE to the subsequent version and
binding it to an empty advice body. Column t designates the
total rejuvenation time in secs. Although the average was ˜4
secs per KLOC, producing a single suggestion occupied 3.84
secs on average, which could result in a slow rejuvenation
time for PCEs with large target regions. As the analysis is
conservative in a number of ways (q.v. §II), future work
may entail exploring graph reduction technique as in [11]
or swapping the AJDT with [12] for a simpler intermediate
representation to possibly reduce the rejuvenation time. The
remaining columns are discussed in §III-D.

C. Phase I: Correlation Analysis Results

In first phase, we assessed the amount of unique structural
commonality typically portrayed by shadows selected by
a single PCE by studying attributes of patterns extracted
from a single version of the subjects listed in Table I. A
pattern with a low type I (false positive) error rate produced

by applying the pattern to the base-code in which it was
derived is one that expresses unique structural commonal-
ities between shadows selected by the PCE in a particular
version. In this situation, applying the pattern to the original
version of the base-code would result in a set of suggested
shadows that matched closely with those selected by the PCE
itself. Thus, a pattern with a low type I error rate is one
that expresses common structural characteristics amongst
shadows selected by the PCE that are not exhibited by
other shadows. Column α depicts the average type I error
rate for all patterns extracted from the associated subject.
We found the average, weighted by the number of patterns
extracted, the type I error rate among all subjects to be 0.18,
demonstrating that a high correlation exists. Moreover, we
found this correlation to be exceptionally widespread, i.e.,
not only was the commonality unique to shadows selected
by a particular PCE, but many of these shadows shared these
characteristics. This is indicated by the average rate the type
II (false negative) rate (column β) whose average, weighted
by the number of PCEs analyzed, among all subjects was
found to be 0.16. The combination of these two findings
show that shadows selected by a single PCE typically display
a significant amount of unique structural commonality.

D. Phase II: Expression Recovery Results

During the second phase, we assessed the accuracy of our
technique by rejuvenating PCEs in multiple versions of the
subjects listed in Table II. We then evaluated the relationship
between the shadows that were suggested for inclusion by
our tool and those that were actually included in (human)
revised PCEs residing in a subsequent version. We were
especially interested in exploring our tool’s performance
in precisely suggesting shadows that were selected by the
revised PCE but would not have been selected by the original
PCE had we applied it to the new version. These are exactly
the shadows that the developer would have had to manually
determine to be applicable to the PCE, which coincide with
those that our tool could be most helpful in mechanically
discovering. This “target” set of shadows is represented by
the region surrounding the light-shaded arrow in Fig. 1. The
total number of shadows occupying this regions across all
rejuvenations is listed by column trg., Table II.

1) Quantitative Analysis: As success metrics for evalu-
ating our approach, we defined a promising rejuvenation to
be one where our tool suggests the majority of shadows
contained within the target region, i.e., a high recall. More-
over, as suggestions are ranked by confidence, the traditional
notion of precision (for unranked results) does not apply to
our situation [13]. Instead, we defined a precise rejuvenation
to be one where targeted shadows appeared near the top of
the list of suggestions after sorting by confidence.

Column rec., Table II shows the average recall at which
our tool was able to suggest targeted shadows. The average
recall across all subjects was found to be 0.93, indicating

566580580578578

that, on average, our tool suggested 93% of shadows that
resided in this region. This demonstrates that our tool
typically resulted in promising rejuvenation. Column pr.,
on the other hand, portrays the average percentile rank, a
means to divide an ordered list into sections, of targeted
shadows. A low percentile rank indicates that the suggested
shadow appears towards the top of (or first on) the list
and vice versa. Our results show that targeted shadows, on
average, appeared in the top 4th percentile of the list of
suggested shadows produced by our tool. Since there is a
direct correlation between the number of original shadows
and the number of derived patterns (and, consequently, the
number of suggested shadows), this would have allowed the
developer to easily identify the target shadows. Therefore,
the performance of our tool was exceptionally precise.

2) Qualitative Analysis: In this section, we identifying
potential reasons for both accurate and inaccurate sugges-
tions made by our tool. For succinctness, we draw examples
from only the HealthWatcher subject. The major contributing
factor that was found to cause patterns derived by our ap-
proach to be ineffective when applied to subsequent versions
relates to modifications made to the base-code that involved
removing program elements appearing in patterns. For exam-
ple, the PCE call(∗ HttpSession+.putValue(String, Subject))
was affected by a modification to the base-code that involved
introducing the Adapter design pattern [14]. Consequently,
the HttpSession class was replaced, invalidating all patterns
containing references to this class. Fortunately, however, our
tool was able to compensate by producing other patterns that
were effective in rejuvenating the aforementioned PCE.

Common base-code modifications involved structural
refactoring. For example, one modification encompassed
introducing the Command design pattern [14], which re-
quired relocating the implementations of several Servlets to
a series of Command classes. This activity induced the need
to rejuvenate several PCEs. As the modifications made to
the base-code were minimal and purely structural, i.e., the
method bodies remained intact, our patterns encouragingly
but expectedly proved completely effective in this situation,
suggesting only and all of the targeted shadows.

We found several PCEs in the subjects to be very specific,
often selecting only a single join point. Therefore, patterns,
although few, constructed using these PCEs were generally
associated with a high confidence value. However, it was
not clear such patterns would prove useful as base-code
modifications that break the PCE could be rare. Furthermore,
having only a minimal set of patterns generated for these
PCEs, we questioned their usefulness in the cases that such
change does occur. Despite this, we did find scenarios in-
volving updates to these PCEs and, surprisingly, our patterns
were able to produce accurate suggestions in these situations.
One particular PCE that related to synchronization required
rejuvenation due to new types introduced. An obscure pattern
that centered upon references to an exception raised by

classes that required the managed synchronization behavior
caused shadows associated with the new types to be accu-
rately suggested. This demonstrates a benefit of our approach
in its ability to discover obscure structural characteristics that
may have eluded a developer.

IV. CONCLUSION AND FUTURE WORK

We have overviewed an approach that limits the problems
associated with pointcut fragility by providing automated
assistance to developers in rejuvenating pointcuts as the
base-code evolves. Arbitrarily deep structural commonalities
between program elements corresponding to join points cap-
tured by a pointcut in a single software version are harnessed
and analyzed. Patterns expressing this commonality are then
applied to subsequent versions to offer suggestions of new
join points that may require inclusion. The implementation
of a publicly available tool was discussed, and the results
of an empirical investigation were presented, indicating that
our approach is particularly usefulness in rejuvenating PCEs.

In its current state, our tool presents the developer with the
suggested shadows that are to be manually integrated. In the
future, once the selection is final, PCEs can be automatically
rewritten using existing refactoring support [15]. Moreover,
we plan to incorporate techniques outlined in [16] to perform
compact PCE representation rewriting. This approach takes
as input a set of shadows and uses join point clustering
and string analysis of program element names to produce a
compact PCE, making it an appropriate approach to follow
ours in a tool chain.

REFERENCES

[1] G. Kiczales et al., “Aspect oriented programming,” in ECOOP, 1997.
[2] ——, “An overview of aspectj,” in ECOOP, 2001.
[3] C. Koppen and M. Stoerzer, “PCDiff: Attacking the fragile pointcut

problem.” in Eur. Int. Workshop on Aspects in Software, 2004.
[4] R. Khatchadourian et al., “Pointcut rejuvenation: Recovering pointcut

expressions in evolving aspect-oriented software,” Lancaster Univer-
sity, UK, Tech. Rep. COMP-001-2008, Aug. 2008, (rev Mar. 2009).

[5] H. Masuhara, G. Kiczales, and C. Dutchyn, “A compilation and
optimization model for aspect-oriented programs,” in CC, 2003.

[6] B. Dufour et al., “Measuring the dynamic behaviour of AspectJ
programs,” in OOPSLA, 2004.

[7] B. Dagenais et al., “Inferring structural patterns for concern trace-
ability in evolving software,” in ASE, 2007.

[8] J. Dean, D. Grove, and C. Chambers, “Optimization of object-
oriented programs using static class hierarchy ana.” in ECOOP, 1995.

[9] C. L. Forgy, “Rete: a fast algorithm for the many pattern/many object
pattern match problem,” Artificial Intelligence, pp. 324–341, 1982.

[10] P. Greenwood et al., “On the impact of aspectual decompositions on
design stability: An empirical study,” in ECOOP, 2007.

[11] M. P. Robillard and G. C. Murphy, “Concern graphs: finding and
describing concerns using structural program depend.” in ICSE, 2002.

[12] P. Avgustinov et al., “abc : An extensible aspectj compiler,” Trans.
Aspect-Oriented Softw. Dev., vol. 1, pp. 293–334, 2006.

[13] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

[14] E. Gamma et al., Design patterns: elements of reusable object-
oriented software. Addison-Wesley Professional, 1995.

[15] J. Wloka, R. Hirschfeld, and J. Hänsel, “Tool-supported refactoring
of aspect-oriented programs,” in AOSD, 2008.

[16] P. Anbalagan and T. Xie, “Automated inference of pointcuts in aspect-
oriented refactoring,” in ICSE, 2007.

567581581579579

