
UNIVERSITY OF CALIFORNIA,
IRVINE

Detecting and Fixing Memory-Related Performance Problems in Managed Languages

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Lu Fang

Dissertation Committee:
Professor Guoqing Xu, Chair

Professor Alex Nicolau
Professor Brian Demsky

2017



Chapter 5 © 2015 ACM, doi 10.1145/2815400.2815407
Portion of Chapter 6 © 2015 ACM, doi 10.1145/2815400.2815407

All other materials © 2017 Lu Fang



DEDICATION

To my supportive parents, Yaping Fang and Ling Gao,
and my amazing girlfriend, Yiran Xie.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1

2 Background 7
2.1 Performance Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Managed Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Data-Parallel Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Memory-Related Performance Bug Description and Detection 11
3.1 ISL: Instrumentation Specification Language . . . . . . . . . . . . . . . . . . 12

3.1.1 ISL Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 ISL Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Instrumentation Semantics . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Amplification and Deamplification . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 More ISL Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Allocation sites creating invariant objects. . . . . . . . . . . . . . . . 25
3.3.2 Under-utilized Java maps. . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Never-used return objects. . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Summary and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 PerfBlower: A Performance Testing Framework 31
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Diagnostic Information Collection . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Heap Reference Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Mirroring Reference Paths . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Amplification Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Problems Found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 PerfBlower Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.4 False Positive Elimination . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Summary and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 ITask: Helping Data-Parallel Tasks Survive Memory Pressure 58
5.1 Memory Problems in the Real World . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 The ITask Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Instantiating ITasks in Existing Frameworks . . . . . . . . . . . . . . 73
5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 The ITasks Runtime System . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.1 The IRS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.2 Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.3 Partition Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.4 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.5 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.1 ITasks in Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.2 ITasks in Hyracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Summary and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Related Work 101
6.1 Finding Performance Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Test Amplification Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Domain-Specific Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Optimizations of Data-Parallel Systems . . . . . . . . . . . . . . . . . . . . . 103
6.5 Performance autotuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Conclusions and Future Work 106

Bibliography 109

iv



LIST OF FIGURES

Page

3.1 An ISL program for detecting memory leaks. . . . . . . . . . . . . . . . . . . 13
3.2 Abstract syntax of ISL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Parameter lists of ISL events. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 ISL semantic domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Auxiliary functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Instrumentation semantics of rule New. . . . . . . . . . . . . . . . . . . . . 21
3.7 Instrumentation semantics of rule Load. . . . . . . . . . . . . . . . . . . . . 22
3.8 Instrumentation semantics of rule Store. . . . . . . . . . . . . . . . . . . . 22
3.9 Instrumentation semantics of rule GC. . . . . . . . . . . . . . . . . . . . . . 23
3.10 The definition of VSO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.11 An ISL program for detecting allocation sites creating invariant objects. . . . 26
3.12 An ISL program for detecting under-utilized Java hash maps. . . . . . . . . 28
3.13 An ISL program for detecting never-used return objects. . . . . . . . . . . . 29

4.1 The architecture of PerfBlower. . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 A Java program with memory leaks. . . . . . . . . . . . . . . . . . . . . . . 34
4.3 An example heap reference path. . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 An example mirror path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 The layout of a tracked object. . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 The definition of the Mirror class. . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 VSOs for the memory leak amplifier with different heap sizes. . . . . . . . . 45
4.8 A partial reference path reported by our memory leak amplifier. . . . . . . . 47

5.1 Memory footprints of executions with (red) and without (blue) ITask. . . . . 61
5.2 Handling the different memory components of an ITask. . . . . . . . . . . . . 62
5.3 The architecture of the ITask runtime system. . . . . . . . . . . . . . . . . . 64
5.4 The DataPartition abstract class. . . . . . . . . . . . . . . . . . . . . . . . 67
5.5 The ITask abstract class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Setting input-output relationship. . . . . . . . . . . . . . . . . . . . . . . . . 70
5.7 The dataflow of an ITask execution. . . . . . . . . . . . . . . . . . . . . . . . 71
5.8 The MITask abstract class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.9 MapOperator with ITask for the WordCount in Hyracks. . . . . . . . . . . . . 74
5.10 ReduceOperator with ITask for the WordCount in Hyracks. . . . . . . . . . . 75
5.11 MITask for the WordCount in Hyracks. . . . . . . . . . . . . . . . . . . . . . 76
5.12 Modified Mapper in Hadoop. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

v



5.13 Performance of the original WC with different threads. . . . . . . . . . . . . 91
5.14 Performance of the original HS with different threads. . . . . . . . . . . . . . 91
5.15 Performance of the original II with different threads. . . . . . . . . . . . . . 92
5.16 Performance of the original HJ with different threads. . . . . . . . . . . . . . 92
5.17 Performance of the original GR with different threads. . . . . . . . . . . . . 92
5.18 Comparisons between the ITask WC and its Java counterpart. . . . . . . . . . 94
5.19 Comparisons between the ITask HS and its Java counterpart. . . . . . . . . . 95
5.20 Comparisons between the ITask II and its Java counterpart. . . . . . . . . . 95
5.21 Comparisons between the ITask HJ and its Java counterpart. . . . . . . . . . 95
5.22 Comparisons between the ITask GR and its Java counterpart. . . . . . . . . . 96
5.23 The legend of Figure 5.18–5.22. . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.24 The performance of WC whiling changing the heap size. . . . . . . . . . . . . 97
5.25 The performance of II whiling changing the heap size. . . . . . . . . . . . . 97
5.26 The number of active ITask instances during the execution. . . . . . . . . . 98

vi



LIST OF TABLES

Page

4.1 Space overheads reported by the amplifiers. . . . . . . . . . . . . . . . . . . 42
4.2 Space overheads for memory leaks with different history sizes. . . . . . . . . 44
4.3 Comparison of PerfBlower and Sleigh’s reports. . . . . . . . . . . . . . . . . 51
4.4 Completeness of PerfBlower. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 False warnings eliminated by deamplification. . . . . . . . . . . . . . . . . . 54

5.1 Hadoop performance comparisons for five real-world programs. . . . . . . . . 86
5.2 A detailed breakdown of memory savings. . . . . . . . . . . . . . . . . . . . 87
5.3 WC, HS, and II’s inputs: the Yahoo! Webmap and its subgraphs. . . . . . . 89
5.4 HJ and GR’s inputs: TPC-H data. . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5 The configurations which provide the best scalability/performance. . . . . . 91
5.6 A summary of the performance improvements from ITask. . . . . . . . . . . 93

vii



LIST OF ALGORITHMS

Page
1 Incrementally creating virtual penalties and building mirror paths. . . . . . . 38
2 The major logic of the IRS monitor. . . . . . . . . . . . . . . . . . . . . . . . 80
3 The major logic of the IRS partition manager. . . . . . . . . . . . . . . . . . 81
4 The major logic of the IRS scheduler. . . . . . . . . . . . . . . . . . . . . . . 83

viii



ACKNOWLEDGMENTS

My sincerest and deepest thanks go to my advisor, Professor Guoqing Xu, who has expended
a tremendous amount of effort on training me into a good researcher. It has been my great
honor to join Professor Xu’s research group as his first Ph.D. student. During the past five
years, from him, I have learned how to identify problems, solve problems, build systems,
think deeply, write papers, make presentations, manage time, collaborate with people and
be a good person. Without his guidance and help, my doctoral research and this dissertation
would not have been possible. Since I can never repay Professor Xu for what he has given
to me, I will try my best to make him proud of me in the future.

I would like to thank Professor Brian Demsky, who has served on my final defense com-
mittee and candidacy exam committee. Professor Demsky has provided many constructive
comments on my research work, including PerfBlower, ITask, Yak and Skyway, from system
architectures to implementations. From him, I have learned how to build practical systems
in a right way.

I would like to thank Professor Alex Nicolau, Professor Michael Franz, and Professor Mo-
hammad Al Faruque, for serving on my final defense committee and/or candidacy exam
committee. Their valuable feedback helped me improve my work.

I would like to thank Dr. Gang Ren and Dr. Du Li for providing me opportunities to intern
at Google and Hewlett Packard Labs, respectively. The internship has enlarged my visions
and helped me understand how to align the research with real-world impact.

I would like to thank my fantastic colleague and best teammate, Khanh Nguyen, for his
enormous help with my work and life. Like Professor Xu always says, when Khanh and I
team up together, nothing is impossible. I will never forget the days and nights we spent
together building systems and fighting against bugs.

I would like to thank my colleagues, Dr. Yingyi Bu, Dr. Zhiqiang Zuo, Dr. Keval Vora, Kai
Wang, Jianfei Hu, Aftab Hussain, Cheng Cai, Bojun Wang, Christian Navasca, Matthew
Hartz, Louis Zhang, Ankur Gupta, for their great support during the past five years.

Last but not least, I would like to thank my friends for enriching my life. My thanks go
to Guannan Li, Dawei Guo, Man Xu, Rong Zhu, Yuanfang Sun, Yunshan Ke, Ximin Chen,
Wei Zhao, Shuai Shao, Weihu Wang, Fangwei Si, Wan Shi, Xu Sun, Lang Wang, Xin Zhao,
Lei Shen, Rui Yang, Xin Yong, Yanchao Xin, Ping Hu, Le Huang, Dr. Nan Hu, Dr. Bowen
Meng, Dr. Ze Yu, Dr. Dimin Niu, Rundong Lv, Yuchen Liu, Haochen Tang, Kai Pan, Kailai
Zhou, Lucas Sun, Hamilton Wen, Owen Ou, Fan Yin, Junjie Shen, Dr. Zhiqiang Jin, Haoli
He, Albert Jiang, Penghang Yin, Zhaohao Zhou, Bingchen Yu, Dr. Xiyan Wang, Dr. Jiaxi
Wang, Zhi Chen, Menglin Jiang, Dr. Chunyan Wang, Kan Wang.

The work presented in this dissertation has been supported by NSF under grants CNS-
1321179, CCF-1409829, CNS-1613023, CCF-0846195, and by ONR under grants N00014-14-
1-0549 and N00014-16-1-2913.

ix



CURRICULUM VITAE

Lu Fang

EDUCATION

Doctor of Philosophy in Computer Science 2012–2017
University of California, Irvine Irvine, California

Master of Science in Computer Science 2009–2012
Peking University Beijing, China

Bachelor of Science in Computer Science 2005–2009
Peking University Beijing, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2012–2017
University of California, Irvine Irvine, California

System Research Intern Summer 2016
Hewlett Packard Labs Palo Alto, California

Graduate Research Assistant 2009–2012
Peking University Beijing, China

TEACHING EXPERIENCE

Teaching Assistant 2012–2013
University of California, Irvine Irvine, California

Teaching Assistant 2009–2011
Peking University Beijing, China

PROFESSIONAL EXPERIENCE

Software Engineer Intern Summer 2015
Google Inc. Mountain View, California

Software Engineer Intern 2010–2011
Kuwo Inc. Beijing, China

Software Engineer Intern Summer 2009
IBM Beijing, China

x



REFEREED PUBLICATIONS

Yak: A High-Performance Big-Data-Friendly Garbage
Collector

Nov. 2016

The 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’16)

Low-Overhead and Fully Automated Statistical Debug-
ging with Abstraction Refinement

Nov. 2016

The 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’16)

Speculative Region-based Memory Management for Big
Data Systems

Oct. 2015

The 8th Workshop on Programming Languages and Operating Systems (PLOS’15)

Interruptible Tasks: Treating Memory Pressure As In-
terrupts for Highly Scalable Data-Parallel Programs

Oct. 2015

The 25th ACM Symposium on Operating Systems Principles (SOSP’15)

PerfBlower: Quickly Detecting Memory-Related Per-
formance Problems via Amplification

Jul. 2015

The 29th European Conference on Object-Oriented Programming (ECOOP’15)

Facade: A Compiler and Runtime for (Almost) Object-
Bounded Big Data Applications

Mar. 2015

The 20th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’15)

An Exploratory Study of API Usage Examples on the
Web

Dec. 2012

The 19th Asia-Pacific Software Engineering Conference (APSEC’12)

Towards Automatic Tagging for Web Services Jun. 2012
The 19th IEEE International Conference on Web Services (ICWS’12)

APIExample: An Effective Web Search Based Usage
Example Recommendation System for Java APIs

Nov. 2011

The 26th IEEE/ACM International Conference On Automated Software Engineering
(ASE’11)

xi



SOFTWARE

PerfBlower https://bitbucket.org/fanglu/perfblower-public

PerfBlower is a general performance testing framework which helps developers find and
fix memory-related performance problems at the early stage.

xii

https://bitbucket.org/fanglu/perfblower-public


ABSTRACT OF THE DISSERTATION

Detecting and Fixing Memory-Related Performance Problems in Managed Languages

By

Lu Fang

Doctor of Philosophy in Computer Science

University of California, Irvine, 2017

Professor Guoqing Xu, Chair

Performance problems commonly exist in many kinds of real-world applications, including

smartphone apps, databases, web servers, as well as large-scale data analytical systems. The

pervasive use of managed languages such as Java and C#, which often blow up memory usage

in unpredictable ways, further exacerbates these problems. A great deal of evidence from

various application communities shows that seemingly insignificant performance problems

can lead to severe scalability reductions and even financial losses.

Performance problems are notoriously difficult to find and fix in real-world systems. First,

visible performance degradation is often an accumulation of the effects of a great number

of invisible problems that scatter all over the program. These problems only manifest for

particular workloads or when the input size is large enough. Hence, it is extremely difficult, if

not impossible, for developers to catch performance problems early during testing before they

go out to production and are experienced by users. Fixing these problems is equally difficult.

Developing a fix requires the understanding of the root cause, which can be both time-

consuming and labor-intensive given the complexity of large software systems. Furthermore,

for modern applications such as data analytical systems, application developers often write

only a simple layer of user logic (e.g., Map/Reduce programs), treating the underlying system

as a blackbox. It would not be possible to come up with a fix if the problem is located deeply

xiii



in the system code.

There is a rich literature in techniques that can find and fix performance problems in managed

programs. However, the existing works all suffer from one or more of the following drawbacks:

(1) lacking a general way to describe different kinds of performance problems, (2) lacking

effective test oracles that can capture invisible performance problems under small workloads,

(3) lacking effective debugging support that can help developers find the root cause when

a bug manifests, and (4) lacking a systematic approach that can effectively tune memory

usage in data-intensive systems. As a result, performance bugs still escape to production

runs, hurt user experience, degrade system throughput, and waste computational resources.

For modern Big Data systems, most of which are written in managed languages, performance

problems become increasingly critical, causing scalability degradation, unacceptable latency,

and even execution failures leading to wide-range crashes and financial losses.

In this dissertation, we propose a set of dynamic techniques that can help developers find

and fix memory-related performance problems in both programs running on a single ma-

chine and data-intensive systems deployed on large clusters. Specifically, this dissertation

makes the following three major contributions. The first contribution is the design of an

instrumentation specification language (ISL) in which one can easily describe the symptoms

and counter-evidence of performance problems. The language supports two primary actions

amplify and deamplify, which can help developers capture invisible problems by “blowing

up” the effect of the performance bugs and reduce false warnings. The second contribution is

the development of a general performance testing framework named PerfBlower, which can

efficiently profile program executions, continuously amplify the problems specified with the

ISL language, and report reference-path-based diagnostic information, making it easy for the

user to understand the root cause of a reported problem and develop a fix. The third con-

tribution is the design and implementation of interruptible task, a new type of data-parallel

tasks that can be interrupted upon memory pressure—with part or all of their used memory

xiv



reclaimed—and resumed when the pressure goes away, to help large-scale data analytical

systems such as Hadoop and Hyracks survive memory pressure.

To evaluate these techniques, we have performed an extensive set of experiments using real-

world programs and datasets. Our experimental results demonstrate that the techniques

proposed in this dissertation can effectively detect and fix memory-related performance prob-

lems in both single-machine programs and distributed data-parallel system. These techniques

are also easy to use — users can quickly describe performance problems using ISL and/or

develop interruptible tasks to improve the performance of their application code without un-

derstanding the underlying systems. These techniques can be readily employed in practice

to help real-world developers in various testing and tuning scenarios.
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Chapter 1

Introduction

Performance problems commonly exist in many kinds of real-world applications, such as

smartphone apps, databases, web servers, as well as large-scale analytical systems. The

pervasive use of managed languages such as Java and C#, which often blow up memory

usage in unpredictable ways [67, 124, 128], further exacerbates these problems. A great deal

of evidence [52, 121, 68] shows that seemingly insignificant performance problems can lead

to severe scalability reductions and even financial losses.

Performance problems are notoriously difficult to find and fix in real-world systems for a

number of reasons. First, visible performance degradation is often an accumulation of the

effects of a great number of invisible problems that scatter all over the program [121]. These

problems only manifest for particular workloads or when the input size is large enough.

Hence, it is extremely difficult, if not impossible, for developers to catch performance prob-

lems early during testing before they go out to production and are experienced by users.

Fixing these problems is equally difficult. Developing a fix requires the understanding of the

root cause, which can be both time-consuming and labor-intensive given the complexity of

large software systems. Furthermore, for modern applications such as data analytical sys-
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tems, application developers often write only a simple layer of user logic (e.g., Map/Reduce

programs), treating the underlying system as a blackbox. It would not be possible to come

up with a fix if the problem is located deeply in the system code.

To find and fix performance problems, researchers have proposed a wide variety of techniques

in programming languages and systems. Many approaches [52, 75, 126, 127, 77, 73] fall into

the category of pattern-based bug detection where patterns are summarized to find regions

of inefficient code. Heap analysis [69, 68], data mining [46, 132] and machine learning [98,

140, 118] techniques have also been employed to detect performance problems. Much work

[24, 44, 141, 32, 70, 63, 138, 109] has been done to improve scalability at the architecture level

for distributed systems [36, 78, 32, 63, 3, 64, 58, 29, 26]. In addition to these research efforts,

many open-source frameworks (e.g., [30, 42, 107, 92, 49]) have been designed to support

performance testing, e.g., by generation of large tests/loads for triggering performance bugs1.

However, all of these existing techniques suffer from one or more of the following drawbacks:

• Drawback 1: Lacking a general specification to describe different kinds of

performance problems. Existing tools are designed for specific types of problems.

To detect/fix a new type of problems, developers need to develop tools completely from

scratch.

• Drawback 2: Lacking effective test oracles that can capture invisible per-

formance problems under small (testing) workloads. Many tools detect perfor-

mance problems by checking the absolute time elapsed and/or memory usage. Such

approaches are often subjective and cannot reveal small performance bugs before they

accumulate. As a result, performance bugs still escape to production runs, hurt user

experience, degrade system throughput, and waste computational resources [19]. They

affect even well-tested software such as Windows 7’s Windows Explorer, which had sev-

1We use “performance bug” and “performance problem” interchangeably.

2



eral high-impact performance bugs that escaped detection for long periods of time [46].

• Drawback 3: Lacking effective debugging support that can help developers

find the root cause when a bug manifests. Precise and useful diagnostic informa-

tion is critical for identifying root causes and fixing performance problems. However,

most existing detectors can only provide simple information such as object types or al-

location sites. Without enough execution information, fixing the problem is as difficult

as finding a needle in a haystack.

• Drawback 4: Lacking a systematic way to reduce memory pressure in data-

parallel systems. Data-parallel systems such as Hadoop commonly experience high

memory pressure that can cause them to fail or suffer from very high garbage collection

(GC) overhead. These systems have many tuning parameters that can be used to ad-

just various configurations such as degree of parallelism or task granularity. Practical

solutions to high memory pressure center around making “best practice” recommenda-

tions for manual tuning of framework parameters [9]. For example, the developer could

reduce input size for each task (i.e., finer granularity) and/or degree-of-parallelism (i.e.,

fewer threads). However, it is impossible to find a one-size-fits-all configuration even

for a single data-parallel program when considering data skewness and different be-

haviors of its tasks, not to mention finding an optimal configuration across different

programs.

In this dissertation, we propose a set of dynamic techniques that can help developers find

and fix memory-related performance problems in both programs running on a single machine

and data-intensive systems deployed on large clusters. This dissertation makes the following

contributions:

• Contribution 1: A performance specification language. To provide developers

a general way to define symptoms, we propose a simple, event-based language, referred

3



to as ISL (i.e., short for instrumentation specification language). ISL is a domain-

specific language tailored for describing symptoms of performance problems on a JVM.

Since performance problems cannot be expressed using logical assertions, an important

challenge in the design of ISL is what to do when a symptom is seen. Unlike a regular

detector that immediately reports a problem, ISL provides a pair of commands amplify

and deamplify, which allow developers to add memory penalties to an object upon

observing a symptom and remove penalties when a counter-evidence is seen. Symptoms

are only indicators of performance problems, not definitive evidence. If the specified

symptom does not point to a real problem (e.g., the symptom stays for a while and

then disappears), the developer calls deamplify to remove penalties. The symptom

specified in ISL is periodically checked (often during garbage collection): objects that

keep satisfying the specification will keep getting penalized; all existing penalties for

an object are removed at the moment we observe that the object does not satisfy the

specification.

• Contribution 2: A general performance testing framework. We build a novel

framework PerfBlower with the support for ISL to help developers efficiently amplify

memory-related performance bugs at the early stage. To collect useful diagnostic infor-

mation, PerfBlower incrementally builds a mirror chain to reflects the major reference

path leading to the problematic objects.

We have implemented PerfBlower based on the Jikes Research Virtual Machine. Using

PerfBlower, we have amplified four different types of performance problems (i.e., mem-

ory leaks, under-utilized containers, over-populated containers, and never-used return

objects) on a set of real-world applications; our experimental results show that even

under small workloads, there is a very clear distinction between the VSOs for execu-

tions with and without problems, making it particularly easy for developers to write

simple space assertions and only inspect programs that have assertion failures. In fact,

we have manually inspected each of our benchmarks for which PerfBlower reports a
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high VSO, and found a total of 8 unknown problems.

• Contribution 3: A systematic approach helping data-parallel tasks survive

memory pressure. We propose a novel, systematic approach, called interruptible task

(ITask), that can help data-parallel programs survive memory pressure without needing

(1) additional hardware resources (e.g., memory, nodes, etc.) or (2) manual parameter

tuning. Inspired by how processors handle hardware interrupts, our idea is to treat

memory pressure as interrupts : a data-parallel task can be interrupted upon memory

pressure—with part or all of its consumed memory reclaimed—and re-activated when

the pressure goes away.

We have instantiated ITasks in the widely-used Hadoop framework [102] as well as

Hyracks [17], a distributed data-parallel framework. We reproduced 13 Hadoop prob-

lems reported on StackOverflow and implemented their ITask versions. ITask was able

to help all of these programs survive memory pressure and successfully process their

entire datasets. For a diverse array of 5 problems, we performed an additional com-

parison between their ITask versions under default configurations and their original

programs under the recommended configurations; the results show that the ITask ver-

sions outperform the manually-tuned versions by an average of 2×. For Hyracks, we

selected 5 well-tuned programs from its repository and performed a detailed study on

performance and scalability between their original versions and ITask versions: the

ITask versions are 1.5–3× faster and scale to 3–24× larger datasets than their regular

counterparts. In fact, the scalability improvement ITask provides can be even higher

(e.g., hundreds of times) if further larger datasets are used.

Impact. The amplification technique proposed in this dissertation is the first attempt to

reveal performance problems under small workloads by amplifying the effects of problematic

objects. The success of this technique has demonstrated that it is possible to capture invisible
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performance problems under small inputs during in-house testing, shedding new light on

future development of performance testing/debugging techniques.

ISL and PerfBlower have immediate practical impact for three reasons. First, developers can

quickly create detectors to amplify new performance problems as long as the problems have

visible heap symptoms. Our techniques can save developers tremendous effort of building

new detectors from scratch. Second, PerfBlower captures performance problems under small

workloads, before they escape to production runs. This can help developers prevent the

severe losses caused by performance bugs as well as improve the user experience of software

products. Third, the object mirroring technique, which PerfBlower employs to store the

major reference path leading to each suspicious objects, can be employed by any dynamic

analysis to collect useful diagnostic information.

ITask is the first systematic approach to solve memory pressure problems in data-parallel

systems. The design of ITask’s programming model and runtime system provides develop-

ers new insights for future development of data-intensive systems. ITask can significantly

improve the performance and scalability of existing data-parallel systems, such as Hadoop,

which processes data for thousands of companies and has great influence on our daily lives.

The non-intrusive feature of ITask makes it easy to apply our techniques for any existing

frameworks.

Organization. The remainder of this dissertation is organized as follows. Chapter 2 intro-

duces several basic concepts. The details of the problem specification language, called ISL,

are described in Chapter 3. Chapter 4 presents our general performance testing framework

PerfBlower and its experimental results. Chapter 5 proposes a systematic approach, named

ITask, which helps data-parallel tasks survive memory pressure. Related work is discussed

in Chapter 6. Finally, we conclude in Chapter 7.
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Chapter 2

Background

2.1 Performance Problems

Performance problems, also known as performance bugs usually do not affect the correctness

of programs. Instead, they may significantly degrade the performance of software systems

and waste computational resources [52]. Because even expert programmers may introduce

performance problems into their products, performance bugs widely exist in real world ap-

plications, including many well-tested products such as Internet Explorer, Mozilla Firefox,

Windows 10, etc. It seems that performance problems are harmless; but actually they can

lead to disasters [31], such as badly hurting user experience [66, 65], substantial financial

losses [13, 61], etc.

Most existing performance debugging techniques require users to provide test cases which

can trigger the bugs. This means that many performance problems do not manifest at the

development stage, and they escape to production runs. So we propose an amplification

framework to help developers capture the performance problems at the early stage. With

precise diagnostic information, developers can easily fix most of the performance bugs with
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changing several lines of code [52, 74]. But some performance problems (e.g., the scalability

issues in Big Data systems caused by memory pressure) are extremely difficult to solve, even

though we know the root causes of the problems. We will attack the memory problems in

data-parallel systems in Chapter 5.

2.2 Managed Languages

If a programming language runs in its own container (i.e., a virtual machine), we call it

managed language. For example, Java is a managed language, because we run Java programs

in Java Virtual Machines (JVM). There are many other managed languages such as Scala,

C#, etc. Compared with unmanaged languages, managed languages have the following

advantages:

• The design of managed languages can greatly reduce the cost of supporting different

languages on many platforms. In managed languages, source code is first compiled

to some intermediate representation (IR), and executes under the management of a

virtual machine. For example, we would like to develop support of 4 languages on

5 platforms. Without IR, we have to develop the compilation and runtime support

for each language on every platform. There are totally 20 compilers to build. On the

other hand, if these languages are first compiled to the unique IR, we only need to build

4 compilers which translate the original programs to the IR, and 5 runtime systems

which execute the IR code. From the above case, we clearly see that this design can

dramatically improve the scalability of the development environment.

• Managed languages are usually platform independent. For example, once Java code

is compiled to bytecode, it can run in compatible JVMs on different platforms. So

managed languages are more portable than unmanaged ones.
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• Compared to native code, managed languages are safer. Unlike unmanaged code, which

is directly executed by CPU, IR code runs in a managed environment. Thus the code

is checked to be safe, and it cannot crash the host.

• In managed languages, the memory management is automated by Garbage Collection

(GC), which can significantly alleviate developers’ burden, and substantially increase

their productivity.

Due to the above reasons, managed languages are widely used in the real world applications.

According to TIOBE index [110], Java is the most popular programming language over the

past decade. Most popular Big Data systems are also written in managed languages. For

example, Hadoop [102], Hive [104], Pig [106], and Cassandra [101] are implemented in Java.

The mainstream garbage collectors in modern virtual machines are tracing based collectors.

In one collection, a tracing collector traces live objects by following references, starting

from a set of root objects that are directly reachable from live stack variables and global

variables. After tracing, the unreachable objects are guaranteed to be dead and will be

reclaimed. Although GC automates the memory management for developers, it requires

additional resources, and may greatly slow down the execution of the programs. We will

continue discussing this problem in Chapter 5.

2.3 Data-Parallel Systems

Data-parallel systems distribute the data across different workers, which operate on the

data in parallel [35]. MapReduce [36] has inspired a body of research on distributed data-

parallel computation, including Hyracks [105], Hadoop [102], Spark [137], or Dryad [50].

The MapReduce model has been extended [28] with Merge to support joins and adapted

to support pipelining [32]. Yu et al. propose a programming model [133] for distributed
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aggregation for data-parallel systems.

A number of high-level declarative languages for data-parallel computation have been pro-

posed, including Sawzall [81], Pig Latin [78], SCOPE [23], Hive [109], and DryadLINQ [134].

All of these frameworks and languages except SCOPE and Dryad were implemented in JVM-

based languages such as Java and Scala and thus can immediately benefit from the ITask

optimization proposed in this dissertation. SCOPE and Dryad were implemented in C#,

which also runs on top of a managed runtime system; we expect the ideas proposed in this

thesis can also be adapted to optimize their applications.
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Chapter 3

Memory-Related Performance Bug

Description and Detection

As mentioned in Chapter 1, existing performance testing frameworks lack a general way

to describe performance problems and effective test oracles to capture performance bugs.

Finding general performance problems is infeasible, as it requires finding an alternative,

more efficient computation in a possibly infinite solution space. We first narrow our focus

onto a class of performance problems that have observable symptoms ; their symptoms can

be expressed by logical statements over a history of heap updates. These problems include,

to name a few, memory leaks, inefficiently-used collections, unused return values, or loop-

invariant data structures. One common axis these problems center around is that they

manifest in the form of inefficient data usage, and their symptoms can be identified by

capturing and comparing heap snapshots. To describe and detect such performance bugs,

we propose a specification language named and an automated test oracle, and this chapter

will focus on them.

Many performance problems are caused by redundant computations; although they are not
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directly data-related, data inefficiencies can still be seen as a result of redundant compu-

tations. For example, one problem in Mozilla studied in [52] is due to the over-general

implementation of an API—the draw method performs heavy-weight computations to draw

high-quality images while the client only needs transparent ones. Even if the proposed tech-

nique cannot directly describe redundant computations, most fields of the resulting image

object are never used; these redundant data can be captured and reported.

3.1 ISL: Instrumentation Specification Language

In this section, we will start with an example to explain the major components in a typical

ISL program. Then the formal syntax and instrumentation semantics will be provided.

3.1.1 ISL Overview

As the first step of performance debugging, the developer writes an ISL program to de-

scribe (1) symptoms of a performance problem (for which amplification is needed) and (2)

counter-evidence that shows what is being tracked is not a performance problem (for which

deamplification is needed). ISL explicitly models heap partitioning, history of heap updates,

as well as collaborations between the collector and the mutator, allowing developers to easily

write simple Java-like code to amplify and deamplify performance problems.

To illustrate, Figure 3.1 shows a sample ISL program that describes the symptom of memory

leaks caused by unnecessary strings held in object arrays, as well as how their effects can be

amplified. A typical ISL description consists of a set of constructs that specifies how heap

updates can be tracked and where the tracking information should be stored, as well as a

set of events that uses imperative constructs in regular Java to define actions to be taken

when the events are triggered.
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1 Context ArrayContext {

2 sequence = "*.main,*";

3 type = "java.lang.Object[]";

4 }

5
6 Context TrackingContext {

7 sequence = "*.main,*";

8 path = ArrayContext;

9 type = "java.lang.String";

10 }

11
12 History UseHistory {

13 type = "boolean";

14 size = UserParameter; // Defined by the user.

15 }

16
17 Partition P {

18 kind = all;

19 history = UseHistory;

20 }

21
22 TObject MyObj {

23 include = TrackingContext;

24 partition = P;

25 instance boolean useFlag = false; // Instance field.

26 }

27
28 Event on_rw(Object o, Field f, Word w1, Word w2) {

29 o.useFlag = true;

30 deamplify(o);

31 }

32
33 Event on_reachedOnce(Object o) {

34 UseHistory h = getHistory(o);

35 h.update(o.useFlag);

36 if (h.isFull() && !h.contains(true))

37 amplify(o);

38 o.useFlag = false;

39 }

Figure 3.1: An ISL program for detecting memory leaks.
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Context. Many dynamic analyses do not need to track every single detail of the execution.

For different performance problems, the developer may focus on different aspects of the

execution, such as the behavior of an object when it is created under a certain calling

context (e.g., control-related) or referenced by a certain data structure (e.g., data-related). A

Context construct is designed for the developer to express the scope of the objects of interest.

Context has three properties: sequence, type, and path, each of which defines a constraint

in a different aspect. They can be used to specify, respectively, the calling context, the type,

and the reference path for the objects to be tracked. For example, context ArrayContext

narrows the scope of the heap to objects of type java.lang.Object[] created under calling

contexts that match string “*.main, *”, where the asterisk (*) is used as a wildcard. This

string matches all call chains that start with an invocation of method “*.main”.

Next, ArrayContext is used to define the reference path in a new context TrackingContext,

which imposes the constraint that we are only interested in the java.lang.String objects

that are (1) created under context “*.main, *” (i.e., defined by sequence), and (2) reachable

directly from the array objects created under the same calling context in the object graph

(i.e., defined by path). Note that this context unifies two orthogonal object naming schemes

(i.e., call-chain-based and access-path-based), providing much flexibility for the developer to

narrow down interesting objects.

History. Since we target heap-related performance problems, their symptoms can often be

identified by comparing old and new values in the tracked objects. A History construct is

such an abstraction that models the heap update history (i.e., in an execution window) that

needs to be tracked on the objects of interest. A History has two important properties: the

type of a history element (i.e., type) and the length of the execution window tracked by the

history (i.e., size). The element type has to be a primitive type because tracking a program

execution often requires collaborative work between the mutator and the collector; creating

tracking objects during a GC is not allowed. The length of the execution window specifies

14



how many (user-defined) state updates can be recorded in the history. The recorded updates

will be used to determine whether a symptom is seen. A history has to be attached to a

partition, allowing for the tracking of heap updates at different heap abstraction levels. We

provide a few functions to manipulate a history; these functions will be discussed shortly.

Partition. Different analyses may need to collect tracking information at different ab-

straction levels. For example, analyses that report information regarding allocation sites can

maintain a piece of tracking information for each allocation site, while analyses designed to

identify typestate bugs have to keep per-object tracking information. A Partition construct

can be used to define the partitioning of the heap needed by an analysis. Properties kind and

history specify, respectively, how the heap should be partitioned and what history should be

attached to each heap partition. In other words, one history instance (as defined in History)

will be created and maintained for each partition of the heap defined by kind. kind can

have five different values—all, context[i], alloc, type, and single—which specify heap

abstractions with increasing levels of granularity.

In particular, single means that all heap objects will be in the same partition, and therefore

will share the same tracking information (i.e., a history instance). type and alloc specify

that our runtime system will create one history instance per Java type and per allocation

site, respectively; context[i] informs the runtime system to create one history instance

for each allocation site executed under a distinct calling context; since each allocation site

can have an extremely large number of distinct contexts, we allow the developer to define a

(statically-fixed) integer number i to limit the number of contexts for each allocation site;

an encoding function (described shortly) is used to map a full context to a number in [0, i

- 1]; this option can be used to enable context-sensitive tracking of certain heap properties;

finally, all means that one history instance will be created per heap object.

TObject. TObject defines the type of objects to be tracked, using two properties, include

and partition, that specify the tracking context and the heap partitioning, respectively.
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In our example, our system tracks objects under the context TrackingContext and creates

a history for each tracked object. In addition, each tracked object has an instance field

useFlag, which stores object-local state information necessary for identifying the symp-

tom. The keyword instance can be used to declare (primitive-typed) per-object metadata

information at runtime.

Event. At the center of an ISL program is a set of Event constructs that define what

to do when important events occur on tracked objects. ISL supports seven different events:

read, write, rw, call, alloc, reached, and reachedOnce. The first five are regular mutator

events while the last two are GC events. reached is triggered every time an object is reached

during a GC object graph traversal. Since an object may be reached multiple times (through

different references), we use reachedOnce to define actions that need to be taken only once

on the object during each GC—reachedOnce is triggered only at the first time the object is

reached. An event construct takes a few parameters exposing the related run-time values at

the event. For example, in the rw event, we have access to the base object, the field being

accessed, and the value being read/written. Word is a special type representing a 32-bit

value (regardless of its Java type). If this event reads/writes a 64-bit value, this value will

be broken into two parts w1 (i.e., the high 32 bits) and w2 (i.e., the low 32 bits).

In our example, the events rw and reachedOnce specify the symptom of a memory leak and

when to amplify its effect. Once a tracked object o is used (i.e., read or written), we set

its useFlag true. Since we see a use of the object, we call a library method deamplify to

cancel all the space penalty previously added to o. When o is reached in a reachedOnce

event, the history associated with o’s partition is updated with o.useF lag. Since the history

is defined to track only the most recent UserParameter 1 updates, the update operation

will add the current boolean value and discard the oldest value from the history (if all

of the UserParameter slots have been taken). Finally, if the history has a full record of

1UserParameter is defined by the user.
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UserParameter updates (i.e., isFull returns true) and the record does not contain any

true value, object o is stale and thus we add space penalty to amplify the staleness effect

(i.e., time since its last use) by calling the library method amplify.

3.1.2 ISL Syntax

Figure 3.2 shows the core syntax of ISL. An ISL program is a set of contexts, histories,

partitions, tracked objects, and events. Since most of these productions are defined in

expected ways, we discuss only a few interesting ones.

Context IDs cxtID ∈ StringLiterals

Calling contexts mSeq ∈ StringLiterals

Class names tStr ∈ StringLiterals

History IDs hID ∈ StringLiterals

Partition IDs ptID ∈ StringLiterals

TObject IDs oID ∈ StringLiterals

Field names varID ∈ StringLiterals

Parameter Names oName ∈ StringLiterals

Contexts c ::= Context cxtID { cb }
Context bodies cb ::= sequence = mSeq ; cb | type = tStr ; cb

| path = cxtID ; cb | ε
Histories h ::= History hID { hb }

History bodies hb ::= type = tStr ; hb | size = int; hb | ε
Partitions p ::= Partition ptID { pb }

Partition bodies pb ::= kind = pk ; pb | history = hID ; pb | ε
Partition kinds pk ::= single | type | alloc | context[int] | all

Tracked objects o ::= TObject oID { tb }
TObject bodies tb ::= include = cxtID ; tb | partition = ptID ; tb

| fd tb | ε
Field decls fd ::= instance tStr varID ; fd | ε

Events e ::= Event ek ( pl ) { eb }
Event kinds ek ::= on read | on write | on rw | on call

| on alloc | on reached | on reachedOnce

Event parameters pl ::= oID oName, . . .
Event bodies eb ::= amplify (oName); eb | deamplify (oName); eb

| . . . | ε
ISL program s ::= c s | p s | o s | e s | h s | ε

Figure 3.2: Abstract syntax of ISL.
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The path field of a context c1 is defined by another context c2, which specifies that the

objects constrained by c1 has to be directly reachable from the objects constrained by c2 on

the object graph. If we wish to specify transitive reachability, e.g., via a path of n nodes, we

can define n contexts from c2 to cn+1, each constraining a node on the path.

A History object supports the following seven operations: void update(T), T get(int),

boolean contains(T), int length(), boolean isFull(), boolean containsSameValue(

), and History subHistory(int, int). The first five operations are defined in expected

ways. containsSameValue returns true if all elements of the history have the same value,

and subHistory converts a sub-region of the current history into another history instance.

ISL supports seven different events, and each type of event has a different parameter list,

shown in Figure 3.3. Field represents an object field, which contains the offset and ID of

the field (i.e., from 0 to the total number of fields - 1). Method contains the information of

the invoked method.

on read (Object o, Field f , Word w1, Word w2);
on write (Object o, Field f , Word w1, Word w2);

on rw (Object o, Field f , Word w1, Word w2);
on call (Object o, Method m, Word return1, Word return2);

on alloc (Object o);
on reached (Object o, Field f);

on reachedOnce (Object o);

Figure 3.3: Parameter lists of ISL events.

3.1.3 Instrumentation Semantics

We first discuss the basic instrumentation semantics and Section 3.2 will extend the semantics

to cover library call amplify and deamplify. Figure 3.4 shows a list of semantic domains

that will be used in the instrumentation rules. The first five domains (i.e., the domains of

allocation sites, types, fields, variables, and partition entities) are defined straightforwardly.
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Allocation sites l ∈ A
Types t ∈ T
Fields f ∈ F

Variables v ∈ V
Partition entities e ∈ E

Context instances c ::= 〈ms , type〉 ∈ C
Context reference relations γ ::= 〈c1, c2〉 ∈ C× C

History instances h ∈ H
History stores τ ∈ E ∪ {⊥} → H

Objects ô := o〈c,h〉 ∈ Φ: O× C×H
Environments ρ ∈ V→ Φ ∪ V ∪ {⊥}

Heaps σ ∈ Φ× F→ V ∪ {⊥}
Call stacks s ∈ N→M

Figure 3.4: ISL semantic domains.

At runtime, a context instance is maintained for each Context construct. Each context has

a method sequence ms and a type constraint type. If the path field of context c1 references

context c2, a pair 〈c2, c1〉 exists in the context reference relation γ. Among all context

constructs in an ISL program, there is a main context, denoted as ĉ ∈ C, which defines the

include field of TObject. We maintain a history store τ that maps each program entity e

in domain E ∪ {⊥} to a history instance. The type of e depends on the kind field of the

partition construct. For example, e is ⊥, a type, an allocation site, an allocation site plus

an encoded context, and a heap object if kind is single, type, alloc, context, and all,

respectively. Each object in our system is a base heap object o labeled with a pair of a

context c to which o belongs and a history instance h. Environment ρ maps each variable to

its runtime (primitive-typed or reference-typed) value. Heap σ maps each object field to the

value stored in the field. τ , ρ and σ are augmented with a special symbol ⊥, which denotes

a null value for pointers. Finally, a call stack s is a map that maps a natural number ∈ N

to a method ∈M on the stack.

The goal of the instrumentation is to identify objects specified by the TObject construct

and invoke user-defined handlers on them upon events. An object is a specified object if

the following two conditions hold: (1) it is created under the main context ĉ; and (2) if a

19



context reference chain of the form c1, c2, . . . , ĉ exists for ĉ, this reference chain must have

been validated. While condition (1) can be easily verified at each allocation site (e.g., by

checking whether the allocation type and the current call stack match the specification in

the main context), reference path validation can only be done when GC traverses the heap.

The validation algorithm will be discussed shortly in Rule GC. However, GC may occur

after many mutator events; if we do not execute handlers until the context reference path

has been validated, we may potentially lose important information of the tracked objects.

We solve the problem by relaxing our requirement—we check only condition (1) to decide

whether to execute a handler for a mutator event; both condition (1) and (2) are checked

to determine whether a GC event handler should be executed. Because amplify is invoked

only when the symptom specification is checked in GC, this handling will not mistakenly

amplify objects whose reference relationships do not hold.

In Figure 3.5, we define the auxiliary functions which will be used in the semantics rules.

In the definition of function match(c, s, t), � is a subtype relation, and a `r b if string b is

represented by the regular expression a. This function returns true if the specified type in

c.type is t or a supertype of t, and the regular expression in c.ms represents the sequence of the

method invocations on the stack. We design the function encode based on the computation

of the probabilistic calling context proposed in [15]: suppose sk is the k-th method on the

stack; the encoding function encode is a recursive function that does the computation based

on the encoded value of the prefix of s up to method sk−1. Despite its simplicity, the function

can be implemented efficiently and has been demonstrated to have a small conflict rate.

match(c, s, t) =
{ true if t � c.type ∧ c.ms `r s

false otherwise
encode(s, i) = encode(s|s|−1) mod i
encode(sk) = 3× encode(sk−1) + methodID(sk)

Figure 3.5: Auxiliary functions.

Figure 3.6-3.9 define the instrumentation semantics at four important operations: allocation
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sites, object reads, object writes, and reference traversals in GC, respectively. A judgment

of the form δ, ρ, τ , σ, s ⇓ ρ′, τ ′, σ′ starts with operation δ, which is followed by environment

ρ, history store τ , heap σ, and call stack s. The execution of δ terminates with a final

environment ρ′, history store τ ′, and heap σ′. Stack s can only be modified by method calls

and returns; rules at calls and returns are usual and thus omitted.

ô.c =

{
c if ∃ c ∈ C : match(c, s, t)
⊥ otherwise

h =

{
e.h if ∃ 〈e, h〉 ∈ τ
fresh otherwise

ô.e = e e.h = h ρ′ = ρ[a 7→ ô]

τ ′ =



τ ∪ {〈⊥, h〉} if c = ĉ ∧ kind = single

τ ∪ {〈t, h〉} if c = ĉ ∧ kind = type

τ ∪ {〈l, h〉} if c = ĉ ∧ kind = alloc

τ ∪ {〈lencode(s,i), h〉} if c = ĉ ∧ kind = context[i ]

τ ∪ {〈o, h〉} if c = ĉ ∧ kind = all

τ otherwise
σ′ = σ[λf.(ô.f 7→ ⊥)]

on alloc(ô), ρ′, τ ′, σ′, s ⇓ ρ′′, τ ′′, σ′′

ρ′′′ =

{
ρ′′ if c = ĉ
ρ′ otherwise

τ ′′′ =

{
τ ′′ if c = ĉ
τ ′ otherwise

σ′′′ =

{
σ′′ if c = ĉ
σ′ otherwise

a = new tl , ρ, τ, σ, s ⇓ ρ′′′, τ ′′′, σ′′′
(New)

Figure 3.6: Instrumentation semantics of rule New.

Rule New defines our instrumentation at each allocation site. If the current call stack s and

the type of object t match a specified context c, we store c in the object ô. The definition

of function match can be found in Figure 3.5. Each tracked object is associated with one

partition entity, and if the partition entity has no history instance, we create a fresh history

for it. If the context c that matches the call stack is the main context ĉ, we need to update

the history store τ ; the update is done based on the definition of kind in the TObject

construct. The most interesting case here is to update τ for kind = context[i ]. In this

case, we create i history instances for each allocation site, where i is given by the developer

as a parameter. We use a function encode, which is defined in Figure 3.5, to encode the

current call stack into an integer value, which is then mapped into a number in [0, i - 1].

Eventually, the user-defined event on alloc is executed. Note that if there is no matching
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context or the current context is not the main context, we do not store the history and do

not invoke the event. This can be seen through the last three selective state updates in the

rule. It is important to note that our system tracks objects that belong to each context (i.e.,

not just the main context) declared in an ISL program—objects that belong to a non-main

context will be used to identify the reference path leading to the objects that belong to the

main context, and therefore, they also need to be tracked. However, we do not execute an

event if the context of the tracked object is not the main context.

w = σ(ρ(b).f) ρ′ = ρ[a 7→ w]
on read(ρ(b), f, h32 (w), l32 (w)), ρ′, τ, σ, s ⇓ ρ′′, τ ′, σ′

on rw(ρ(b), f, h32 (w), l32 (w)), ρ′′, τ ′, σ′, s ⇓ ρ′′′, τ ′′, σ′′

ρ′′′′ =

{
ρ′′′ if ρ(b).c = ĉ
ρ′ otherwise

τ ′′′ =

{
τ ′′ if ρ(b).c = ĉ
τ otherwise

σ′′′ =

{
σ′′ if ρ(b).c = ĉ
σ otherwise

a = b.f, ρ, τ, σ, s ⇓ ρ′′′′, τ ′′′, σ′′′
(Load)

Figure 3.7: Instrumentation semantics of rule Load.

Figure 3.7 defines the semantics of object reads. In rule Load, we need to invoke both events

on read and on rw if the base object (i.e., ρ(b)) is tracked (i.e., its context ρ(b).c is the main

context). Again, we use three selective updates to determine whether the post states can

be affected by the two events. Functions h32 and l32 return the high 32 bits and the low

32 bits of a value. If the value only has 32 bits, l32 returns 0. Rule Store in Figure 3.8 is

defined in a similar manner.

w = ρ(a) σ′ = σ[ρ(b).f 7→ w]
on write(ρ(b), f, h32 (w), l32 (w)), ρ, τ, σ′, s ⇓ ρ′, τ ′, σ′′
on rw(ρ(b), f, h32 (w), l32 (w)), ρ′, τ ′, σ′′, s ⇓ ρ′′, τ ′′, σ′′′

ρ′′′ =

{
ρ′′ if ρ(b).c = ĉ
ρ otherwise

τ ′′′ =

{
τ ′′ if ρ(b).c = ĉ
τ otherwise

σ′′′′ =

{
σ′′′ if ρ(b).c = ĉ
σ′ otherwise

b.f = a, ρ, τ, σ, s ⇓ ρ′′′, τ ′′′, σ′′′′
(Store)

Figure 3.8: Instrumentation semantics of rule Store.
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In Figure 3.9, the last rule GC defines how the analysis states are updated when object ô2 is

reached from field f of object ô1 during a GC. Here we introduce two new domains: φ and µ,

where φ denotes the set of objects already traversed in the current GC and µ denotes the set

of objects on the reference path specified in the main context. We update µ with ô2 if one of

the two conditions holds: (1) ô1 is already in µ and there is a context reference between ô1.c

and ô2.c specified by the path field (as indicated by 〈ô1.c, ô2.c〉 ∈ γ); or (2) ô1 does not have

a context but ô2 has one, and there is no reference path specified for ô2 in the program; this

indicates ô2 is the starting point of the specified reference path. Eventually, we execute event

reachedOnce if (1) the context of ô2 is the main context, (2) object ô2 ∈ µ (which indicates

that this edge is indeed on the reference path), and (3) this is the first time ô2 is reached

(which can be seen by ô2 /∈ φ). If conditions (1) and (2) are satisfied but condition (3) is not,

we execute reached instead. Currently, the language supports specification of only one main

context and one TObject. While it is easy to extend the language to support multiple main

contexts and TObject constructs, we find that the language is already expressive enough to

define and amplify various kinds of performance problems.

on reachedOnce(ô2), σ ⇓ σ′ on reached(ô2, f), σ ⇓ σ′′

µ′ =


µ ∪ {ô2} if 〈ô1.c, ô2.c〉 ∈ γ ∧ ô1 ∈ µ
µ ∪ {ô2} if ô1.c = ⊥ ∧ ô2.c 6= ⊥ ∧ @ 〈c′, ô2.c〉 ∈ γ, c′ ∈ C
µ otherwise

σ′′′ =


σ′ if ô2 ∈ µ ∧ ô2.c = ĉ ∧ ô2 /∈ φ
σ′′ if ô2 ∈ µ ∧ ô2.c = ĉ ∧ ô2 ∈ φ
σ otherwise

processEdge(ô1, f, ô2), σ, φ, µ ⇓ σ′′′, φ ∪ {ô2}, µ′
(GC)

Figure 3.9: Instrumentation semantics of rule GC.

23



3.2 Amplification and Deamplification

The goal of amplification is to “blow up” the effect of performance problems, especially small

performance bugs, so that they can be easily captured during testing. Amplification of a

performance problem is done on the objects that satisfy the symptom specification of the

problem. Method amplify(o) takes an object o as input and increases the penalty counter

associated with o by the size of the object. Deamplification is performed when the counter-

evidence of the problem is found. When deamplify is executed on o, we set o’s penalty

counter back to zero.

V SO =
Sumpenalty + Sizelive heap

Sizelive heap

Figure 3.10: The definition of VSO.

During each GC, we modify the reachability analysis to compute the sum of the penalty

counters of all live objects (Sumpenalty). Sizelive heap is the live heap size. We define VSO

(i.e., short for virtual space overhead) in Figure 3.10. It simulates the (peak) overhead of

an execution that had the real memory penalty been used. VSO is a metric that measures

the severity of performance problems relative to the amount of memory consumed by a

program—the same problem is more serious if the program only consumes small amounts

of memory. Since Sumpenalty has a time component (e.g., objects that keep satisfying the

symptom specification will make Sumpenalty keep growing), a program may have increasingly

large VSOs as it executes. Eventually, the VSOs computed at all GCs are compared and

the maximal VSO is reported to indicate the severity of the performance problems. We will

explain how to update penalty counters during GC in Section 4.2.2.
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3.3 More ISL Programs

In addition to the memory leak example given in Section 3.1, Figure 3.11, Figure 3.12, and

Figure 3.13 show, respectively, the (simplified) ISL descriptions for amplifying three other

types of performance problems: (1) extensive creation of objects with invariant data contents,

(2) under-utilized Java hash maps, and (3) unused return values. While there are multiple

ways to detect these problems, we show an amplification approach here to demonstrate the

generality of ISL.

3.3.1 Allocation sites creating invariant objects.

The symptom is that certain allocation sites keep creating objects with identical data values.

The goal of the ISL program in Figure 3.11 is to identify these allocation sites and then

penalize their objects. The partitioning is based on allocation site, which means all objects

created by the same allocation site share one history instance. We define the history as a

list of long values (as long can express values of any type) over an execution window of

UserParameter updates. Here we are interested in values stored in each primitive-typed

field of an object. Since our History construct can model only scalar values, we linearize

histories of all fields into one single history whose size is UserParameter ∗ MAX NUM FIELDS

where MAX NUM FIELDS is the maximal number of fields in a class (e.g., 100 is a reasonably

large number). In other words, for a field with index i, elements from i ∗ UserParameter to

(i+ 1) ∗ UserParameter in the history model the updates of the field.

In the on write event, we first obtain the sub-history for the field being accessed from

the history associated with the object, and then update the sub-history with the value

to be written into the field. If a different value is seen in the sub-history, the object is

no longer invariant and we cancel all the penalty previously added to the object. In the

25



1 History UpdateHistory {

2 type = "long";

3 // UserParameter is defined by the user.

4 size = UserParameter * MAX_NUM_FIELDS;

5 }

6
7 Partition P {

8 kind = alloc;

9 history = UpdateHistory;

10 }

11
12 TObject MyObj {

13 partition = P;

14 }

15
16 Event on_write(Object o, Field f, Word w1, Word w2) {

17 if (!f.isPrimitive())

18 return;

19 long l = combine(w1, w2);

20 UpdateHistory allHis = getHistory(o);

21 UpdateHistory fieldHis = allHis.subHistory(f.index() *

22 UserParameter,

23 UserParameter);

24 fieldHis.update(l);

25 if (fieldHis.isFull() && !fieldHis.containsSameValue())

26 deamplify(o);

27 }

28
29 Event on_reachedOnce(Object o) {

30 UpdateHistory allHis = getHistory(o);

31 int i = 0;

32 for (; i < allHis.length(); i += UserParameter) {

33 UpdateHistory fieldHis = allHis.subHistory(

34 i, UserParameter);

35 if (!fieldHis.isFull()

36 return;

37 if (!fieldHis.containsSameValue())

38 return;

39 }

40 amplify(o);

41 }

Figure 3.11: An ISL program for detecting allocation sites creating invariant objects.
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on reachedOnce event, we check two conditions for each field: (1) the sub-history has a full

record and (2) all values in the sub-history are the same. If both conditions hold for all the

fields, we start penalizing the object. Note that we can make amplification even finer-grained

by using a context-based partitioning (e.g., kind = context[i ]), which will enable us to

identify certain contexts that are more likely to create identical objects than others and only

amplify objects created under such contexts.

3.3.2 Under-utilized Java maps.

The goal of the ISL program in Figure 3.12 is to penalize Java hash maps that take a

large memory space but contain only a very small number of valid elements. Using two

contexts, we narrow our focus onto java.util.Map.Entry arrays that are referenced by

java.util.HashMap object. We use a per-object partitioning with a history that tracks the

most recent UserParameter utility rates of each array. A utility rate of an array is defined as

the ratio between the number of non-null elements and the total length of the array. Every

time a tracked array is traversed in the GC, we compute its utility rate and update the

history. If the rate is greater than a user-provided threshold value (i.e., 0.3), the array is in

good health and thus we cancel all its previous penalty. If the history has a full record in

which all elements are less than or equal to 0.3, we start penalizing this array.

3.3.3 Never-used return objects.

In Figure 3.13, our goal is to detect and penalize objects that are never used after being

returned by a method. Such objects are often indicators of wasteful computation done during

the method invocation. Amplifying this problem is similar to amplifying a memory leak. The

only difference is that we use a boolean instance field returned in each object to indicate

whether the object has been returned by a method call. This flag is set in event on call if
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1 Context MapContext {

2 type = "java.util.HashMap";

3 }

4
5 Context TrackingContext {

6 path = MapContext;

7 type = "java.util.Map.Entry[]";

8 }

9
10 History UtilityRates {

11 type = "double";

12 size = UserParameter; // Defined by the user.

13 }

14
15 Partition P {

16 kind = all;

17 history = UtilityRates;

18 }

19
20 TObject MyObj {

21 include = TrackingContext;

22 partition = P;

23 }

24
25 Event on_reachedOnce(Object o) {

26 UtilityRates rates = getHistory(o);

27 Object[] array = (Object[]) o;

28 int numNonNull = 0;

29 for (Object element : array) {

30 if (element != null)

31 ++ numNonNull;

32 double rate = ((double) numNonNull) / array.length;

33 rates.update(rate);

34 if (rate > 0.3)

35 deamplify(o);

36 else if (rates.isFull()) {

37 for (int i = 0; i < UserParameter; ++ i) {

38 if (rates.get(i) > 0.3)

39 return;

40 amplify(o);

41 }

42 }

Figure 3.12: An ISL program for detecting under-utilized Java hash maps.
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a method call returns an object.

1 History UseHistory {

2 type = "boolean";

3 size = UserParameter; // Defined by the user.

4 }

5
6 Partition P {

7 kind = all;

8 history = UseHistory;

9 }

10
11 TObject MyObj {

12 partition = P;

13 instance boolean returned = false; // Instance field.

14 }

15
16 Event on_rw(Object o, Field f, Word w1, Word w2) {

17 if (o.returned) {

18 getHistory(o).update(true);

19 deamplify(o);

20 }

21 }

22
23 Event on_call(Object o, Method m, Word return1, Word return2) {

24 if (m.getReturnType().isReference()) {

25 Object obj = addressToObject(return1, return2);

26 obj.returned = true;

27 }

28 }

29
30 Event on_reachedOnce(Object o) {

31 UseHistory history = getHistory(o);

32 if (o.returned && history.isFull() && !h.contains(true))

33 amplify(o);

34 }

Figure 3.13: An ISL program for detecting never-used return objects.
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3.4 Summary and Interpretation

To define and detect memory-related performance problems, we have proposed an event-

based domain-specific language, called instrumentation specification language (ISL). In sum-

mary, real-world developers can benefit from the following features of ISL.

First, by exploiting a combination of instrumentation and runtime system support, ISL

provides a unified way of expressing various memory-related performance problems, which

were previously defined separately. Developers can quickly build detectors for different types

of performance problems using ISL instead of building everything from scratch; the amount

of the work of developing detectors can be significantly reduced.

Second, ISL has a Java-like syntax and thus is easy to use in real-world development; ampli-

fication for even complicated performance problems can often be specified using only a few

lines of ISL code. In contrast, had a JVM been modified manually to implement amplifica-

tion, developing a testing tool for each problem would have needed modification of thousands

of lines of code, which can take a skillful programmer several months or even longer.

Third, while an ISL program penalizes individual objects, it is easy to attribute penalties to

a data structure as a whole by defining reference-path contexts. For example, although array

objects are penalized in the detection of under-utilized containers, reference-path contexts

are used to connect those low-level arrays with high-level maps, stacks, queues, lists, and

sets, and hence, our detector is able to report not only individual objects but also logical

data structures.
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Chapter 4

PerfBlower: A Performance Testing

Framework

Based on the technique proposed in the previous chapter, we build a general performance

testing framework, PerfBlower, which can “blow up” the effect of small performance problems

so that they can be easily captured during testing. In this chapter, we will first present

the overview of PerfBlower’s design and implementation. And then we will propose a novel

algorithm that collects useful diagnostic information at runtime. After that the experimental

results will be shown and the limitations of our framework will be discussed.

4.1 Overview

Figure 4.1 depicts the architecture of PerfBlower. It has two major components: an ISL com-

piler and a runtime system. The compiler parses an ISL program provided by the developer

and automatically generates instrumentation code for a JVM. The JVM is built and a pro-

gram to be tested is then executed on the modified VM. During the execution, the runtime
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Figure 4.1: The architecture of PerfBlower.

system monitors the behavior of the program, checks symptom specifications, and performs

amplification and deamplification. PerfBlower reports detailed diagnostic information for

programs with high virtual overhead.

We have developed our ISL parser using ANTLR v4. During compilation, contexts are broken

into a set of 〈ms , type〉 1 pairs. A new History class is generated from a template based

on the properties declared in the ISL program. An additional header space is requested per

object to accommodate instance fields declared in TObject. Declaring many instance fields

would create tremendous space overhead and thus developers are encouraged to declare as

few fields as possible. Note that we do not generate a Java class for a TObject construct. The

contexts used in the construct are checked at runtime to determine whether an event needs

to be invoked. We do not typecheck the imperative statements in an event construct; these

events are directly translated into Java methods that are invoked at various program points;

1ms and type mean a method sequence and a type constraint, respectively.
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the generated methods will be typechecked when the instrumentation code is compiled.

The runtime system is built in Jikes Research Virtual Machine (RVM) [51], version 3.1.3.

To implement the proposed technique, we have modified both the baseline compiler and

the optimizing compiler in RVM [80], and additional logic is added to MarkSweep GC.

PerfBlower supports simultaneous checking of multiple problems. This is done by assigning

a unique ID to each ISL program specifying a problem. The ID will be passed (implicitly) as

a parameter to amplify(o)—it is written into each mirror object created for o so that when

the mirror path for o is traversed and printed, the problem to which o is related is reported

as well.

4.2 Diagnostic Information Collection

When a test fails, it is important to provide highly-relevant diagnostic information that can

help developers quickly find the root cause and fix the problem. In this chapter, we will first

introduce heap reference path, which is an important piece of diagnostic information, and

then propose a novel method to efficiently collect reference path information.

4.2.1 Heap Reference Paths

Evidence [122, 131] shows that heap reference paths leading to suspicious objects are very

important information as they reveal contexts and data structures containing these objects.

We will further explain how reference paths reveal the causes of the performance problems

by example. Figure 4.2 shows a Java memory leak example from [12], and we add method

main to the original program to trigger the performance problem. In method main, we first

create a Stack s (Line 32) and then allocate an Object obj (Line 33). When object obj is

pushed onto the stack (Line 34), a reference to obj is stored in s’s field elements (Line 13).
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After obj is popped off the stack (Line 35), elements still maintains an obsolete reference

to obj, which prevents the garbage collector from reclaiming obj. In this case, since obj will

1 public class Stack {

2 private Object[] elements;

3 private int size = 0;

4 private static final int DEFAULT_INITIAL_CAPACITY = 16;

5
6 public Stack() {

7 // Allocation site 1.

8 elements = new Object[DEFAULT_INITIAL_CAPACITY];

9 }

10
11 public void push(Object e) {

12 ensureCapacity();

13 elements[size++] = e;

14 }

15
16 public Object pop() {

17 if (size == 0)

18 throw new EmptyStackException();

19 return elements[--size];

20 }

21
22 /**

23 * Ensure space for at least one more element, roughly

24 * doubling the capacity each time the array needs to grow.

25 */

26 private void ensureCapacity() {

27 if (elements.length == size)

28 elements = Arrays.copyOf(elements, 2 * size + 1);

29 }

30
31 public static void main(String args[]) {

32 Stack s = new Stack(); // Allocation site 2.

33 Object obj = new Object(); // Allocation site 3.

34 s.push(obj);

35 s.pop(); // obj becomes a leaking object.

36 ... // Do something.

37 }

38 }

Figure 4.2: A Java program with memory leaks.
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never be accessed, it becomes a leaking object. With the allocation site information, we can

easily figure out that the leaking object is created at Line 33. However this is not enough

for us to identify the root cause of the problem. A reference path leading to the problematic

object obj is presented in Figure 4.3. From this reference path, we can clearly see that the

obsolete object obj is referenced by the field of Stack s. With this piece of information, we

can easily find the cause of the memory leak—elements holds an obsolete reference. The fix

for this problem is simple: when an element is popped, null out its reference in elements.

Figure 4.3: An example heap reference path.

4.2.2 Mirroring Reference Paths

As we discussed in the previous section, heap reference paths are very helpful for fixing

performance bugs. However, it can be quite expensive for the runtime system to identify

and report reference paths for objects. First, although the GC traverses all live heap objects,

path information is not easy to obtain—to be scalable, the reachability analysis in the GC

Figure 4.4: An example mirror path.
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Figure 4.5: The layout of a tracked object.

does not record any backward information. In addition, reporting a reference path requires

recording the source code information (e.g., allocation site) of each object on the path, which

can introduce significant overhead.

We solve the problem by building a mirror object chain for object obj that reflects the major

reference path leading to obj. Figure 4.4 shows an example mirror path. The mirror object

of an original object name is annotated with name′. As such, to report object obj’s reference

path, we only need to go forward to traverse its mirror chain (as apposed to going backward

on the graph) and print information contained in the mirror objects. This eliminates the

need to either modify the GC algorithm or increase the size of a regular object to store source

code information. Our algorithm tracks only one single reference path for each suspicious

object. We find it to be sufficient in most cases. After the execution finishes, allocation

sites are ranked based on the total size of the memory penalties added to their objects; their

related reference paths are reported as well.

Figure 4.5 shows the layout of a tracked object at runtime. We add two words in each

1 public class Mirror {

2 Object o; // The actual object.

3 AllocSiteInfo info; // The source code info.

4 Field fInfo; // The information of the corresponding edge.

5 Mirror next; // Points to the next mirror object.

6 }

Figure 4.6: The definition of the Mirror class.
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object’s header space to store (1) its penalty count (in numbers of bytes) and (2) a pointer

pointing to the head of its mirror chain. Constants PEN OFF and MIRROR OFF are used to

locate the offsets of these two locations upon accesses. Figure 4.6 shows the definition of the

Mirror class. Each mirror object contains two outgoing edges, one pointing to the actual

object it mirrors (i.e., via field o) and the other pointing to the next mirror object (i.e., via

field next). The mirror object also contains the source code information of the object it

mirrors as well as the field information of the corresponding reference edge in the original

path. In the example mirror chain shown in Figure 4.4, field fInfo in object s′ and object

elements′ record field elements and elements[0] respectively.

Algorithm 1 shows our algorithm for incrementally adding penalties and building mirror

paths. The algorithm has three major procedures: PreGC, InGC, and PostGC. PreGC

resets the penalty counter, and sets two mark values that will be used later in GC to mark

objects (Lines 10–14). lastMark and currMark , which represent, respectively, the mark

values used in the last and the current GC, alternate between 1 and 2. Procedure InGC

traverses the object graph to build mirror reference paths (Lines 15–40). Because the object

graph traversal cannot go backward, it is impossible to mirror a reference path with multiple

edges in one single GC run. The basic idea of the incremental algorithm is to mirror one edge

on the path in each GC, starting from the one closest to the penalized object. For example,

to build the mirror path in Figure 4.4, we first mirror the edge going directly to object obj

(i.e., elements
elements[0]−−−−−−→ obj) by creating an edge between obj′ and elements′. Next, we

mark object elements with a special mark value so that elements will be recognized in the

next GC and the edge between s and elements can be mirrored. If object obj keeps being

penalized (e.g., indicating that we are amplifying a true problem), a long mirror chain will

be constructed and, hence, more complete path information will be reported.

During the graph traversal, if the object being reached happens to be the one to be penalized

(Lines 17–34), we first increase the object’s penalty counter by the size of the object (Lines 18
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Algorithm 1 Incrementally creating virtual penalties and building mirror paths.

1: global variables
2: Map newRefEdges . Reference edges to be added in the mirror chain.
3: Set objToBeMirrored . Objects to be mirrored.
4: List mirrorObjCurrGC . Mirror objects at the end of each mirror chain.
5: List mirrorObjLastGC . Chain-ending mirror objects found in the previous GC.
6: long V P . The accumulated virtual penalty size.
7: int currMark ← 1 . The mark bit used in the current GC.
8: int lastMark . The mark bit used in the previous GC.
9: end global variables

10: procedure PreGC
11: V P ← 0 . VP is reset before each GC.
12: lastMark ← currMark
13: currMark ← currMark % 2 + 1
14: end procedure
15: procedure InGC
16: for each live object currObj do . currObj is reachable in this GC.
17: if currObj ≡ obj then . If currObj is the target.
18: s← Load(obj, PEN OFF + Size(obj)
19: Store(obj, PEN OFF, s)
20: head← Load(obj, MIRROR OFF) . head is a mirror object.
21: if head ≡ null then . The mirror chain does not exist yet.
22: objToBeMirrored← objToBeMirrored ∪ {obj}
23: else
24: m← head . m is a mirror object.
25: n← m.next . n is a mirror object.
26: while n 6= null do
27: if refExists(n.o, m.o) then . Verify the reference.
28: m← n
29: n← n.next
30: else
31: m.next← null . The recorded path has changed.
32: break
33: SetMark(n.o, currMark)
34: mirrorObjCurrGC ← mirrorObjCurrGC ∪ {n}
35: for each object p referenced by currObj do
36: if GetMark(p) ≡ lastMark then
37: newRefEdges← newRefEdges ∪ {〈currObj, p〉}
38: Unmark(p)
39: V P ← V P + Load(obj, PEN OFF)
40: end procedure
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41: procedure PostGC
42: for each object m ∈ objToBeMirrored do . m is a mirror object.
43: m′ ← CreateMirror() . m′ is a mirror object.
44: WriteSourceCodeInfo(m, m′)
45: Store(m, , MIRROR OFF, m′)
46: for each object p ∈ mirrorObjLastGC do . p is a mirror object.
47: if ∃ 〈i, p.o〉 ∈ newRefEdges then
48: i′ ← CreateMirror() . i′ is a mirror object.
49: WriteSourceCodeInfo(i, i′)
50: p.next← i′

51: mirrorObjLastGC ← mirrorObjCurrGC
52: mirrorObjCurrGC, objToBeMirrored, newRefEdges← ∅
53: V SO ← (V P + LiveHeapSize()) / LiveHeapSize() . Compute virtual space

overhead.
54: end procedure

and 19), and then find the head object of its mirror path (Lines 20). If no mirror object

has been created (i.e., it is the first time to penalize this object), we remember the object

in set objToBeMirrored—since we cannot create mirror objects during a GC, we will do it

later after the GC. If the head mirror object is found, we need to create a new mirror object

and append it to the existing mirror path. Since this existing mirror path was built in the

previous GCs, certain reference edges being mirrored may have changed. To detect such

changes, we traverse the mirror path (Lines 24–32) to validate if each edge in the path still

mirrors a valid heap reference (Line 27). When the traversal finishes, n is either the last node

of the mirror path or the first node at which the old reference relationship breaks. A new

mirror object will be created and linked to n. We mark the object that n mirrors (i.e., n.o)

with currMark (Line 33) so that n.o will be recognized in the next GC and a new reference

edge pointing to n.o will be mirrored. n is then remembered in set mirrorObjCurrGC and

we leave the mirror object creation to the PostGC procedure.

If any child of the object being traversed has been marked (by the previous GC) (Line 36),

the reference edge connecting the object and this child needs to be mirrored. We remember

the pair 〈currObj , p〉 in map newRefEdges for further processing (Line 37) and then unmark

object p (Line 38). It is important to note that the correctness of existing mirror chains
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is verified when their root nodes are traversed during each GC (Lines 24–32). If its corre-

sponding reference path is invalid, the invalid part will be removed and the reference path

will be built based on the remaining part.

All mirror objects are created right after the GC is done (Lines 42–50). We first create a

mirror object m′ for each object m ∈ objToBeMirrored that does not have a mirror chain

(Line 43, store m’s allocation site information into m′ (Line 44), and write a reference

of m′ into m’s header space (Line 45). Next, we check each chain-ending mirror object

p ∈ mirrorObjLastGC and see whether there exists a new heap reference edge recorded in

newRefEdges whose target is mirrored by p (Line 47). If this is the case, we need to create

one more mirror object to mirror the source of the edge (Lines 48–50).

All objects in list mirrorObjCurrGC are added to list mirrorObjLastGC before the mutator

execution resumes, so that these objects will be used to mirror new edges in the next GC.

mirrorObjCurrGC , objToBeMirrored and newRefEdges are cleared in PostGC (Line 52).

Finally, virtual space overhead is computed (Line 53) based on the total penalty size VP

(which is updated every time a node is traversed at Line 39).

Our incremental algorithm enables an important feature of our detector: the completeness

of diagnostic information provided for a “suspicious” object is proportional to the degree of

its suspiciousness (i.e., how long it gets penalized). Every time the object is penalized, the

algorithm records one additional level of the reference path for the object. While a regular

detector can also provide diagnostic information, it maintains a tracking space of the same

size and records the same amount of information for all objects. For example, the reference

path associated with the top object in xalan (shown in Section 4.3.2) reported by our leak

amplifier has 10 nodes; all of the nodes on this long path are necessary for us to understand

the cause of the leak. A regular detector can never afford to store a 10-node path for each

object.
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Our algorithm can mirror only one reference path for each object. We find it to be sufficient

in most cases: there is often one single reference path in which an object is inappropriately

used and causes a problem, although the object may be referenced by many paths at various

points; if the object keeps being penalized, the penalty chain will eventually get stabilized

to mirror the problematic path necessary for the developer to fix the problem. Furthermore,

for many types of performance problems, reporting any reference path will be helpful to find

their root causes. For instance, for leak detection, any reference path that holds a suspicious

object and makes it reachable is problematic. As another example, for detection of under-

utilized containers, our detector tracks inefficiently-used arrays and the key to producing

a high-quality report is to find the data structures (e.g., HashMap, ArrayList, etc.) that

reference those arrays. Since an array is often owned by a high-level data structure, any

reference path that leads to the array must pass the data structure, and hence, reporting

any path will be sufficient for the developer to find the data structure and understand the

problem.

4.3 Evaluation

Using ISL, we have implemented four different amplifiers that target, respectively, memory

leaks, under-utilized containers, over-populated containers and never-used return objects.

In our evaluation, no application-related information was added into these descriptions,

although a future user may describe a symptom in a way that is specific to an application.

These ISL programs were easy to write and took us only a few hours. All experiments were

executed on a quadcore machine with an Intel Xeon E5620 2.40GHZ processor, running

Linux 2.6.32. To reduce the influence of execution noise, we repeat each test twenty times

and report the medians.
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Bench (a) MEM (b) UUC (c) OPC (d) NUR
Real m = 10 Real m = 10 Real m = 10 Real m = 10

antlr 1.20 1.1 1.22 2.6 1.20 1.0 1.33 1.0
bloat 1.35 1.1 1.72 5.9 1.58 1.1 1.65 1.0
eclipse 1.28 5.6 1.21 8.7 1.23 3.5 1.26 1.0
fop 1.15 1.6 1.22 3.3 1.16 1.1 1.14 1.0
hsqldb 1.24 26.2→1.3 1.19 16.6→2.2 1.19 29.2→1.7 1.19 1.0
jython 1.16 22.7→6.4 1.06 48.3→5.3 1.06 16.3→3.8 1.06 1.0
luindex 1.18 1.2 1.16 1.7 1.13 1.1 1.09 1.0
lusearch 1.60 1.4 1.70 1.5 1.69 1.2 1.71 1.0
pmd 1.18 1.5 1.12 1.4 1.12 1.1 1.12 1.0
xalan 1.15 53.1→7.1 1.09 117.7→7.9 1.08 3.4 1.11 1.0
GeoMean-H 31.6 45.5 21.8 —
GeoMean-L 1.6 2.9 1.5 1.0

Table 4.1: Space overheads reported by the amplifiers.

4.3.1 Amplification Effectiveness

The first set of experiments focuses on understanding of whether our technique is effective in

exposing performance problems in a testing environment. Since the DaCapo benchmark [11]

provides three different kinds of workloads (i.e., small, default, and large), we ran each

amplifier on their small workloads to simulate how a developer would use our tool during

testing—it is much more difficult to reveal performance bugs under small workloads than

large workloads. The number of iterations for each program is such that the execution can

have at least 20 GCs. We make no assumption about test inputs—real-world developers can

enable amplification when executing a regular test suite; whenever a test case triggers a true

problem, amplification will incur a large virtual overhead.

Indication of performance bugs. Table 4.1 reports the (real and virtual) space over-

heads (in times) for memory leaks (column (a)), under-utilized containers (column (b)),

over-populated containers (column (c)) and never-used return objects (column (d)) over the

DaCapo benchmarks (2006 release) using a 500MB heap. Each column reports the real space

overheads (Real) and the VSOs when m = 10. Highlighted in the table are the programs
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whose maximal VSO is greater than 15. Notation of the form a → b means a program

with a VSO a has a new VSO b after its performance problems are fixed. GeoMean-H

and GeoMean-L report the average VSOs for the highlighted and non-highlighted programs,

respectively.

Clearly, the VSOs indicate that leaks may exist in hsqldb, jython and xalan; under-utilized

containers in hsqldb, jython and xalan; and over-populated containers in hsqldb and

jython. An important observation made here is that there is a clear distinction between

the overheads of programs with and without problems, making it particularly easy for de-

velopers to determine whether manual inspection is needed during testing. For example, to

find over-populated containers, there are only two programs whose memory consumption is

significantly amplified. Developers only need to read reports for these two programs; they

would otherwise have to inspect all programs and check each warning had a regular detec-

tor been used. The differences in the VSOs of programs with and without problems are

clearly demonstrated by the numbers reported in the GeoMean-H and GeoMean-L rows. We

have manually inspected the programs whose VSO is > 15 and found problems in all of

them2. Details of these problems will be discussed shortly in Section 4.3.2. As also shown

in Table 4.2, the VSOs of mysql and mckoi became much smaller after the problems were

fixed.

Space and time overheads. Section Real of Table 4.1 reports the real space overheads

of our infrastructure, computed as S1/S0, where S0 and S1 are, respectively, the peak post-

GC heap consumptions of the unmodified and modified RVM. The average space overheads

incurred by the four amplifiers (i.e., memory leaks, under-utilized containers, over-populated

containers, and never-used return objects) under the configuration m = 10 are 1.23×, 1.23×,

1.25×, and 1.25× respectively. The overall time overheads under the same configuration are

2.39×, 2.74×, 2.73×, and 2.80× respectively. To understand the scalability of the tool, we

215 is just a number in a large range (between 10 and 20) that can easily distinguish these overheads.
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Bench m = 5 m = 10 m = 15 m = 20
antlr 1.2 1.1 1.2 1.2
bloat 1.1 1.1 1.1 1.1
eclipse 5.3 5.6 6.3 6.3
fop 1.6 1.6 1.7 1.7
hsqldb 26.5→1.7 26.2→1.3 25.9→1.2 25.7→1.2
jython 22.7→6.3 22.7→6.4 22.7→6.4 24.5→6.3
luindex 1.2 1.2 1.2 1.2
lusearch 1.4 1.3 1.3 1.3
pmd 1.5 1.5 1.5 1.5
xalan 53.1→7.3 53.2→7.1 40.4→2.7 37.0→1.9
mysql 155.5→2.3 108.9→2.3 70.4→1.5 30.1→1.2
mckoi 111.6→6.9 72.4→6.6 85.6→3.3 42.6→1.7
GeoMean-H 56.1 47.8 42.7 31.3
GeoMean-L 1.6 1.6 1.6 1.6

Table 4.2: Space overheads for memory leaks with different history sizes.

have also run these amplifiers using the DaCapo large workloads. The time overheads for

the four amplifiers are all between 2.5× and 3.2×.

Sensitivity to the execution window length. We ran our memory leak amplifier with

m = 5, m = 10, m = 15 and m = 20 to show whether our framework is sensitive to execution

window length. Table 4.2 shows the results over the DaCapo benchmarks with different

lengths of the execution window using a 500MB heap. We added two extra programs mysql

and mckoi to our benchmark set—they have known leaks studied before and we are thus

interested in how our amplifier performs on these programs. Each column m = i reports the

VSOs of the amplifier when the size of the execution window is i (i.e., the value of the field

size in the History construct). Highlighted in the table are the programs whose maximal

VSO is greater than 15. Notation of the form a → b means a program with a VSO a has

a new VSO b after its performance problems are fixed. GeoMean-H and GeoMean-L for a

column m = i report the average VSOs under m = i for the highlighted and non-highlighted

programs, respectively.

We make two observations based on the amplification results in Table 4.2. First, the VSOs
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Figure 4.7: VSOs for the memory leak amplifier with different heap sizes.

under different parameters are generally stable; the size of an execution window (i.e., user-

provided threshold) does not have much impact on the amplification results. On the contrary,

the effectiveness of an existing symptom-based performance problem detector relies heavily

on such a threshold. Second, as the size of the execution window increases, the space overhead

of the tool decreases in general. This is straightforward—the larger the size of the history

is, the fewer objects are amplified, and the smaller effect amplification creates.

Sensitivity to the heap size. Figure 4.7 shows the VSOs reported by our memory leak

amplifier with different heap sizes. Based on the data in Figure 4.7, we make two observa-

tions. First, the VSOs reported by our leak amplifier with differnt heap sizes are general

stable; the heap size does not have much impact on the amplification results. Second, as the

heap size increases, the space overhead of the tool decreases in general. With a larger heap,

GC is triggered less frequently. As we mentioned in Section 3.2, the same memory problem

is more serious if the normal parts of the program consumes less resource.

45



4.3.2 Problems Found

We have manually inspected our reference path report for each highlighted program in Ta-

ble 4.1 and Table 4.2. We have not found any highlighted program to be mistakenly amplified,

that is, real performance problems are identified in all of them. We have studied a total of

10 amplification reports and found 8 unknown problems that have never been reported in

any prior work. Furthermore, all of these problems are uncovered under small workloads;

their executions do not exhibit any abnormal behavior without amplification. In this sec-

tion, we discuss our experiences with 8 unknown problems. For each problem found, we

have developed a fix. As shown in Table 4.1 and Table 4.2, the VSOs of these programs

are significantly reduced after their fixes are applied. This demonstrates that PerfBlower is

sensitive only to true memory issues, not false problems.

For each program, we have also run an existing leak detector, Sleigh [14], and compared our

reports with Sleigh’s reports. The reason we chose Sleigh is because it is the only publicly

available performance problem detector that does not require user involvement. While there

exist other tools such as LeakChaser [122] and a few inefficient data structure detectors [89],

they are either unavailable or require heavy user annotations to understand the program

semantics. Hence, we compare PerfBlower only with Sleigh in this dissertation.

Memory leaks in xalan. The No. 1 allocation site in the report has a very long reference

path (with 10 nodes); the top 3 objects on the path are in Figure 4.8.

The reference path shows us that the largest penalty is added to objects created and refer-

enced by the instances of an XML transformer class TransformerImpl. This immediately

catches our attention, since TransformerImpl objects should be reclaimed after each trans-

formation. The reference path directs us to class StyleSheetRoot, which implements inter-

face Templates and has a reference to an IteratorPool object. Each IteratorPool object

maintains a vector of DTMAxisTraverser objects in order to reuse those objects. However,
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#0. id: 5561 ObjectVector.java: 106

Method: org.apache.xml.utils.ObjectVector.<init>

Object Type: java.lang.Object[]

Number of suspicious objects: 27

Size: 14173056 bytes

Path: ID: 5573 XPathContext.java: 920

Method: org.apache.xpath.XPathContext.<init>

Object Type: org.apache.xml.utils.ObjectStack

<= ID: 5557 TransformerImpl.java: 402

Method: org.apache.xalan.transformer.TransformerImpl.<init>

Object Type: org.apache.xpath.XPathContext

<= ID: 5543 StylesheetRoot.java: 212

Method: ...templates.StylesheetRoot.newTransformer

Object Type: org.apache.xalan.transformer.TransformerImpl

<= ...

Figure 4.8: A partial reference path reported by our memory leak amplifier.

upon the reuse of an old DTMAxisTraverser object, the object still keeps a reference of its pre-

vious SAX2DTM object, which, in turn, references the TransformerImpl object. Hence, each

reused DTMAxisTraverser object in the IteratorPool leaks its previous TransformerImpl.

This is a serious problem, because the size a TransformerImpl object is often very large (at

the megabyte level). We come up with a quick fix in which one line of code is commented

out to disallow reuse of DTMAxisTraverser objects. The fix has resulted in a 25.4%

reduction in memory consumption and a 14.6% reduction in execution time. A

subsequent search in the xalan bug repository reveals that the same bug was found and

fixed in version 2.5.1 [37] (with a different approach), while the DaCapo xalan version in

which we detect the bug is a much earlier one (2.4.1). We find that every object on this long

path is necessary for understanding the cause of the bug. It would not be possible to record

such complete information with a regular detector/profiler (that uses a fixed-size space to

store metadata for each object).

For xalan, Sleigh reports a few stale objects, including their types and numbers of instances.

Most of these types are Java library classes or VM classes, such as java.lang.String and
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com.ibm.JikesRVM.classloader.VM Atom, which have nothing to do with the leak. In this

case, Sleigh provides neither allocation sites nor last access sites for these stale objects. This

is primarily because Sleigh uses only one bit per object to encode information statistically; it

needs a long execution to gather sufficient data for producing a diagnostic report, and thus

does not work well for test executions, which are often small-scale and very short.

Memory leaks in jython. From the report, it is easy to identify that most space penal-

ties are added to stale PyJavaPackage objects. One use of these objects is to cache the

relationships between Java classes and Jar files. When a jar file is loaded, Jython iterates

over all the classes and creates PyJavaPackage objects. Many classes are never used during

execution, and thus, their corresponding PyJavaPackage objects become leaks. We fix the

problem by (1) employing lazy loading and (2) removing unnecessary jars from classpath.

The fix has led to a 24.3% peak memory reduction and a 7.4% time reduction

for the warm up phase.

In Sleigh’s report, there is only one stale allocation site. Although this allocation site is

related to the cause of the leak, it is still far away and it would take a developer a fair

amount of effort to find the cause from the allocation site. On the contrary, PerfBlower

provides much more precise diagnostic information, significantly alleviating the developer’s

debugging burden.

Memory leaks in hsqldb. Most of the reported objects are related to data values computed

but not used at all in the DaCapo execution. For example, hsqldb maintains four maps

between paths and databases. Although in DaCapo only the memory database is used,

hsqldb also keeps maps for the file database and the resource database. One way to solve the

problem is to provide configuration options that allow users to specify the databases needed.

We change these stale objects to lazy initialization, reducing the memory consumption by

15.6%.
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Under-utilized containers in hsqldb. The report clearly shows most under-utilized con-

tainers are due to inappropriate initial capacity. For example, the top object in our report

points to arrays created during the initialization of BaseHashMap. The reference path quickly

leads us to inspect ValuePool.java. In this class, hsqldb maintains six ValuePoolHashMap

objects in static fields, which are used to support singleton patterns. However, all of these

maps have 10000 as their initial capacity, which is way too large for many clients. We fix

the problem by making these containers grow dynamically as necessary and changing their

initial capacity to 32. This optimization has led to a 17.4% space reduction.

Under-utilized containers in jython. Our report indicates that the largest penalty is

added to arrays created in PyStringMap.resize method. By inspecting PyStringMap, we

find that the class uses a string array to store keys and a PyObject array to store values.

Before each insertion, it checks the load factor of its key array (i.e., how full the map is

allowed to get before its capacity is increased). In this case, if the load rate is higher than

0.5, its capacity is doubled. Actually, since the hash function of String works generally

well and the key array has a very small collision rate, using 0.5 as load factor seems too

aggressive. Modifying it to 0.75 results in a 19.1% space reduction.

Under-utilized containers in xalan. The top warning in the report points to ObjectStack

objects created in XPathContext and TransformerImpl objects. The initial capacity of

ObjectStack is defined by XPathContext. RECURSIONLIMIT, a static final field with a value

4096. A detailed inspection of the source code reveals that ObjectStack is implemented based

on ObjectVector, which is a data structure designed to support random accesses. The initial

capacity defines a tradeoff between space and time: using a smaller value saves space at the

cost of increased lookup computation. Finding the sweet spot requires deep understandings

of the program and empirical studies. When we use 2048 as the initial capacity, the memory

consumption is reduced by 5.4%, and the execution time is reduced by 34.1%.

Over-populated containers in hsqldb. Before hsqldb executes an insert query, it
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invokes a method called getNewRowData to create an object array that represents the row

to be inserted. A column in a database table often has a default value—when a new row

specified by an insert query does not have a value for the column, this default value will

be filled in. We find that method getNewRowData creates a large number of objects and fill

them into the object array as default values. These objects are never retrieved from this

array until later they are replaced by the actual values. We fix the problem by performing

a lazy default value assignment, resulting in a 14.9% space reduction.

Over-populated containers in jython. The cause of the problem here is the same as in

jython-leak. The top object in our report directs us to inspect method PyJavaPackage.resize,

in which a large array is created to contain Java classes, most of which are never retrieved

from the map. This same problem has two different manifestations.

Comparison with Sleigh. Table 4.3 summarizes the comparison of the leak reports of

PerfBlower and Sleigh. PerfBlower found memory leaks in six benchmarks (including four

new leaks and two known leaks), and for each memory leak, PerfBlower provided very precise

diagnostic information (leaks+). Sleigh reported that five programs contain memory leaks,

including two new leaks, two known leaks, and a false warning. Furthermore, Sleigh did

not provide any useful diagnostic information for three leaking programs (leaks−). The

comparison demonstrates that PerfBlower is able to find more (new) leaks, has fewer false

positives, and generates more precise diagnostic information.

4.3.3 PerfBlower Completeness

Our amplifiers are able to find bugs in all of the highlighted programs; but do they miss bugs?

To answer this question, we performed an additional experiment. In this experiment, the

benchmark set includes 14 programs (shown in Table 4.4), which have known performance

problems reported in all prior works [53, 14, 16, 122, 126] except Chameleon [89]. Chameleon
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Bench PerfBlower Sleigh
antlr no leak no leak
bloat no leak no leak
eclipse leaks+ no leak
fop no leak no leak
hsqldb leaks+ leaks+

jython leaks+ leaks−

luindex no leak false positive
lusearch no leak fail to run
pmd no leak no leak
xalan leaks+ leaks−

mysql leaks+ fail to run
mckoi leaks+ leaks−

true unknown leaks 4 2
true known leaks 2 2
false positives 0 1
useful information 6 1

Table 4.3: Comparison of PerfBlower and Sleigh’s reports.

is a dynamic technique that can detect inefficiently-used containers. However, it is based on

the commercial J9 VM and not publicly available. In addition, the description of the bugs

in [89] is at a very high level and does not contain detailed location information (such as

classes, methods, and line numbers). Hence, those bugs are not considered.

Among these benchmarks, three programs cannot be executed. Two of them are about

memory leaks in Sun JDK library, which is not used by Jikes RVM. Another benchmark is

chart, which could not be executed because some AWT libraries were missing. For the rest

of the bugs, all but one are captured by PerfBlower. The missing one is an under-utilized

container in the DaCapo benchmark bloat, reported by a static analysis-based container

problem detector [126]. Because PerfBlower is based on dynamic analysis, its ability of

finding bugs depends on the coverage of test cases. We inspect the source code of benchmark

bloat and conclude that this bug cannot be triggered by the DaCapo input. Based on this

experiment, we observe that PerfBlower does not miss any bug that can be triggered by a

test case.
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Work Bugs Studied PerfBlower
Cork [53] SPECjbb’s leak Reported

Eclipse #115789 Reported
Sleigh [14] SPECjbb’s leak Reported

Eclipse #115789 Reported
Container Profiler [125] SPECjbb’s leak Reported

JDK #6209673 Not available in RVM
JDK #6559589 Not available in RVM

LeakChaser [122] SPECjbb’s leak Reported
Eclipse #115789 Reported
Eclipse #155889 Reported

MySQL’s leak Reported
Mckoi’s leak Reported

Leak Pruning [16] SPECjbb’s leak Reported
Eclipse #115789 Reported
Eclipse #155889 Reported

MySQL’s leak Reported
JbbMod’s leak Reported

Mckoi’s leak Reported
Delaunay’s leak Reported

List leak Reported
Swap leak Reported
Dual leak Reported

Static Bloat Finder[126] Bloat’s UUC Not triggered
Chart’s OPC Not available in RVM

Table 4.4: Completeness of PerfBlower.

4.3.4 False Positive Elimination

In order to understand if our technique successfully eliminates false warnings of a regular

performance problem detector, we measure the number of objects that have experienced

both amplification and deamplification. These objects are amplified because they satisfy

the symptom specification for a sufficiently long period; they are deamplified later when

the symptom disappears. Although they are not true causes of performance problems, a

symptom-based detector would report all of them.

False warnings eliminated by our memory leak amplifier are shown in Table 4.5. The setup

for this experiment is exactly the same as the one for the experiments reported in Table 4.1
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and Table 4.2. For each program under each history size m = i, we report four numbers FO,

FS, TO, and TS ; FO is the number of such objects that their staleness exceeds i but they

are used afterwards, FS is the number of allocation sites creating objects in FO, TO is the

total number of objects whose staleness exceeds i, and TS is the number of allocation sites

creating objects in TO. FO and FS are, respectively, the numbers of false warning objects

and allocation sites that are eliminated by deamplification but would have otherwise been

reported by a regular memory leak detector.

We make three observations based on these numbers. First, the number of false warnings is

reduced as we increase the threshold i. This is straightforward because true leaking objects

often have larger staleness than false leaks. However, increasing i can easily lead to false

negatives because the staleness of objects created late during execution may not reach i

before the execution finishes. This can be observed from the fact that the total numbers

of suspicious objects TO and suspicious allocation sites TS drop significantly, especially

for lusearch, xalan, mysql, and mckoi. For example, setting i to 10 during an execution

with 20 GCs would miss all stale objects created in the second half of the execution. Our

algorithm frees developers from choosing a perfect threshold i: one can always use a small i

(such as 5) to ensure no true problem is missing without worrying about false positives—most

of them are automatically eliminated by deamplification. Finally, PerfBlower has eliminated

not only false leaking objects (FO), but also false leaking allocation sites (FS ). Since a leak

detector often ranks and reports allocation sites, elimination of false leaking allocation sites

leads directly to more precise reports as well as reduced manual inspection effort.

4.4 Limitations

While PerfBlower captures commonalities of different memory-related problems and makes

it easy for them to manifest, it has a few limitations that leave room for improvement. First,
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Bench m = 5 m = 10 m = 15 m = 20
FO/FS TO/TS FO/FS TO/TS FO/FS TO/TS FO/FS TO/TS

antlr 26/2 103/68 10/2 87/68 3/2 80/68 2/1 79/68
bloat 19/3 72/29 4/3 56/29 3/3 54/29 2/2 53/29
eclipse 5992/498 12062/1279 4697/246 10572/1030 4648/235 9747/1018 4339/201 8852/958
fop 27/2 823/723 9/1 806/722 4/1 797/722 0/0 793/722
hsqldb 386/4 1866/105 188/4 1236/105 68/3 793/105 13/3 493/105
jython 28/3 17864/1072 21/3 17709/1034 11/2 17634/951 7/2 17410/830
luindex 9/2 94/72 5/2 90/72 2/2 90/72 2/2 88/72
lusearch 183/15 1713/113 32/14 206/67 5/4 178/66 3/2 174/64
pmd 28/2 238/156 6/2 210/156 1/1 204/156 1/1 203/156
xalan 120/12 19795/637 65/11 14657/637 17/8 11304/636 10/7 10540/628
mysql 4457/3 54937/192 1933/3 40844/192 2/2 26547/192 2/2 12877/192
mckoi 116/76 12004/298 116/76 11547/292 111/76 10133/292 1/1 5058/236
jbb 8192/55 54358/59 27/8 49018/55 5/4 27913/55 4/4 25081/53

Table 4.5: False warnings eliminated by deamplification.

it can only find heap-related inefficiencies, while there are many different sources for real-

world performance problems, such as idle threads, redundant computations, or inappropriate

algorithms. Second, the JVM needs to be rebuilt every time a new checker is added. In

practice, this is not an issue, since most modern JVMs support fast and incremental building.

For example, it takes only one minute to build the Jikes RVM on which PerfBlower is

implemented. One future direction would be to make PerfBlower a JVMTI-like library that

can be dynamically registered during bootstrapping of the JVM without needing to build

the JVM. Third, since PerfBlower piggybacks on the GC, its effectiveness may be affected by

the GC frequency. PerfBlower may report a higher overhead if a program is executed with

a smaller heap (due to more GCs). While this introduces uncertainties, our experimental

results (in Figure 4.7) demonstrate, for most programs, the VSOs reported by PerfBlower are

very stable across different heap sizes. Finally, PerfBlower may become less effective when

a generational GC is used. Since a generational GC does not frequently perform full-heap

scanning, objects that stay in the old generation space may not be effectively amplified.

4.5 Summary and Interpretation

Based on ISL, we have built a general performance testing framework, PerfBlower, which

can help developers capture performance bugs in a testing environment. Using PerfBlower,
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we have amplified four different types of performance problems (i.e., memory leaks, under-

utilized containers, over-populated containers, and never-used return objects) on a set of real-

world applications; our experimental results show that even under small workloads, there is

a very clear distinction between the VSOs for executions with and without problems, making

it particularly easy for developers to write simple space assertions and only inspect programs

that have assertion failures. In fact, we have manually inspected each of our benchmarks for

which PerfBlower reports a high VSO, and found a total of 8 unknown problems.

We have compared the quality of leak reports between PerfBlower and an existing leak

detector Sleigh [14] executed under the same (small) workloads: PerfBlower reported 6 leaks

with no false positive and very detailed diagnostic information, while Sleigh reported 4 leaks

with 1 false positive, and generated zero diagnostic information for 2 programs and very

high-level information for the other 2 programs. We additionally performed an exhaustive

study of the 14 performance bugs reported in the literature: PerfBlower found all but 4

bugs; for these bugs, we either could not run the program or did not have a triggering test

case. These promising results clearly show that PerfBlower is useful in quickly building a

large number of checkers that can effectively find performance bugs before they manifest in

production runs.

PerfBlower is more tolerant to benign problems than existing symptom-based detectors [14,

53, 89], which often have many false warnings due to heavy reliance on user parameters and

heuristics. For instance, in a simple staleness-based memory leak detector, an object whose

staleness exceeds a parameter i will be reported as a leak regardless of whether the object

is used afterwards. A fundamental difficulty in an existing detector lies in the choice of the

appropriate threshold: on one hand, a small i leads to many false positives because a stale

object may be used after a warning is reported; on the other hand, a big i may cause the

profiler to miss a true problem because the execution may have already finished before i is

reached. The difficulty of finding the right i is further increased in a testing environment
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(with small workloads), wherein the behaviors of true and benign problems are often very

similar and cannot be easily distinguished.

Although PerfBlower still needs a user threshold to determine when to perform amplifica-

tion, its reliance on finding a perfect i is significantly reduced by turning a symptom into

a cancelable penalty. Using ISL, developers specify not only when to amplify (i.e., when

the symptom specification is satisfied in an execution window), but also when to deamplify

(i.e., when counter-evidence is seen). In our experiments, we observe that a small i often

works very well—if a program only has benign problems, although penalties are still created

when a symptom appears, these penalties will be removed later by deamplification and thus

not accumulate. As demonstrated in Section 4.3.4, for large applications such as eclipse

and mysql, many thousands of false warnings are eliminated by deamplification but would

otherwise have been reported by an existing leak detector.

In our framework, the amplification is done on a per-object basis: a memory penalty is

created and associated with each object that satisfies the symptom specified in ISL (i.e.,

at the moment the object becomes “suspicious”). Instead of requesting actual memory as

penalties (which incurs significant space overhead), we create virtual penalties by maintaining

a penalty counter inside each object to track the size of the penalty created for the object.

During each garbage collection (GC), we identify the real heap usage of the program and

then compute a virtual heap consumption by adding up the penalty counter for each object

and the real heap consumption. The virtual heap consumption is then compared to the real

heap consumption to compute a virtual space overhead (VSO). VSO provides an automated

test oracle: our experimental results show that the overall VSOs for benchmarks with and

without real performance problems are, respectively, 20+ times and 1.5 times. The gap is

sufficiently large so that test runs triggering bugs can be easily identified.

In PerfBlower, we have implemented the algorithm shown in Section 4.2.2 which incremen-

tally builds a mirror object chain that reflects the major reference path in the object graph
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leading to the “suspicious” object o. This chain records the source code information of each

object on the reference path; identifying and reporting the reference path for o gets reduced

to traversing forward o’s mirror chain, a task significantly easier than performing a backward

traversal on the object graph which has only unidirectional edges. Our incremental algorithm

enables an important feature of the framework: the completeness of diagnostic information

provided for a “suspicious” object is proportional to the degree of its suspiciousness (i.e.,

how long it gets penalized). Every time the object is penalized, the algorithm presented in

Section 4.2.2 incrementally records one additional level of the reference path for the object.

While a regular detector can also provide diagnostic information, it maintains a tracking

space of the same size and records the same amount of information for all objects. Develop-

ers are very often interested in only a few (top) warnings in a diagnostic report; hence, it is

much better to record more diagnostic information for top warnings than those that are low

down on the list. Our algorithm dynamically determines the metadata space size based on

how “interesting” an object is, making it possible to prioritize object tracking. For example,

the reference path associated with the top object in xalan (shown in Section 4.3.2) reported

by our leak amplifier has 10 nodes; all of the nodes on this long path are necessary for us

to understand the cause of the leak. A regular detector can never afford to store a 10-node

path for all objects in the heap.
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Chapter 5

ITask: Helping Data-Parallel Tasks

Survive Memory Pressure

In Big Data era, since the workload becomes very large, data-related performance problems

are easy to manifest. However, some performance issues are extremely difficult to resolve. In

this chapter, we will attack one of such difficult problems—memory pressure in data-parallel

applications, since many Big Data applications suffer from this type of memory problems

and no existing work can systematically address it. We will start with the memory problems

in the real world to understand memory pressure in Big Data systems. Then we will propose

our solution ITask. The experimental results will be shown in the evaluation section.

5.1 Memory Problems in the Real World

To understand memory problems and their root causes in real-world data-parallel systems, we

searched in StackOverflow for the two keywords “out of memory” and “data parallel”. The

search returned 126 memory problems, from which we discarded those that can be easily fixed

58



or whose problem description was not sufficiently clear for us to reproduce. We eventually

obtained 73 relevant posts with clear problem descriptions. A detailed investigation of them

identified two common root-cause patterns:

• Hot keys. In a typical data-parallel framework, data are represented as key-value

pairs, and some particular keys may have large numbers of associated values. 22

problems fall into this category, including the example discussed in Chapter 1—a join

operation in the program builds an XML object that represents a post (with all its

comments) on StackOverflow. Certain posts are much longer than others; holding

one such long and popular post can consume an extremely large amount of memory.

Consequently, the out-of-memory error (OME) can only be avoided if the processing

of a long post does not occur simultaneously with that of other posts, which, in an

existing framework, can only be done by making the entire framework sequential.

• Large intermediate results. For 51 problems, the semantics of their programs

require intermediate results to be cached in memory, waiting for subsequent operations

before the final results can be produced. In many cases, developers hold these results

in large Java collections (e.g., HashMap or ArrayList), which have non-trivial space

overhead [68]. One post [2] describes a scenario in which the developer uses the Stanford

Lemmatizer [97] (i.e., part of a natural language processor) to preprocess customer

reviews before calculating the lemmas’ statistics. The task fails to preprocess a dataset

of 31GB at a very early stage. The large memory consumption of the lemmatizer is

the cause: due to the temporary data structures used for dynamic programming, for

each sentence processed, the amount of memory needed by the lemmatizer is 3 orders

of magnitude larger than the sentence. Furthermore, the Stanford Lemmatizer is a

third-party library: the developer is unlikely to know either its memory behavior or

how to control it.
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Among the 73 posts we studied, only 25 have recommended fixes. We also investigated these

recommendations and classified them into two major categories:

• Configuration tuning. There are 16 problems for which the recommended fixes

are to change framework parameters. However, framework parameters in data-parallel

systems are extremely complex. For example, Hadoop 2.6.0 has about 190 framework

parameters, such as data split size, number of workers, buffer size, etc. Even expe-

rienced developers may have difficulties finding the appropriate configurations. The

tuning process is often labor-intensive, consisting of repetitive tests and trials. In fact,

almost every discussion thread contains multiple proposed parameter changes and there

is no confirmation whether they have actually worked.

• Skew fixing. There are 9 posts in which the recommended fixes are to fix skews in the

datasets. For instance, to fix the lemmatizer problem, one recommended a thorough

profiling to find all long sentences in the dataset and break them into short sentences.

However, it is nearly impossible to manually break sentences in such a large dataset.

While there exist tools that can manage skews [57], it is difficult to apply them to

general datasets, where there is often huge diversity in data types and distributions.

One common complaint the developers had is that they “lost control” over their programs

after these programs start running in a framework: the developers are constrained within

the given interfaces (such as Map/Reduce); they can do nothing more than writing efficient

implementations of those interfaces, hoping that the system will clean up the mess and

perform intelligent resource management. Since memory problems are difficult to predict

during development, many developers wish they could have a more flexible programming

interface (e.g., a hook) that would allow them to reason about what to do upon memory

pressure.

The complexity of real-world memory problems as well as the difficulty of manually coming

60



up with fixes strongly call for system support that can automatically release memory upon

extreme memory pressure. The design of ITask is motivated exactly by this real-world

need. We have implemented ITask versions for a representative subset of the problems we

have studied. Without any manual parameter tuning or skew fixing, the ITask versions

successfully processed the datasets on which their original versions crashed with OMEs.

5.2 Design Overview

The high level idea behind ITasks is shown in Figure 5.1. When the system detects memory

pressure, a selected task is interrupted, with part or all of its consumed memory reclaimed.

This process is repeated until the pressure disappears to direct the execution of other tasks

on the same node back to the “safe zone” of memory usage.
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Figure 5.1: Memory footprints of executions with (red) and without (blue) ITask.
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We present below three key challenges in carrying out this high-level idea, our high-level

solutions to these challenges, as well as the ITask system architecture.
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Figure 5.2: Handling the different memory components of an ITask.

How to lower memory usage when a task is interrupted? Figure 5.2 illustrates

of an ITask execution at an interrupt with numbers showing different components of its

memory consumption (the left part) and how these components are handled (the right part).

As shown in Figure 5.2, the memory consumption of a data-parallel task instance consists

of the following four components: (1) local data structures created by the task, (2) the

processed input data before the interrupt, (3) the unprocessed part of the input, and (4) the

partial results produced. Simply blocking a thread running the task without swapping data

would not change the task’s memory consumption at all; näıvely terminating the thread can

completely eliminate the task’s memory consumption, but would also completely waste the

computation already performed by the thread.

Our design carefully handles different memory components differently when terminating the

task-running thread, as shown in Figure 5.2. For Component 1 and Component 2, it is safe

to discard them when the corresponding thread is terminated. For Component 3, we will

try to keep the unprocessed input in memory and serialize it (lazily) when needed.
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For Component 4, we differentiate two sub-types of result data, represented by 4(a) and

4(b) in Figure 5.2. Immediately useful results, referred to as final results, can be pushed to

the next operator in the data pipeline immediately (e.g., another set of MapReduce tasks).

Where that next operator is executed is determined by the framework scheduler and may be

on a different node. Results that are not immediately useful and need further aggregation,

referred to as intermediate results, will stay in memory and wait to be aggregated until all

intermediate results for the same input are produced. These results can be lazily serialized

under severe memory pressure. Which result is final and which is intermediate depends on

the task semantics. For example, in MapReduce, an interrupt to a Map task generates a final

result, which can be forwarded immediately to the shuffle phase; an interrupt to a Reduce

task generates an intermediate result, which cannot be used until all intermediate results

from the same hash bucket are aggregated.

When to interrupt a task? The best timing has to consider two factors: per-process

system memory availability and per-thread/task data processing status. Specifically, we

want to interrupt a task when the overall memory pressure comes and when its execution

arrives at a safe state where it is not in the middle of processing an input data item. The

former avoids unnecessary interrupts. The latter allows terminating a task by recording only

minimum local information of the execution. During task re-activation, a new task instance

can simply work on the unprocessed part of the original input without missing a beat.

To handle the first factor, our system leverages an observation that long and useless GC

(LUGC)—that scans the whole heap without reclaiming much memory—is a good indicator

of memory pressure, and uses an LUGC as a signal to trigger interrupts. To handle the

second factor, we need to understand the data processing status, which is related to the

semantics of a task.
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How to interrupt a task? Interrupting in our system involves much more than ter-

minating a random thread in a memory-pressured process. In a system with many tasks

running, determining which thread(s) to terminate is challenging and requires precise global

runtime assessment. Even if we know which task to interrupt, conducting the interrupt is

still non-trivial, involving recording the progress of the task, such as which part of the input

has been processed and what results have been generated. Like the two challenges stated

above, addressing this challenge requires both whole-system coordination and understanding

of per-task semantics.

ITask system architecture. The ITask system includes two main components that work

together to address the challenges discussed above: an ITask programming model and an

ITask runtime system (IRS).
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Figure 5.3: The architecture of the ITask runtime system.

The ITask programming model provides abstractions for developers to program interrupt

logic and allows the IRS to conduct operations that require semantic information about

tasks. Our programming model is carefully designed to provide a non-intrusive way to

realize ITasks, making it possible to quickly modify existing data-parallel programs and

enable ITasks in different frameworks. Specifically, developers only need to implement a
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few additional functions by restructuring code from an existing task. The details of the

programming model are discussed in Section 5.3.

The IRS is implemented as a Java library. This library-based implementation makes ITask

immediately applicable to all existing Java-based data-parallel frameworks. The same idea

can be easily applied to other managed languages such as C# and Scala. More details of

the IRS implementation are presented in Section 5.4.

Figure 5.3 shows a snapshot of a running ITask-based data-parallel job. The IRS sits on top

of the distributed runtime on each node. Whenever the job scheduler assigns a job, which

contains a set of ITasks implementing a logical functionality, to a machine, it submits the job

to the IRS instead of directly running the ITasks. The IRS maintains a task scheduler that

decides when to interrupt or re-activate an ITask instance. As a result, the number of running

ITask instances dynamically fluctuates in response to the system’s memory availability. Each

task instance is associated with an input data partition. Running tasks have their inputs

in the deserialized form in memory (e.g., map, list, etc.), while interrupted tasks may have

their inputs in the serialized form (e.g., bytes in memory or on disk) to reduce memory/GC

costs.

Figure 5.1 illustrates an over-the-time memory-usage comparison between executions with

and without ITasks. In a normal execution, the memory footprint keeps increasing; after

a few LUGCs, the program crashes with an OME. In an ITask execution, the IRS starts

interrupting tasks at the first LUGC point; the memory usage is brought down by the ITask

interrupt and stays mostly constant until the next re-activation point at which new task in-

stances are created. Without any manual configuration tuning, ITask-enhanced data-parallel

jobs can keep their memory consumption in the safe zone throughout their executions, ef-

fectively avoiding wasteful GC effort and disruptive OMEs.
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Other design choices. Besides the proposed approach, there are several other design

choices. The first one is to develop a language with new constructs to allow developers to

express interrupt logic. However, as with all language design efforts, there is an inherent risk

that developers lack strong motivation to learn and use the new language. Another choice is

to develop a data-parallel system from scratch with all the ITask-related features embedded.

This choice shares a similar risk to language design: migrating programs from existing

frameworks to a new framework is a daunting task that developers would be reluctant to do.

Hence, it is clear to us that the most practical way to systematically reduce memory pressure

is to combine an API-based programming model with a library-based runtime system—as

proposed in the thesis—that can extend the performance benefit to a large number of existing

systems and programs independently of their computation models.

5.3 The ITask Programming Model

This section describes the ITask programming model as well as how it is implemented in two

state-of-the-art data-parallel frameworks: Hyracks [105] and Hadoop [102].

5.3.1 Programming Model

To turn an existing data-parallel task into an ITask, the developer needs to make the follow-

ing three changes to the task’s original implementation. First, implement the DataPartition

interface (shown in Figure 5.4). DataPartition objects wrap around the framework’s exist-

ing data representation (e.g., key-value buffer) and are used as an ITask’s input and output.

Second, make the original task’s Java class inherit the ITask abstract class (shown in Fig-

ure 5.5) and implement its four abstract methods. This can be easily done by restructuring

existing code and adding a small amount of new code to handle interrupts. Third, add
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a few lines of glue code to specify the input-output relationships between data partitions

and ITasks. The development effort is insignificant because most of the work is moving

existing code into different methods. For instance, for the 13 StackOverflow problems we

reproduced, it took us only a week in total to implement their ITask versions although we

had never studied these programs before.

1 // The DataPartition abstract class in the library.

2 abstract class DataPartition {

3 // Partition state.

4 int tag, cursor;

5 abstract boolean hasNext();

6 abstract Tuple next();

7 abstract void serialize();

8 abstract DataPartition deserialize();

9 }

Figure 5.4: The DataPartition abstract class.

Input and output. For a data-parallel task, the input dataset is a vector of data tuples. A

DataPartition object wraps around an interval of tuples in the input and different partitions

never overlap. Existing data-parallel frameworks already have their own notions of partitions;

to use ITask, the developer only needs to wrap an existing partition in a DataPartition

object.

The DataPartition class provides a unified interface for the runtime to track the state of

data processing. The internal state of a partition object (Line 4) has two major components:

(1) a tag that specifies how partial results should be aggregated, and (2) a cursor that marks

the boundary between the processed and unprocessed parts of the input. We will discuss

these two components shortly.

The DataPartition class also provides an interface to iterate over data items through the

next and hasNext methods as well as serialize and deserialize methods to convert data

format. These methods are highlighted in red in Figure 5.4. It is up to the developer how
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1 // The ITask abstract class in the library.

2 abstract class ITask {

3 // Initialization logic.

4 abstract void initialize();

5
6 // Interrupt logic.

7 abstract void interrupt();

8
9 // Finalization logic.

10 abstract void cleanup();

11
12 // Process a tuple; this method should be side-effect-free.

13 abstract void process(Tuple t);

14
15 // Scalable loop.

16 boolean scaleLoop(DataPartition dp) {

17 initialize();

18 while (dp.hasNext()) {

19 if (Monitor.hasMemoryPressure() &&

20 ITaskScheduler.terminate(this)) {

21 // Invoke the user-defined interrupt logic.

22 interrupt();

23 // Push the partially processed input to the queue.

24 ITaskScheduler.pushToQueue(dp);

25 return false;

26 }

27 process(dp.next());

28 }

29 cleanup();

30 return true;

31 }

32 }

Figure 5.5: The ITask abstract class.

to implement serialize and deserialize: the data partition can be serialized to disk and

the deserialization brings it back into memory; for applications that cannot tolerate disk

I/O, the partition can be serialized to large byte arrays and the deserialization recovers the

object-based representation. These two methods will be invoked by the IRS to (de)serialize

data in response to memory availability (see Section 5.4).
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The ITask abstract class. An existing task needs to extend the ITask abstract class

to become an interruptible task, as shown in Figure 5.5. The extension forces the task

to implement four new methods which are highlighted in red : initialize, interrupt,

cleanup, and process. As we will show shortly, the implementation can be easily done by

simply re-structuring existing code. Rather than changing the original core semantics of a

task (e.g., map or reduce in Hadoop), these methods provide a way for the developer to

reason about interrupts.

The initialize method loads the input and creates local (auxiliary) data structures before

starting data processing; interrupt specifies the interrupt handling logic; cleanup contains

the finalization logic when the entire input is processed; and process implements the main

data processing logic. The scaleLoop method is implemented in the library. It iterates over

the input data tuples and invokes the process method to process a tuple in each iteration

(Line 27). It checks memory availability at the beginning of each iteration, ensuring that

interrupts can only occur at safe points (i.e., not in the middle of processing a tuple).

When a running task is interrupted, its input and output data partitions still stay in memory

unless explicitly released by the developer (such as Line 12 in Figure 5.9). Serialization is

not immediately performed. Instead, it is done in a lazy manner by the partition manager

(Section 5.4.3) when needed.

Input-output relationship. The invocation of an ITask has a dataflow semantics, which

aligns with the dataflow nature of the framework: as long as (1) there exists a DataPartition

object in the partition queue, which contains the inputs of all tasks, and (2) the cursor of

the partition does not point to the end, the task will be automatically invoked to pro-

cess this partition. To illustrate, consider the code snippet in Figure 5.6, in which ITaskA

and ITaskB are two ITask classes; and DataPartitionA and DataPartitionB are two

DataPartition classes. These four statements make ITaskB a successor of ITaskA: whenever
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a DataPartitionB is produced by ITaskA, it can be immediately processed by ITaskB.

1 ITaskA.setInputType(DataPartitionA.class);

2 ITaskA.setOutputType(DataPartitionB.class);

3 ITaskB.setInputType(DataPartitionB.class);

4 ITaskB.setOutputType(DataPartitionC.class);

Figure 5.6: Setting input-output relationship.

Note that the DataPartitionB object can be produced in two scenarios: (1) ITaskA success-

fully runs to the end, and thus it is the complete result from the processing of DataPartitionA;

or (2) ITaskA is interrupted, and thus it is a partial result (e.g., a fragment). In either case,

a thread of ITasksB will be launched to process the DataPartitionB object, so that the

tasks are fully pipelined.

ITask state machine. Putting it all together, Figure 5.7 shows the ITask state machine.

The input of the ITask is a DataPartition object in the partition queue (see Section 5.4.3).

The object represents either a new, unprocessed partition or a partially processed partition

that was pushed into the queue at a previous interrupt. As shown in Figure 5.5, after

initialization (Line 4), the data is forwarded to scaleLoop (Line 16), which invokes the user-

defined process (Line 13) method to process tuples. Each iteration of the loop processes one

tuple and increments the input cursor. If there are no more data items to process (i.e., the

cursor points to the end of the partition), the execution proceeds to cleanup (Line 10), which

releases resources and outputs a new DataPartition object. This partition will become the

input of the next ITask in the pipeline.

Upon memory pressure (Line 19), if the IRS determines that the current ITask instance

needs to be terminated (Line 20, based on a set of priority rules discussed in Section 5.4),

the user-defined interrupt logic is executed (Line 7) and the input data partition is pushed

into the partition queue. The scaleLoop is then exited, and this terminates the thread and

produces an output partition representing a result. The input partition cursor marks the
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Figure 5.7: The dataflow of an ITask execution.

boundary between processed and unprocessed tuples. Future processing of this partition will

start at the cursor when memory becomes available.

An important requirement here is that the process method cannot have side effects: it

is only allowed to write the output partition and internal objects, which guarantees that

the processing of a partially-processed data partition can be resumed without needing to

restore a particular external state. Note that this is not a new requirement since side-effect

freedom has already been enforced in many existing data-parallel tasks, such as Map/Reduce

in Hadoop.

ITask with multiple inputs. It is necessary to allow an ITask to process multiple inputs

at the same time, especially when a task produces an intermediate result that cannot be

directly fed to the next task in the pipeline, as shown by component 4 (b) in Figure 5.2.

As discussed earlier, an interrupt to a Reduce task in MapReduce would produce such an

intermediate result; an additional follow-up task is needed to aggregate all intermediate

results before a final result can be produced and further processed. To enable aggregation,

we design an abstract class called MITask, which takes multiple data partitions as input.
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This class differs from ITask only in the definition of the scaleLoop method as shown in

Figure 5.8.

1 abstract class MITask {

2 boolean scaleLoop(PartitionIterator<DataPartition> i) {

3 initialize();

4 while (i.hasNext()) {

5 DataPartition dp = (DataPartition) i.next();

6 while (dp.hasNext()) {

7 if (...) { // The same memory availability check.

8 interrupt();

9 ITaskScheduler.pushToQueue(i);

10 return false;

11 }

12 process(dp.next());

13 }

14 }

15 cleanup();

16 return true;

17 }

18
19 // Other logic is the same as ITask, so omitted here.

20 ...

21 }

Figure 5.8: The MITask abstract class.

In MITask, scaleLoop processes a set of DataPartition objects. Since the partition queue

may have many partition objects available, a challenge here is how to select partitions to

invoke an MITask. We overcome the challenge using tags (Line 4 in Figure 5.4): each

instance (thread) of an MITask is created to process a set of DataPartition objects that

have the same tag. Tagging should be done in an earlier ITask that produces these partitions.

Obviously, multiple MITask instances can be launched in parallel to process different groups

of data partitions with distinct tags. Note that a special iterator PartitionIterator is used

to iterate over partitions. It is a lazy, out-of-core iterator that does not need all partitions

to be simultaneously present in memory; a partition on disk is loaded only if it is about to

be visited.
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5.3.2 Instantiating ITasks in Existing Frameworks

Hyracks. Hyracks [105] is a carefully crafted distributed dataflow system, which has been

shown to outperform Hadoop and Mahout for many workloads [17]. In Hyracks, the user

specifies a dataflow graph in which each node represents a data operator and each edge

represents a connection between two operators. Processing a dataset is done by pushing

the data along the edges of the graph. For example, given a big text file for WordCount

(WC), Hyracks splits it into a set of (disjoint) partitions, each of which will be assigned to

a worker for processing. Hyracks users dictate the data processing by implementing the

MapOperator and ReduceOperator, connected by a “hashing” connector. The main entry

of each operator’s processing is the nextFrame method.

The Map operator does local word counting in each data partition. Its ITask implementation

is shown in Figure 5.9, and Hyracks classes/methods are highlighted in blue. . To launch

ITasks from Hyracks, we only need to write five lines of code as shown in Lines 24–33

in Figure 5.9: in the nextFrame method, we create a BufferPartition object using the

ByteBuffer provided by the framework, set the input-output relationship, and start the

ITask execution engine. The nextFrame method will be invoked multiple times by the

Hyracks framework, and hence, multiple BufferPartition objects will be processed by

threads running MapOperator under the control of the IRS. Upon memory pressure, the

MapPartition object, output , contains a final result, and thus the invocation of interrupt

can directly send it to the shuffle phase (Line 11).

The Reduce operator re-counts words that belong to the same hash bucket. Figure 5.10

shows its ITask implementation, we highlight all the Hyracks classes and methods in blue.

Reduce has a similar implementation to Map. However, when memory pressure occurs and a

Reduce thread is terminated, output contains intermediate results that are not immediately

useful. Hence, before the thread is terminated, we tag output with the ID of the channel
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1 // The Map ITask for Hyracks.

2 class MapOperator extends ITask implements HyracksOperator {

3 MapPartition output;

4 void initialize() {

5 // Create output partition.

6 output = new MapPartition();

7 }

8
9 void interrupt() {

10 // The output can be sent to shuffling at any time.

11 Hyracks.pushToShuffle(output.getData());

12 PartitionManager.release(output);

13 }

14
15 void cleanup() {

16 Hyracks.pushToShuffle(output.getData());

17 }

18
19 void process(Tuple t) {

20 addWordInMap(output, t.getElement(0));

21 }

22
23 // A method defined in HyracksOperator.

24 void nextFrame(ByteBuffer frame) {

25 // Wrap the buffer into a partition object.

26 BufferPartition b = new BufferPartition(frame);

27 // Set input and output.

28 MapOperator.setInputType(BufferPartition.class);

29 MapOperator.setOutputType(MapPartition.class);

30 // Push the partition to the queue and run the ITask.

31 ITaskScheduler.pushToQueue(b);

32 ITaskScheduler.start();

33 }

34 }

Figure 5.9: MapOperator with ITask for the WordCount in Hyracks.

that the input ByteBuffer comes from (Lines 12, 17). Because a distinct channel is used

for each hash bucket, tagging facilitates the future recognition of partial results that belong

to the same hash bucket.

Next, we develop an MITask MergeTask that aggregates the intermediate results produced
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1 // The Reduce ITask for Hyracks.

2 class ReduceOperator extends ITask implements HyracksOperator {

3 MapPartition output;

4
5 void initialize() {

6 // Create output partition.

7 output = new MapPartition();

8 }

9
10 void interrupt() {

11 // Tag the output with the ID of hash bucket.

12 output.setTag(Hyracks.getChannelID());

13 ITaskScheduler.pushToQueue(output);

14 }

15
16 void cleanup() {

17 output.setTag(Hyracks.getChannelID());

18 ITaskScheduler.pushToQueue(output);

19 }

20
21 void process(Tuple t) {

22 addWordInMap(output, t.getElement(0));

23 }

24
25 void nextFrame(ByteBuffer frame) {

26 BufferPartition b = new BufferPartition(frame);

27 // Connect ReduceOperator with MergeTask.

28 ReduceOperator.setInputType(BufferPartition.class);

29 ReduceOperator.setOutputType(MapPartition.class);

30 MergeTask.setInputType(MapPartition.class);

31 ITaskScheduler.pushToQueue(b);

32 ITaskScheduler.start();

33 }

34 }

Figure 5.10: ReduceOperator with ITask for the WordCount in Hyracks.

by the interrupted Reduce instances. If a MergeTask instance is interrupted, it would create

further intermediate results; since these results are tagged with the same tag as their input

(Line 11), they will become inputs to MergeTask itself when memory becomes available in

the future.
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1 // The Merge MITask for Hyracks.

2 class MergeTask extends MITask {

3 MapPartition output;

4
5 void initialize() {

6 // Create output partition.

7 output = new MapPartition();

8 }

9
10 void interrupt() {

11 output.setTag(input.getTag());

12 ITaskScheduler.pushToQueue(output);

13 }

14
15 void cleanup() {

16 Hyracks.outputToHDFS(output);

17 }

18
19 void process(Tuple t) {

20 aggregateCount(output, t.element(0), t.element(1));

21 }

22 }

Figure 5.11: MITask for the WordCount in Hyracks.

The careful reader may notice that MergeTask has a similar flavor to the merge phase

proposed in the Map-Reduce-Merge model [28]. Here the merge task is simply an example

of the more general MITask that does not have a specific semantics while the merge phase

in [28] has a fixed semantics to merge the reduce results. MITask can be instantiated to

implement any M-to-N connector between different data partitions. In this work, an MITask

assumes associativity and commutativity among its input partitions (with the same tag).

Because these partitions can be accessed in an arbitrary order, the MITask may compute

wrong results if some kind of ordering exists among them. Note that this is a natural

requirement for any data-parallel task—any ordering may create data dependencies, making

it difficult to decompose the input and parallelize the processing.

Note that the code that achieves the core functionality of the two operators already exists
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in the original implementations of their nextFrame method. Turning the two operators to

ITasks requires only lightweight code restructuring.

Hadoop. Hadoop is a MapReduce framework in which tasks only need to extend the

Mapper/Reducer abstract classes, and therefore have narrower semantics than Hyracks tasks.

To enable ITask in Hadoop, we let Mapper and Reducer extend ITask, so that all user-defined

tasks automatically become ITasks. In addition, the run method in Mapper/Reducer is

modified to become a driver to invoke the ITask state machine; its original functionality is

moved into the scaleLoop method, as shown in Figure 5.12.

1 class Mapper extends ITask {

2 // Implementations of the ITask methods.

3 ...

4
5 void run() {

6 initialize();

7 if(!scaleLoop()) return;

8 cleanup();

9 }

10 }

11
12 class MyMapper extends Mapper {

13 void map(T key, K value, ...) {

14 // Data processing logic.

15 ...

16 }

17
18 void process(Tuple t) {

19 map(t.getElement(0), t.getElement(1));

20 }

21 }

Figure 5.12: Modified Mapper in Hadoop.

Other frameworks. It is possible to instantiate ITasks in other data-parallel frameworks

as well, such as Spark [137] and Dryad [50]. In general, this can be done by embedding the
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ITask state machine into the semantics of existing tasks, an easy effort that can be quickly

done by experienced programmers. Furthermore, the majority of the IRS code can be reused

across frameworks; slight modification is needed only for the boundary code where the IRS

interacts with the framework.

5.3.3 Discussion

Through these examples, it is clear to see the necessity of providing abstractions for devel-

opers to reason about interrupts. In fact, for the three tasks in the Hyracks WC example, the

handling of interrupts is completely different: when a Map thread is interrupted, the output

can be directly sent to shuffling; when a Reduce thread is interrupted, its output needs to

be tagged with the hash bucket ID so that it can be appropriately processed by the Merge

task; when a Merge thread is interrupted, its output also needs to be tagged appropriately

so that it will become its own input. Without the ITask programming model, it is difficult

to customize interrupt handling based on the task semantics.A one-to-one mapping does not

always exist between an existing task and an ITask. In many cases, the developer may want

to represent an existing task using multiple ITasks. The ReduceOperator in Hyracks shows

such an example. If an existing task is too large, breaking it into multiple ITasks can also

better utilize parallelism.

Our experience shows that the effort of writing ITasks is small—since the data processing

logic already exists, refactoring a regular task into an ITask usually requires the developer

to manually write less than 100 lines of code. For example, the ITask version of WC has 309

more lines of code than its regular counterpart. 226 lines, including function skeletons and

glue code, can be automatically generated by an IDE or our static analyzer. By default, we

employ a third-party library called Kryo [56] to perform data serialization and deserialization;

the use of this library only requires a few lines of code for object creation and method calls.
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The developer may also write their own serialization and deserialization logic to optimize

I/O performance.

Many data-parallel tasks are generated from high-level declarative languages. For example,

Hyracks hosts the AsterixDB [100] software stack while Hadoop has an increasingly large

number of query languages built on top of it, such as Hive [109] and Pig Latin [78]. Currently,

we rely on developers to manually port existing tasks to ITasks. Once the usefulness of ITasks

is demonstrated, an important and promising future direction is to modify the compilers of

those high-level languages to make them automatically generate ITask code.

5.4 The ITasks Runtime System

Once enabled, the IRS manages task scheduling. The IRS contains three components: the

partition manager, the scheduler, and the monitor. It determines (1) when to interrupt

or re-activate an ITask (monitor, Section 5.4.2), (2) when to serialize or deserialize data

partitions (partition manager, Section 5.4.3), and (3) which ITask to interrupt or re-activate

(scheduler, Section 5.4.4).

5.4.1 The IRS Overview

The IRS starts with a warm-up phase in which a slow-start parallelism model is used to

gradually scale up the number of threads: initially one thread is created to run the entry task;

as the task executes, our system gradually increases the number of threads until it reaches

the optimal execution point. If the heap is sufficiently large, the optimal execution point is

where the number of threads equals the number of logical cores in the system, which defines

the maximum amount of parallelism one can exploit. Otherwise, the IRS stops increasing

the number of threads at the moment the available memory size falls below a user-defined
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threshold percentage (e.g., N% of the total heap) to guarantee that the program is executed

in a pressure-free environment. The warm-up phase serves as an initial guard to managing

memory consumption: although the system memory utilization may change later, the IRS

is unlikely to need to tune memory usage immediately after the program starts.

From the task code, we develop a static analysis that builds a task graph based on the

input/output relationship of the ITasks in the program. The task graph will be used later

to determine which ITask instances should be interrupted and re-activated.

5.4.2 Monitor

The IRS monitors the global memory usage and notifies the scheduler of the system’s memory

availability. Algorithm 2 shows the main logic of our monitor. As discussed earlier, we

design the monitor by focusing on LUGCs. Specifically, we consider a GC as a LUGC if the

GC cannot increase the free memory size above M% of the heap size, where M is a user-

specified parameter. The monitor also watches the execution to identify periods in which

extra memory is available. These periods occur when the size of free memory is ≥ N% of

the heap size. If such a period is detected, the monitor sends a “GROW” signal (Line 5) to

instruct the scheduler to increase the number of ITask instances. The scheduler then picks

a task, finds a partition object that can serve as its input, and creates a new thread to run

it (Lines 7–11 in Algorithm 4). We used N = 20 and M = 10 in our experiments and they

Algorithm 2 The major logic of the IRS monitor.

1: repeat
2: if Long and Useless GC occurs then
3: SignalScheduler(“REDUCE”)
4: if freeHeap ≥ N% ∗ totalHeap then
5: SignalScheduler(“GROW”)
6: Sleep(interval) . interval is a system parameter.
7: until The whole system is shut down.
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worked well.

5.4.3 Partition Manager

Once a partition object is created, such as in the nextFrame method in Figure 5.9, it is

registered with the partition manager. The manager puts the object into a global partition

queue (as mentioned in Section 5.3.1) that contains all partially-processed and unprocessed

partitions. These data partitions may be in serialized or deserialized form. How a partition

is serialized depends on the serialize method defined in the partition class. While there

can be multiple ways to implement the method, in our current prototype, data serialization

writes a partition to disk and deserialization brings it back to memory. To avoid thrash-

ing, we keep track of each partition’s latest serialization and deserialization timestamps. A

data partition is not allowed to be serialized if a deserialization of the partition was per-

formed recently within a given time period, unless there are no other data partitions with

earlier deserialization timestamps. If thrashing still occurs, the partition manager notifies

the monitor, which then sends a “REDUCE” signal to the scheduler to terminate threads.

Algorithm 3 The major logic of the IRS partition manager.

1: repeat
2: Message m← Listen() . Wait for the next message.
3: if m ≡ “SERIALIZE” then . Memory pressure occurs.
4: ScanAndDump()
5: if IsThrashing() ≡ true then
6: SignalScheduler(“REDUCE”)
7: else if m ≡ “GET” then . The scheduler asks for a partition.
8: SendAnAvaiablePartition()
9: until The whole system is shut down.

Upon receiving a “REDUCE” signal from the monitor, the scheduler first checks with the

partition manager to see if it can serialize some data partitions that are associated with

already interrupted tasks (Lines 3–6 in Algorithm 3). In many cases, this is sufficient to

remove memory pressure so that we do not need to interrupt more tasks. The partition
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manager uses the following rules to determine which partitions to serialize first; background

threads then write the data to disk.

• Temporal Locality Rule: Partitions that serve as inputs to the ITasks that are

closer to the currently executed ITask on the task graph have a higher priority to stay

in memory.

• Finish Line Rule: A fast turn-around from the initial inputs to the final output is a

desired property of any system. To optimize for this property, the inputs to the ITasks

that are closer to the finish line (i.e., lower on the task graph) have a higher priority

to be retained in memory.

5.4.4 Scheduler

The scheduler determines which ITasks and how many instances of them to run. If serial-

ization done by the partition manager cannot alleviate the memory pressure, the scheduler

will reduce the number of task instances (Lines 5–6). The selection of ITask instances to

interrupt is based on the following three rules:

• MITask First Rule: Threads running MITasks have the highest priority to continue

running. Since an MITask often performs data merging, terminating the thread would

create a large number of input/output fragments.

• Finish Line Rule: A thread running an ITask closer to the finish line has a higher

priority to continue to run.

• Speed Rule: For a set of threads running the same ITask, the slowest thread will

be terminated first. The processing speed of a thread is determined by the number
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of scaleLoop iterations executed between two consecutive memory usage checks (per-

formed by the monitor). The speed of a thread depends primarily on the characteristics

of the input it processes. For example, it is quicker for a word count task to process

a partition with more duplicated words than a partition in which most words appear

only once. The scheduler favors fast-running threads so that they can quickly finish,

giving more memory for the rest of the (slower) tasks to finish.

Algorithm 4 The major logic of the IRS scheduler.

1: repeat
2: Message m← Listen() . Wait for the next message.
3: if m ≡ “REDUCE” then . Memory pressure is detected.
4: SignalPartitionMananger(“SERIALIZE”)
5: while freeHeap < M% ∗ totalHeap do
6: InterruptTaskInstance()
7: else if m ≡ “GROW” then . Enough memory for a new task instance.
8: while freeHeap ≥ N% ∗ totalHeap do
9: SignalPartitionMananger(“GET”) . Ask for a partition.

10: partition = ReceivePartitionFromManager()
11: IncreaseTaskInstance(partition)
12: until The whole system is shut down.

When a task thread is selected to be interrupted by the scheduler, for this thread, the

method call ITaskScheduler.terminate(this) (Line 20 in Figure 5.5) will return true and

its interrupt method will be executed. The scheduler continues to terminate threads until

the memory usage goes below the threshold. Upon receiving a “GROW” signal from the

monitor, the scheduler creates a new thread to run an ITask based on the following two rules

(Lines 8–11 in Algorithm 4):

• Spatial Locality Rule: We favor an ITask that has in-memory inputs. These parti-

tions can be processed first before the manager needs to load partitions from disk.

• Finish Line Rule: We favor an ITask that is closer to the finish line.
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When an ITask is selected and its input partition is on disk, the partition manager loads the

partition back into memory transparently to the scheduler.

5.4.5 Fault Tolerance

Since ITask does not add new semantics onto existing tasks, we can reuse the fault tolerance

mechanism provided by the underlying framework. In addition, we develop our own ITask-

based fault tolerance support inside the IRS, which can be used by frameworks that do not

provide fault tolerance. In particular, we add a checkpointer inside the partition manager,

which, once enabled, can record all data partitions in the queue to disk. If the node fails and

restart is needed, the IRS can quickly locate the most recent checkpoint, load all partitions

into memory, and resume ITasks from there. Since data partitions all have cursor informa-

tion, restarting the execution from a failure is the same as resuming the execution from an

interrupt.

5.5 Evaluation

We have implemented the ITask library and the IRS on Hadoop and Hyracks. These imple-

mentations have approximately 30,000 lines of Java code. We ran Hadoop and Hyracks on

a 11-node Amazon EC2 cluster. Each node (a c3.2x large instance) has 2 quad-core Intel

Xeon E5-2680 2.80GHz processors, 15GB of RAM, and one RAID-0 comprised of 2 80GB

SSDs. The cluster runs Linux 3.10.35 with enhanced networking performance. We used Java

HotSpot(TM) 64-bit Server VM (build 24.71-b01) for all experiments. The state-of-the-art

parallel generational garbage collector was used.
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Methodology. Since Hadoop is a popular data-parallel framework that has many OMEs

reported on StackOverflow, we focus our first set of experiments (Section 5.5.1) on reproduc-

ing real-world problems in Hadoop and understanding whether the ITask implementations

can help these programs survive OMEs and successfully process their entire datasets. The

second set of experiments (Section 5.5.2) focuses on comparing performance and scalability

between the ITask programs and their original versions on Hyracks over various heap con-

figurations and data sizes. For Hadoop and Hyracks, we used version 2.6.0 and 0.2.14 in our

experiments, respectively. YARN was enabled when Hadoop was run.

5.5.1 ITasks in Hadoop

Reproducing real-world problems requires running the programs under the same config-

urations and with the same datasets as their original settings. This effort is extremely

labor-intensive and time-consuming, especially in a distributed environment.

We have successfully reproduced and implemented ITasks for thirteen problems among the

73 problems we have studied. On average, it took us about a week to set up a distributed con-

figuration as described on StackOverflow, manifest the problem, understand its semantics,

and develop its ITask version. For all of these 13 problems [71, 135, 76, 83, 2, 90, 4, 88, 27, 8,

22, 82, 1], their ITask versions successfully survived memory pressure and processed the given

datasets. We report detailed experimental results for a diverse array of five problems includ-

ing map-side aggregation (MSA) [71], in-map combiner (IMC) [135], inverted-index building

(IIB) [76], word cooccurrence matrix (WCM) [83], customer review processing (CRP) [2]. The

StackOverflow data dump [96] and Wikipedia data dump [116] are used in this set of exper-

iments. All the programs except CRP run on the full StackOverflow/Wikipedia dump, and

CRP uses a sample of the Wikipedia data dump. For all the executions, the HDFS block size

is set to 128MB.
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Name MSA IMC IIB WCM CRP

Dataset StackOverflow Wikipedia Wikipedia Wikipedia Wikipedia*
Size 29GB 49GB 49GB 49GB 5GB

Map Heap 1GB 0.5GB 0.5GB 0.5GB 1GB
Reduce Heap 1GB 1GB 1GB 1GB 1GB

# Mapper 6 13 13 13 6
# Reducer 6 6 6 6 6

CTime 1047 5200 1322 2643 567
PTime 48 337 2568 2151 6761
ITime 72 238 1210 1287 2001

Table 5.1: Hadoop performance comparisons for five real-world programs.

Table 5.1 shows the configurations in which the problems manifest and the execution times

of different versions of the programs. The datasets used and their sizes are reported in

Row Data and Size; the max heap size for each Map and Reduce task is shown in Row Map

Heap and Reduce Heap; the maximum numbers of Mappers and Reducers on each machine

are reported in Row # Mapper and # Reducer. Time elapsed before each original program

ran out of memory is also reported in Row CTime. For each problem, we carefully read its

recommended fixes on StackOverflow. For all the problems but CRP, the recommended fixes

were changing parameters (# Map/Reduce workers on each node or task granularity). After

a long and tedious tuning process, we observed that reducing worker numbers and/or sizes of

data splits was indeed helpful. For these four problems, we ended up finding configurations

under which the programs could successfully run to the end. The shortest running time under

different working configurations we found is reported in Column PTime. For CRP, since the

recommended fix was to break long sentences, we developed a tool that automatically breaks

sentences whose length exceeds a threshold. Since we are not experts in natural language

processing, this tool broke sentences in a näıve way and might be improved when considering

domain knowledge.

The ITask versions of these problems were executed under the same Hadoop configuration as

their original versions (as shown in Table 5.1). Their running time is shown in Section ITime.

The numbers highlighted in bold are the lowest running times for the successful executions.
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Comparing PTime and ITime, we can observe that the ITask versions have much better

performance (i.e., on average 2× faster) than manually-tuned versions in most cases. The

only exception is for MSA, where its ITime is 1.5× longer than PTime. An investigation

identified the reason: since the first Map task loads a very large table to perform hash join,

the program has to be executed with only a small degree of parallelism. Manual tuning sets

the maximum number of workers to 1 thus paying no additional runtime cost while its ITask

version alternates the number of workers between 1 and 2—the tracking overhead cannot be

offset by the exploited parallelism. Another observation is that CTime may be much longer

than PTime and ITime. This is because these programs all suffered from significant GC

overhead as well as many restarts before YARN eventually gave up retrying and reported

the crash.

Memory savings breakdown. Table 5.2 shows a detailed breakdown of memory savings

from releasing various parts of an ITask’s consumed memory. Note that different programs

have different semantics and therefore they benefit from different optimizations. For instance,

the OME in MSA occurs in a Map task; the task has an extremely large key-value buffer,

which contains final results that can be pushed to the next stage. Hence, MSA benefits mostly

from pushing out and releasing final results. As another example, WCM crashes in a Reduce

task; therefore, it has large amounts of intermediate results that can be swapped out and

merged later. These promising results clearly suggest that ITask is effective in reducing

memory pressure for programs with different semantics and processing different datasets.

Name Processed Final Intermediate Lazy
Input Results Results Serialization

MSA 14.9KB 33.7GB 0.0GB 6.0GB
IMC 18.4KB 23.1GB 0.0GB 0.0GB
IIB 70.1MB 0.0GB 7.1GB 2.3GB
WCM 192.6MB 0.0GB 14.3GB 1.5GB
CRP 1.0KB 1.2GB 112.8MB 0.0GB

Table 5.2: A detailed breakdown of memory savings.
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With these programs, we have also compared ITask executions with näıve techniques that

(1) kill a task instance upon memory pressure and later reprocess the same data partition

from scratch (without using ITasks) and (2) randomly pick threads to terminate and data

partitions to resume (without using our priority rules in Section 5.4.4). The results show

that the ITask executions are up to 5× faster than these näıve techniques.

5.5.2 ITasks in Hyracks

The goal of this set of experiments is to understand the improvement in performance and

scalability ITask provides for a regular data-parallel program. The 11-node cluster was still

used; unless specified, each node used a 12GB heap as the default configuration.

Benchmarks. We selected the following five already hand-optimized applications from

Hyracks’ code repository and ported their tasks to ITasks. These programs include word

count (WC), heap sort (HS), inverted index (II), hash join (HJ), and group-by (GR). Note

that these applications were selected because (1) they provide a basis for many high-level

applications built on top of Hyracks, such as AsterixDB [5, 100] and Preglix [20]; and (2)

they were used extensively in prior work [17, 18, 10] to evaluate Hyracks and other high-

level applications. Since Hyracks does not allow the use of Java objects, these programs are

already well-tuned and expected to have high performance.

WC returns to the user the number of times each word occurs in a corpus. Section 5.3 already

provided a description. HS heap-sorts a set of numbers (i.e., id of vertices in the Yahoo

Webmap). II maps each word back to the document containing the word. HJ takes as input

TPC-H’s Customer and Order tables, in which each record represents a customer and an

order, respectively. The application matches customer information with the order based on

the ID of the customer. Its functionality is equivalent to the following SQL query:
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SELECT * FROM customer, order WHERE customer.ID=order.custID;

GR takes as input the TPC-H’s LineItem table, each record of which represents an item

included in an order. The goal is to calculate the total item counts in each order and the

total price of that order. It is functionally equivalent to the following SQL query:

SELECT orderID, SUM(quantity), SUM(price) FROM lineitem GROUP BY orderID;

Size # Vertices # Edges
72GB 1,413,511,390 8,050,112,169
44GB 992,128,706 4,474,491,119
27GB 587,703,486 2,441,014,870
14GB 143,060,913 1,470,129,872
10GB 75,605,388 1,082,093,483
3GB 24,973,544 313,833,543

Table 5.3: WC, HS, and II’s inputs: the Yahoo! Webmap and its subgraphs.

On average, each program has around 2K lines of Java code—e.g., the smallest program WC

has 550 lines of code (LOC) and the largest program HJ has 3.2K LOC. It took us one person

week to convert these five programs into ITask programs.

Our datasets came from two sources: the Yahoo Webmap [129], which is the largest publicly

available graph with 1.4B vertices and 8.0B edges, and the TPC-H data generator [111],

which is the standard data warehousing benchmark tool popularly used in the data man-

agement community. For TPC-H, we used the following three tables: Customer, Order, and

LineItem. Table 5.3 and Table 5.4 show their statistics.

Scale Size # Customer # Order # LineItem
150× 150.4GB 2.25×107 2.25×108 9.00×108

100× 99.8GB 1.50×107 1.50×108 6.00×108

50× 49.6GB 7.50×106 7.50×107 3.00×108

30× 29.7GB 4.50×106 4.50×107 1.80×108

20× 19.7GB 3.00×106 3.00×107 1.20×108

10× 9.8GB 1.50×106 1.50×106 6.00×107

Table 5.4: HJ and GR’s inputs: TPC-H data.
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Scalability of the original programs. We first ran each original version with various

numbers of threads (between 1 and 8). Detailed performance comparisons among these

configurations are shown in Figures 5.13–5.17. The task granularity is 32KB, and the con-

figurations in which the program ran out of memory are omitted. In each graph, bars are

grouped under input sizes. From left to right, they show the execution times with growing

numbers of threads. For each bar, the time is further broken down to the GC time (the

upper part) and the computation time (the lower part). These graphs clearly demonstrate

that increasing thread number does not always lead to better performance. For example,

for HS and GR at their largest inputs (27GB and 50×, respectively), their fastest executions

used 6 threads.

We have also varied task granularities (between 8KB and 128KB). Table 5.5 summarizes the

largest datasets in our experiments to which these programs could scale and the configura-

tions under which the best performance was obtained over these datasets. In this table, DS

reports the largest datasets in our experiments to which the programs scaled; # K and #

T report the numbers of threads and the task granularities for which the best performance

was obtained when processing the datasets shown under DS.

Most of these programs suffered from significant GC effort when large datasets were pro-

cessed. For instance, for HS and GR, their GC time accounts for 49.14% and 52.27% of their

execution time, respectively. Among the programs, II has the worst scalability due to the

large in-memory maps it maintains: II was only able to process the smallest dataset (3GB).

Even the single-threaded version of II could not process the 10GB dataset on the cluster.

HJ scales the best: each slave was able to process up to 10GB input with a 12GB heap. The

bottleneck that prevents HJ from processing the 150× dataset is its in-memory Customer

table. This table consumes much of the heap leaving the program with little space for the

actual join. However, the bottleneck is difficult to optimize away because the table is re-

quired to be fully constructed and present throughout the execution. During the processing
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of the 150× dataset, the table was too large and the program was always under memory

pressure, making the GC time exceed the JVM’s limit.

Name DS # K # T
Word Count (WC) 14GB 2 32KB

Heap Sort (HS) 27GB 6 32KB
Inverted Index (II) 3GB 8 16KB

Hash Join (HJ) 100× 8 32KB
Group-By (GR) 50× 6 16KB

Table 5.5: The configurations which provide the best scalability/performance.
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Figure 5.13: Performance of the original WC with different threads.
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Figure 5.14: Performance of the original HS with different threads.
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Figure 5.15: Performance of the original II with different threads.
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Figure 5.16: Performance of the original HJ with different threads.
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Figure 5.17: Performance of the original GR with different threads.
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Performance improvements. For each program, we next compare its ITask version with

the original version under the configuration that yields the best performance (as shown in

Table 5.5). We have measured both running time and heap consumption in this experiment.

To eliminate the execution noise on the cluster, we ran the ITask version 5 times with a

12GB heap. Figures 5.18–5.22 report the geometric means of these measurements. Bars

represent running time of successful executions and are grouped by input sizes. In each

group, the first/left bar corresponds to the best configuration for the original program and

the second/right bar corresponds to the ITask version. Each bar is also broken down into

GC (the upper part) and computation time (the lower part). The heap consumptions are

represented by lines, each reporting the maximum heap usage of the program across all the

slaves.

Name # TS % TS # HS % HS Scalability
WC 5/6 39.63% 5/6 13.81% 5.14×
HS 4/6 10.85% 5/6 7.57% 2.67×
II 6/6 27.53% 5/6 -9.28% 24.00×
HJ 6/6 66.45% 3/6 -5.16% 6.00×
GR 6/6 61.35% 5/6 26.62% 5.00×

GeoMean 27/30 44.95% 23/30 7.65% 6.29×

Table 5.6: A summary of the performance improvements from ITask.

Table 5.6 summarizes the time and space savings from ITask; # TS and # HS report

ratios at which an ITask program outperforms its regular counterpart in execution time and

heap consumption, respectively; % TS and % HS report the ITask’s reductions in time and

heap consumption, respectively, for the inputs both versions have successfully processed;

Scalability reports the ratios between the sizes of the largest datasets the two versions can

scale to.

Among the 30 (both failed and successful) executions of these programs, their ITask versions

were faster than their original versions in 27 of them. The 3 executions (for WC and HS) in

which the ITask version was slower all processed very small datasets, plus the time differences
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are negligible (i.e., 1.61%). The average time reduction ITask has achieved across the 17

successful executions is 44.95%. The majority of these savings stems from significantly

reduced GC costs.

The ITask programs are also memory-efficient. In 23/30 executions, the maximum heap

consumption is smaller than that of the Java version. This is due to IRS’s ability to move data

in and out. However, in the cases that the inputs are small, the ITask version consumes more

memory because of the tracking/bookkeeping performed in the IRS. The overall memory

space reduction across the executions in which both versions succeeded is 7.65%; furthermore,

the original programs failed in 13 out of the 30 executions while the ITask version succeeded

in all of them.

Scalability improvements. The last column of Table 5.6 shows how well the ITask pro-

grams scale. These measurements are computed as the ratios between the sizes of the largest

inputs the ITask-based and the original programs can process. As shown in Figures 5.18–

5.22, all the ITask programs successfully processed all input sizes in our experiments while

none of the original programs could. Even for the highly-scalable HJ program, its ITask

version well outperforms its original version. Overall, ITask has achieved a 6.29× scalability
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Figure 5.18: Comparisons between the ITask WC and its Java counterpart.
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Figure 5.19: Comparisons between the ITask HS and its Java counterpart.
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Figure 5.20: Comparisons between the ITask II and its Java counterpart.
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Figure 5.21: Comparisons between the ITask HJ and its Java counterpart.
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Figure 5.22: Comparisons between the ITask GR and its Java counterpart.
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Figure 5.23: The legend of Figure 5.18–5.22.

improvement. We performed an additional test on further larger input sizes to understand

the scalability upper bound of these programs. This experiment shows that the ITask ver-

sions of HJ and GR could successfully process a 600× and a 250× dataset, respectively. These

results indicate that the scalability improvement ITask provides may be even larger when

bigger datasets are used.

Using different heaps. To understand how an ITask program behaves under different

heaps, we ran WC and II on the 10GB dataset, under a 12GB, 10GB, 8GB, and 6GB heap.

Their detailed performance is shown in Figure 5.24 and 5.25. To summarize, when the input

size is fixed, the performance of an ITask program does not change much with the heap

size, while a Java program can easily crash when the heap size is reduced. For example, the

original program of WC could not process the 10GB dataset with the 8GB and 6GB heap,
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while its ITask version successfully processed the whole dataset with the 6GB heap, yielding

a running time comparable to that with the 10GB heap. In addition, the GC component is

less than 10% of the total time.
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Figure 5.24: The performance of WC whiling changing the heap size.

OME OME

0

4

8

12

0

200

400

600

12GB 10GB 8GB 6GB 12GB 10GB 8GB 6GB

II Java (8 Threads) II ITask

E
x
ec

u
ti

o
n

 T
im

e 
(S

e
co

n
d

s)

Heap Size (GB)

GC Time

Computation Time

Peak Memory (GB)

Figure 5.25: The performance of II whiling changing the heap size.

In order to closely examine ITask’s adaptive execution, we counted the number of active

ITask instances during the execution of WC on the 14GB dataset. Figure 5.26 shows how
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Figure 5.26: The number of active ITask instances during the execution.

the number of threads changes as the execution progresses on the cluster. The cluster

has a maximum of 80 workers. Threads for Map and Reduce can overlap. The program

finished in 192 seconds and the average number of active threads on each slave was 3.16.

Figure 5.26 clearly shows that an ITask execution is very dynamic and our runtime system

can automatically adapt the active worker numbers to memory availability while keeping as

many active workers as possible. It would be interesting to also measure the cost of disk I/O.

However, we create background threads for disk operations, making it difficult to separate

out the I/O cost. Writing data partitions occurs simultaneously with the data processing

while reading data can introduce stalls. These stalls contribute to 5-8% of the execution

time.

5.6 Summary and Interpretation

Since no existing technique can systematically address the individual node memory pressure

problem, we propose ITask, which treats memory pressure as interrupt, to help data-parallel

applications survive memory pressure. Its non-intrusive design makes it easy for developers
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to integrate this approach into a distributed framework. The experimental results show that

ITask can solve real-world memory pressure problems without manually tuning parameters,

and dramatically improve the performance and scalability of data-parallel programs.

ITask provides the following unique features unseen in existing systems. First, ITask works

proactively in response to memory pressure. We take actions to interrupt tasks and reclaim

memory when we observe the first signs of pressure. Hence, ITask can quickly take the

system back to the memory “safe zone” before much time is spent on garbage collection

(GC) and way before an out-of-memory error occurs. As a result, ITask improves both

scalability (because out-of-memory crashes are avoided) and performance (because GC time

is reduced).

Second, ITask uses a staged approach to lower memory consumption for an interrupted task t.

It consists of five steps, covering all components of a running task’s user-level memory usage

with varying cost-benefit tradeoffs: (1) heap objects referenced by local variables during t’s

execution are all released; (2) the part of the input data already processed by t is released;

(3) final results generated by t are pushed out; (4) intermediate results that need to be

aggregated before being pushed out will be aggregated by a follow-up task in an out-of-core

manner; and (5) other in-memory data are serialized (e.g., to disk). Not all of these steps will

be performed at every interrupt: the handling is done lazily and it stops whenever memory

pressure disappears.

Third, ITask consists of a new programming model and a runtime system that can be easily

implemented in any existing data-parallel framework. The programming model provides

interrupt handling abstractions for developers to reason about interrupts. The ITask runtime

system (IRS) performs task scheduling and runtime adaptation. The amount of work needed

to implement ITask is minimal: the user simply restructures code written for existing data-

parallel tasks to follow new interfaces, and the framework needs to be slightly modified to

delegate task scheduling to the IRS. The IRS sits on top of the framework’s job scheduler,
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providing complementary optimizations and safety guarantees.
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Chapter 6

Related Work

6.1 Finding Performance Bugs

Jin et al. [52] study a number of performance bugs in real-world programs and develop a

pattern-based approach to find bugs in the program source code. Song and Lu [93] propose

a statistical approach to finding performance bugs in real-world software. Xu et al. pro-

pose static [126, 127] and dynamic [123] techniques to detect various kinds of performance

problems. Recent work from [77] proposes a static analysis that can find redundant con-

tainer traversals. Mitchell et al. propose heap analysis techniques [69, 68] that can correlate

system metrics with program behaviors. Nistor et al. [75] propose a runtime technique to

detect performance problems by looking for code loops that exhibit similar memory-access

patterns. Han et al. [46] identify performance problems by mining large numbers of stack

traces. Stewart et al. propose EntomoModel [98], a dynamic framework that uses decision

tree classification and a design-driven performance model to identify and avoid performance

anomaly. Caramel [73] detects loop-related performance bugs that can be easily fixed by

adding conditional breaks. These existing works are postmortem debugging techniques,
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focused on finding the root cause of a performance problem that already manifests in a

user-provided test execution or actual production run, while our work provides a general

framework to describe and amplify performance problems during testing.

Xiao et al. [118] develop a delta inference technique that predicts workload-dependence

performance bugs by using models with respect to workload size to infer iteration counts.

Yu et al. [132] propose a technique that collects large numbers of traces to measure perfor-

mance impacts and identify their root causes. WuKong [140] is an automated technique that

builds a feature-based behavioral model to predict bugs that manifest at large-system scale.

WuKong falls into the category of learning-based bug detection where small-scale training

runs are employed to build the model, while our approach uses developer-provided symptom

specifications to amplify performance problems.

6.2 Test Amplification Techniques

Test amplification is a notion wherein a single test execution can be used to learn much more

information about a program’s behavior than is directly exhibited by that particular execu-

tion. Zhang et al. [139] proposes a test amplification technique that exhaustively explores the

space of exceptional behaviors to validate exception handling code. Work from [60] uses a

static information flow analysis to amplify the result of a single test execution over the set of

all inputs and interleavings for verifying properties of data-parallel GPU programs. Dynamic

test generation techniques such as [21, 40, 87] can also be considered as test amplification

techniques which generate many tests from one test execution to achieve path coverage.
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6.3 Domain-Specific Languages

The Broadway compiler project [45] contains an annotation language and a compiler that

can customize a library implementation for specific application requirements. Other domain-

specific languages and compilers attempt to either incorporate application semantics into

compilation to improve performance (such as [38]) or generate application code from declar-

ative specifications (such as [91]). Annotations such as DyC [43] have been used to direct

dynamic optimization. Vandevoorde [112] proposes specifications based on Larch [117] to

enable performance optimizations. Work closest to the proposed ISL language is [86] that

develops a declarative language called DeAL to describe assertions checkable within one

single GC run. Unlike DeAL that aims to inform the GC how to check assertions, ISL is

an event-based instrumentation language that specifies (1) how a program should be instru-

mented, (2) what data need to be collected, and (3) how the mutator and the GC should

collaborate.

6.4 Optimizations of Data-Parallel Systems

While there exists a large body of work on optimizing data-parallel systems, most existing

efforts focus on domain-specific optimizations, including, for example, data pipeline opti-

mizations [24, 44, 141], query optimizations [32, 70], or shuffling optimizations [63, 138, 109].

Despite these optimizations, Big Data performance is still fundamentally limited by memory

inefficiencies inherent in the underlying programming systems. ITask is the first attempt to

help data-parallel tasks written in a managed language survive memory pressure and scale to

large datasets by providing a programming model for developers to reason about interrupts

and a runtime system that interrupts tasks and tunes performance.

Cascading [115] is a Java library built on top of Hadoop. It provides abstractions for devel-
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opers to explicitly construct a dataflow graph to ease the challenge of programming data-

parallel tasks. Similarly to Cascading, FlumeJava [24] is another Java library that provides

a set of immutable parallel collections. These collections present a uniform abstraction over

different data representations and execution strategies for MapReduce. StarFish [47] is a

self-tuning framework for Hadoop that provides multiple levels of tuning support. At the

heart of the framework is a Just-In-Time optimizer that profiles Hadoop jobs and adaptively

adjusts various framework parameters and resource allocation. ITasks perform autotuning

in orthogonal way: it is not bound to a specific framework nor is limited to a specific task

semantics. Instead, it provides a generic way to reduce memory pressure for a variety of

different frameworks and tasks.

Resilient Distributed Datasets (RDD) [136] provides a fault tolerant abstraction for managing

datasets in a distributed environment. It is similar to ITask in that the physical location

of a data structure is transparent to the developer. However, ITask scatters data between

memory and disk on each machine while RDD distributes data in the cluster. Moreover,

ITask focuses on enabling managed tasks to survive the presence of high memory pressure

while RDD focuses on data recovery in the presence of node failures.

Spark [137] implements RDD and divides jobs into “stages”. While resource contention can

be avoided between stages, memory problems can still occur inside each stage. In Spark,

RDDs can be spilled to disk; but the spilling mechanism is much less flexible than ITask:

when spilling is triggered, all RDDs with the same key need to be spilled; partial spilling is

not possible.

Mesos [48] and YARN [103] provide sophisticated resource management that can intelligently

allocate resources among different compute nodes. Although these job schedulers have a

global view of the resources on the cluster, their resource allocation is semantics-agnostic

and based primarily on resource monitoring. However, the memory behavior of a program

on each node is very complex and can be affected by many different factors. Hence, memory
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pressure still occurs, impacting application performance and scalability. ITask is designed

to bring the execution back to the safe zone of memory usage when pressure arrives.

PeriSCOPE [44] is a system that automatically optimizes programs running on the SCOPE

data-parallel system. It applies compiler-like optimizations on the declarative encoding of a

program’s pipeline topology. Facade [72] and Broom [41] optimize the managed runtime

by allocating data items in regions. While ITask aims to solve a similar memory problem,

it does so by allowing tasks to be interrupted and using a runtime system to automatically

interrupt/resume tasks, rather than eliminating Java objects.

6.5 Performance autotuning

There is a large body of work on autotuning for parallelism adaptation, especially in the

high performance computing (HPC) community [119, 130, 62, 39, 114, 108, 7, 25, 6].

Charm++ [54, 55] is a parallel language based on C++ that provides a high-level abstrac-

tion while delivering good performance on different hardware platforms. STAPL [108] is a

C++ template library that supports adaptive algorithms and autotuning. ADAPT [113]

augments compile-time optimizations with run-time optimizations based on dynamic infor-

mation about architecture, inputs, and performance. SPL [119] is a language and compiler

system for digital signal processing, and PetaBricks [7, 25, 6] is another language and com-

piler system that provides automated algorithm selection for parallel computing. Recent

efforts on autotuning general-purpose programs include Varuna [95], Parcae [85], DoPE [84],

work from Curtis-Maury et al. [33, 34], PD [94], TT [59], FDT [99], and CoCo [120]. Unlike

these existing techniques that adapt either DoP or algorithmic choices or data structure

choices to the execution, ITasks targets the problem high memory pressure in Big Data

systems.
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Chapter 7

Conclusions and Future Work

Performance problems widely exist in real-world applications, and managed languages further

exacerbate these problems. Performance problems are notoriously difficult to find during

testing, since the effects of these problems are almost invisible under small workloads. When

these bugs manifest in production runs, they can lead to severe problems, such as badly

hurting user experience and huge financial losses. Fixing performance bugs is equally difficult,

because developing a fix may require understanding the complex logic of large software

systems, and/or changing the code of the underlying systems.

In this dissertation, we have proposed a set of techniques to help developers find and fix

a wide class of performance problems. In Chapter 3, we first design a language, ISL, to

describe the symptom and counter-evidence of a performance problem if the symptom and

counter-evidence can be expressed by logical statements over a history of heap state updates.

Using examples, we have demonstrated that ISL is expressive enough to describe various

memory-related performance problems.

Based on ISL, we have built a general performance testing framework, PerfBlower, that

helps developers capture almost invisible performance bugs during testing by amplifying the
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problems. The framework contains a compiler and runtime system support, and design and

implementation details are described in Chapter 4. PerfBlower compiles an ISL program,

performs the instrumentation, amplifies the target problem when the symptom is observed at

runtime, and provides test oracles and useful diagnostic information. Our testing framework

is built on ANTLR and Jikes RVM, and we have used it to successfully amplify four types

of heap data-related performance problems.

Next, in Chapter 5 we present interruptible tasks as a systematic approach to help data-

parallel tasks survive memory pressure. ITask contains a novel programming model that

can be used by developers to reason about interrupts as well as a runtime system that auto-

matically performs interrupts and adaptation. Using real-world examples and experimental

data, we demonstrate that (1) ITasks can be easily integrated into a distributed framework

and interact seamlessly with the rest of the framework; and (2) the runtime is effective at

reducing memory usage, thereby significantly improving the performance and scalability of

a variety of data-parallel systems.

The techniques proposed in this dissertation may inspire new research on performance testing

and debugging, and some potential directions are listed as follows:

• Amplifying inefficient computation. In current version of ISL, users can define

the performance problems by specifying their symptoms on heap. Some inefficient

computation cannot be expressed in ISL, since they have no observable heap symp-

toms. One potential improvement is adding the the support of inefficient computation

specification to ISL so that computation-related problems can be directly captured in

testing.

• Detecting asymptotic inefficiencies in algorithms. Quite a number of programs

perform well under small workloads; but they cannot scale to large input due to the su-

perlinear algorithms in their critical routines. To detect such asymptotic inefficiencies
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in algorithmically-critical routines, one potential solution is building the relationship

between input size and performance to predict the existence of performance problems

under large workloads. It is exciting and challenging to explore how to build the rela-

tionship between input and performance and how to combine this model into current

test oracles.

• Non-intrusive performance testing tools. PerfBlower is built on Jikes RVM, and

its current design requires heavy modification of Java virtual machines. An alternative

solution is a library-based approach: the runtime support and the instrumentation are

implemented as a library, and they communicate with Java virtual machines through

some interfaces (e.g., JVM TI [79]). This non-intrusive design makes it extremely easy

to integrate the performance testing tool into any JVM as long as it supports the

interfaces.
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